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ABSTRACT  
The co-evolution of social relationships and individual behavior in 

time and space has important implications, but is poorly 

understood because of the difficulty closely tracking the everyday 

life of a complete community. We offer evidence that relationships 

and behavior co-evolve in a student dormitory, based on monthly 

surveys and location tracking through resident cellular phones over 

a period of nine months. We demonstrate that a Markov jump 

process could capture the co-evolution in terms of the rates at 

which residents visit places and friends. 

Categories and Subject Descriptors 
H.1.2 [Models and Principles]: User/Machine Systems – Human 

information processing. 

General Terms 
Algorithms, measurement, experimentation, human factors. 

Keywords 
Social computing, human dynamics, living lab, stochastic process, 

multi-agent model. 

1.  INTRODUCTION  

People act, meet, and interact in the context of time and space. As 

such, time and space provide important hints about the co-

evolution of individual behavior and social interaction –  people 

change where they go, and when they go there, by chance and 

through social interactions, and make connections and influence 

one another through their shared time and space. This paper 

discusses the spatial-temporal patterns of the residents in an MIT 

student dormitory over nine months, tracked every six minutes 

through the cellular phones of the students, as well as through our 

dynamical-process approach. With these data we capture the 

patterns of the students and make inferences regarding co-

evolution. The patterns reported by this paper are generalizable, 

and our method could serve as the inference engine of cell-phone 

applications to integrate sensor data. 

 

Time and space have important practical implications in shaping 

the behavior and social networks of individuals, and in modeling 

the co-evolution of individual behavior and social interaction. For 

example, let us assume that health is related to where people go 

and how they interact with one another. We can construct cell-

phone applications to track this behavior and social interaction, and 

can subsequently improve health by showing Joe how his behavior 

and social interaction could affect his fitness, and by offering Joe 

rebate on health insurance and on the subscription fees of fitness 

centers if his cell-phone indicates that he commits to regular 

physical exercises in fitness centers with his neighbor Jane. In this 

way, Joe gets improved fitness and would like to pay for his 

improvement, the fitness centers get more customers revenue 

around an athletic culture, and the insurance companies get lower 

risk on their customers.  

Due to the lack of time and space data, the co-evolution of 

individual behavior and social interaction is not well understood. 

For example, Christakis et. al. [1][2][6] claimed that obesity, 

happiness, and smoking behavior are contagious, based on 32 

years of medical records involving 12067 people considered 

together with their relatives and emergency contacts. On the other 

hand, there have recently been concerns [14] about whether these 

medical records were sufficient to properly establish this 

contagiousness, and whether the claimed contagion could be 

otherwise explained by people with similar behaviors preferring to 

spend time together. Closely tracking the locations and proximities 

of people in communities over a span of months enables us to 

better determine the relationships between changing behavior and 

changing social network – whether strangers of the same "feather" 

are more likely to share time and space, and whether friends have 

increasingly-similar schedules. The causal relationship in dispute 

has practical implications.  

If individual behavior is contagious, then we can change this 

behavior either by changing the behavior of several influential 

elements in the social network, or by changing the social network 

itself. If individual behavior is not contagious and people with 

similar behavior simply go together like “birds of a feather,” then 

we need not bother with social networks in shaping individual 

behavior. 

Previous attempts in untangling the problem of the co-evolution 

dynamics without closely tracking the everyday life of a complete 

community has been inconclusive, and tracking behavior using 

mobile phones offers new hope. Kossinets and Watts [12] analyzed 

a dynamic social network comprised of 43553 students, faculty, 

and staff at a university, in which the social interactions were 

characterized by who sends emails to whom and when, and 
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individuals were characterized by their  gender, age, department, 

number of years in the community, and classes taught or taken. 

The researchers found that shared time and space (in this case, 

classes) and shared acquaintances increase by more than ten times 

the chance of forming a social tie. In comparison, attributes such as 

status, gender and age do not affect the chance of forming a tie [8]. 

