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ABSTRACT 
Several underlying behaviors of feature selection techniques 
are analyzed in this paper.  A bound relating sample size and 
dimensionality is derived and verified empirically. The 's-
curve' relationship between test error and amount of training 
data is shown not to be a generalized behavior of all feature 
selection techniques. 

1. INTRODUCTION 
Feature selection techniques have recently proven themselves 
invaluable in many statistical learning domains. Pearson 
correlation coefficients, Fisher criterion scores, and the 
Kolmogorov-Smirnov test are methods useful for filtering large 
amounts of irrelevant data down to only relevant features. 
Other, more complex, feature selection techniques have also 
been developed recently for use with SVM classifiers.  

Problems in fields, such as bioinformatics, involve a large 
number of irrelevant dimensions. Attempting to classify some 
types of highly dimensional data sets may be intractable, both 
computationally and economically. Establishing the few 
relevant features is a critical component in the classification 
process. In order to ascertain which features are indeed 
relevant, a number of "training samples" are required.  
 This paper is laid out into two main sections. The first 
section attempts to determine the relationship between the 
dimensionality of a data set and the number of samples required 
to select the relevant features. The second section discusses the 
's-curve' appearance with certain feature selection techniques 
and establishes that it is not a generalized property of all feature 
selection methods. 

2. SAMPLE SIZE AND DIMENSIONALITY 
Given the prevalence of feature selection techniques, it may be 
beneficial to establish a better idea of how they operate. In 
section 2.1 the relationship between sample size and 
dimensionality is shown empirically with simulated data sets. 
The proof in section 2.2 constitutes an initial attempt at 
developing a theoretical understanding of generalized feature 
selection behavior.  Although such a relationship is highly 
dependent on the specific problem as well as the particular 
classifier, we show how to derive a "soft" upper bound on the 
number of samples required to identify the relevant features. 

2.1. Empirical Results on Dimensionality vs. Samples 

Many toy data sets were generated in order to test the 
relationship between dimensionality and training sample size. 

The data had a range of relevant and irrelevant features and 
was analyzed using a variety of feature selection techniques 
and classifiers. 

2.1.1. The "Toy" Data 

The generated data was drawn from three Gaussian 
distributions with different means and variances. The majority 
of the features were drawn from a distribution with 0 mean and 
represented the 'irrelevant' features which were shared equally 
between both classes. The number of these features ranged 
from ten, up to 600 and shared a constant variance. The means 
of the remaining two distributions were equally offset on either 
side of zero and shared similar variances. Typically there were 
anywhere between two and ten of these features correlated with 
the class labels.  In some instances, the features were created as 
linear combinations of other relevant features.  

2.1.2. The Feature Section and Classification 

The two main feature selection techniques were a SVM 
feature selection technique, as described in [1], and a variation 
of the Fisher Score. The feature selection methods selected 
between two and ten relevant features from the data set and 
used only the selected features to train the classifier. The 
classifier then took as training inputs only the selected features 
and attempted to classify the entire test set. This classifier was 
typically either an SVM1 or the Fisher Linear Discriminant2.  

2.1.3. Results 

The results from these tests appeared independent of the 
classification techniques and the feature selection methods 
described in the previous section.  Figure 1 depicts the 
relationship that appeared to be generalized across the tests.  

Although changing the parameters of the relevant features 
shifted the slope of the line, an empirically linear relationship 
was seen on all data analyzed. This verifies that for at least the 
two feature selection techniques and the two classifiers used in 
this work, the theoretical results derived in section 2.2 do hold 
true. Whether the linear relationship between dimensionality 
and sample size is a generalized property for all feature 
selection techniques and classifiers remains a subject for 
further investigation.  

                                                 
1 Using a linear kernel 
2 The separating hyperplane is defined in equation 1.11   



Figure 1: Empirical Dimensionality vs. Sample Size3 

2.2. Deriving An Upper Bound on Amount of Training Data 

It is important that this linear relationship between sample size 
and dimensionality have theoretical as well as empirical 
verification. Below is a proof combining several well-known 
theorems to derive the probability that no irrelevant features in 
the data set are outliers and could possibly be mistaken as 
relevant features.  

Starting with the standard definitions of mean and variance: 
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and the Weak Law of Large Numbers: 
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From Chebyshev's Inequality: 
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Combining the Weak Law of Large Numbers and Chebyshev's 
Inequality yields equation 1.5. 
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Simplifying 1.5: 

                                                 
3 This plot was generated using a data set described in section 
2.1.1 with two relevant features, with variance of 1.5 and offset 
of 2. It employed a feature selection technique described in [1] 
that selected ten relevant features. The final classification was 
done using SVMfu with a linear kernel. 
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  where mµ is the empirical mean.  