Tracking data could reveal how acquaintance increases the chance 

of forming a tie, which other shared times and spaces besides 

classes are important, and whether shared time and space is the 

cause of a tie, or the effect. 

We conducted the Social Evolution experiment to closely track the 

everyday life of a whole community with mobile phones, so that 

the social science community can validate their models against the 

spatio-temporal patterns and behavior-network co-evolution as 

contained in this data. The Social Evolution experiment covered 

the locations, proximities, and phone calls of more than 80% of 

residents who lived in the dormitory used in the Social Evolution 

experiment, as captured by their cell phones from October 2008 to 

May 2009. This dormitory has a population of approximately 30 

freshmen, 20 sophomores, 10 juniors, 10 seniors and 10 graduate 

student tutors. -We conducted surveys monthly on different social 

relationships, health-related issues and statuses, and politics-related 

issues and statuses. This experiment also captured the locations 

and proximity of residents through a cell-phone application that 

scans nearby Wi-Fi access points and Bluetooth devices every six 

minutes – referenced to the latitudes and longitudes of the Wi-Fi 

access points – and then compared them to student demographics 

data to make sense of the data set. The data are protected by MIT 

COUHES and related laws. 

This paper contributes to the discourse of computational social 

science in several ways. We are the first to report via information 

captured by cell phones where students go and how they interact, 

correlated through survey results with how their locations and 

interactions are related to important issues such as relationships 

and health. The dynamics reported in this paper are likely to be 

generalizable because they are compatible with previous findings. 

We introduced the dynamical process model to describe how 

people with different attributes (for example, years in school, or 

amount of physical exercise per week) go to different places, and 

how people with relationships co-occur in space and time. Such a 

model is useful in several ways. As a result, we can now sample 

"typical" time series of behavior and interactions from the model 

when sensor data is missing, or when the real sensor data cannot be 

published due to privacy concerns. We can also design the most 

efficient way to collect information and to protect privacy on a 

limited budget. Overall, from these data we can simulate different 

ways to shape behavior and relationships. 

The rest of this paper is organized as follows: Section 2 revises 

some previous and related works. Section 3 describes the Social 

Evolution data and in particular Section 3.1 describes how 

residents with similar attributes and behaviors form relationships, 

and conversely how their relationships shape their attributes and 

behaviors in the survey. Section 3.2 describes how the co-

evolution of individual behaviors and social interactions from the 

survey results is related to the sensor data. Section 4 describes our 

dynamical process model. Section 5 puts the spatiotemporal 

dynamics into applications in order to infer individual behaviors 

and social relationships, and discusses data collection and privacy. 

Finally, Section 6 draws some conclusions and proposes some 

perspectives for future works. 

2. PREVIOUS AND RELATED WORKS 

Previously, researchers have tracked individual behavior and social 

interactions in 100-person communities using mobile phones [5], 

motion sensors [24], and sociometric badges [1]. Researchers have 

also investigated the individual behavior and social interactions in 

geographical regions of one thousand to one hundred million 

people by analyzing cell-phone service provider call records [8] 

and vehicle-tracking records [11]. These studies reported about 

periodicity in human behavior, or social network structure, or the 

centrality-productivity relationship. However, the usability of such 

sensor data is restricted by the limits on collecting data for 

additional investigations beyond the original purposes of the data. 