Equation 1.6 can be viewed as the probability of a single feature 
being an 'outlier' - being beyond a certain distance from its 
empirical mean.  

Inversing this probability yields equation 1.7: 
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Equation 1.7 is simply the opposite of equation 1.6: the 
probability that a specific feature's empirical mean is within a 
certain bound from its true mean. Finally, equation 1.8 
generalizes this bound for m features. 
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The results for a specific data set with variance of 2 1.5σ = , 
a error threshold of .15, and 2ε = are in equation 1.8 and 
Figure 2 below.  
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As evident in Figure 2, equation 1.9 yields a graph that appears 
to be linear. This result agrees with the results generated 
empirically in section 2.1. 

Figure 2: Theoretical Dimensionality vs. Sample Size 
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3. VERIFYING THE 'S-CURVE'  
It was shown empirically in [1] that several feature selection 
techniques display an interesting property when their respective 
test error is plotted with sample size. As depicted Figure 3, a 
plateau is formed until the correct features are selected, at 
which point the error quickly drops to its lowest level. It was 
hypothesized that all feature selection techniques need to go 
through a number of iterations before they would be able to 
correctly identify the appropriate features. Upon reaching the 
critical number of samples, test error should quickly drop 
monotonically as features begin to be correctly identified. 

To show that the 's-curve' phenomenon is a generalized 
property of all feature selection techniques, it must be validated 
empirically and theoretically. Hypothesis testing and deriving 
the number of samples required to develop a correct estimate of 
the relevant features' priors was one possibility at the 
theoretical solution. However, the generalization error for two 
Gaussians was calculated in section 3.1 instead. Empirically, 
the 's-curve' theory was tested using a Fisher Linear 
Discriminant. 

 

 
 
 

Figure 3: The Feature Selection "S-Curve" 

3.1. Theoretical Validation of the 'S-Curve' 

The equation for generalization error with two classes drawn 
from Gaussian distributions is shown in [2] and in equation 
1.10. 
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The separating hyperplane, w, is from the Fisher Linear 
Discriminant and is defined as: 
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Using a data set described in section 2.2.1, the 
generalization error given equation 1.10 was calculated for a 
variety of sample sizes. Only four features were selected. As 
Figures 3 and 4 show, no clear 's-curve' was ever established. 
After many iterations, the curve resembled an inverse power 

law. Modifying all of the model's parameters4 never resulted in 
the desired 's-curve'.  

 

Figure 4: Theoretical Results after 1 Iteration 

 

 

 

 

 

 

 

Figure 5: Theoretical Results after 50 Iterations 

3.2. Empirical Validation of the 'S-Curve' 

To attempt to verify the 's-curve' empirically, a data set was 
developed that seemed to be most likely to recreate it.  Just as 
in section 3.1, only four features were selected. Fisher scores 
and the Fisher Linear Discriminant were used to select these 
four features and classify the test data. 

As can be seen in Figure 6, after a single iteration the 
algorithm seemed to find a relevant feature, but then lost it 
when the number of samples was increased. However, by 
connecting the peaks, an definite 's-curve' does emerge. 
Fundamentally, this suggests that there is a critical number of 
samples above which, guarantees the correct features are 
selected given the current model parameters.  

After running several of the tests, it was soon clear that the 
probability of the feature selection technique correctly selecting 
the appropriate feature was a function of the current sample 
size. The algorithm was unlikely to select the correct features 
with only a few samples, but the possibility remained. Thus, 
when 50 iterations were averaged, the error vs. sample size 
curve in Figure 7 looks very similar to an inverse power law 
curve - following the same shape as the theoretical results. 

It is left to further research to establish whether this result 
is dependent on the type of distribution from which the data is 
drawn.5 

                                                 
4 Including variances, means, number of relevant features, 
number of features selected 



 

 

Figure 6: Empirical Results after 1 Iteration 

 

Figure 7: Empirical Results after 50 Iterations 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                               
5 As described in section 2.2.1, the data used for all the 
experiments in this paper consisted of Gaussian distributions. 

4. CONCLUSIONS 
This paper attempts to uncover generalized behavior common 
in features selection techniques. One such behavior seemed to 
be the linearity bound between dimensionality and sample size. 
This relationship was shown both theoretically and 
demonstrated empirically. Another behavior believed to be 
common to feature selection techniques was the 's-curve' 
generated when test error and samples size are plotted. 
Although it occurs using some feature selection techniques, the 
theory was easily disproved.  While this initial work is 
inadequate to make broad generalizations about all feature 
selection techniques, it does provide some insight into their 
underlying behavior. 
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