Of the previous data collected, the Reality Mining data set most 

resembles the Social Evolution data set in terms of tracking with 

cell phones the location, proximity, and other behaviors of several 

connected research groups [5]. The Reality Mining data have lower 

spatial resolution than the Social Evolution data, however, because 

the former used cell towers to represent locations while the latter 

used Wi-Fi access points, which are more closely clustered. The 

Reality Mining data also contain fewer and less-frequent survey 

records than the Social Evolution data. The Reality Mining data 

demonstrated the potential for modeling group dynamics by 

closely tracking locations, proximity, and other phone-recordable 

activities, compared to traditional methods such as conducting 

surveys. That experiment showed that a subject’s satisfaction with 

his workgroup is dependent on whether he spent time with other 

persons from the workgroup during evenings and weekends. If this 

pattern is generalizable, a cell-phone application could improve the 

satisfaction of workgroup members either by placing people in the 

most appropriate workgroup or by facilitating off-hour 

socialization. The experiment also showed how new members 

gradually adopted workgroup-specific social norms, such as work 

hours and interactions with other groups. A cell-phone application 

could consequently be useful for preserving workgroup-specific 

social norms and for assisting with the adaptation of new 

workgroup members. In these scenarios, a survey-based approach 

is clumsy compared to a sensor-based approach. 

Of the previous models on community dynamics, the exponential 

random graph (ERG) models most resemble the Markov jump 

process model proposed in this paper. ERG models have received 

significant attention in the past few years in computational social 

science. In a nutshell, ERG models describe parsimoniously how 

local selection forces (attributes of individual nodes and dyads) 

shape the global structure (e.g., centrality distribution and degree 

distribution) of a network [7][10][13][23]. We use Markov jump 

process to model community behavior because at the temporal 

resolution of the sensor data (several minutes), individual behavior 

and social interaction do not have enough time to attain maximum 

entropy distribution, as is required by the temporal ERG model. A 

Markov jump process has wide applications in modeling processes 

of discrete events in finance, systems biology, chemistry and 

physics. 

3. OUR DATA 

The dataset used in our experimental analyses was collected as part 

of a longitudinal study with seventy residents of an undergraduate 

residence hall (referred to as an undergraduate dormitory in North 

America), which serves as the primary residential, cooking, social, 

and sleeping quarters for residents. This residence hall is the 

smallest undergraduate dormitory at the university. Participants in 

the study represent 80% of the total population of this hall, and 



most of the remaining 20% are spatially isolated. This dormitory is 

known within the university for its pro-technology orientation, and 

residence in the dorm is determined through self-selection by both 

applicants to the dorm and the existing residents. The students 

were distributed roughly equally across all four academic years 

(freshmen, sophomores, juniors, seniors). 54% of the students were 

male, and predominantly engineering, mathematics, and science 

majors. The study participants also included four graduate resident 

tutors who supervised each floor. Participants used data-collecting 

Windows Mobile devices as their primary phones, with their 

existing voice plans. Students had online data access with these 

phones due to pervasive Wi-Fi on the university campus and in the 

metropolitan area. As compensation for their participation for the 

entire academic year, participants were allowed to keep the 

smartphones at the end of the experiment. Additional information 

is available in Madan et al. [16][17][15]. 

The dataset used in this analysis was collected from (i) self-

reported surveys conducted monthly and designed by experts in 

political sciences and medicine, and (ii) cell-phone sensors that 

record proximity and location every six minutes and document 

communication. Data from surveys include the relationships of 

close friends; with whom residents are socializing, discussing 

politics, sharing Facebook photos, and sharing Twitter and blog 

posts; and attributes about individuals, such as participation in on-

campus organizations, health conditions and involvement in 

physical exercises, political opinions and involvement, and 

demographic information. Data from sensors also include dyadic 

relationships such as who called whom, who sent short messages 

to whom, physical proximity; and attributes about individuals, such 

as Wi-Fi hotspot scanning, which tracks where the individuals 

were. 

3.1 Survey Data 

The shared time, space, and relationships are the foundations from 

which the residents in the dormitory built additional relationships, 

as suggested by our monthly relationship surveys. The shared 

living sector in the dorm was the most important factor, especially 

for new residents. Shared courses and shared on-campus extra-

curricular activities were also important factors. 

The shared living sector is the most important factor for a student 

to build relationships. We collected the room numbers of 71 of the 

84 residents, sharing eight living sectors separated by the four 

floors and a firewall. A given student was five times more likely to 

report another student in his sector as a friend than another student 

living in a different sector. The 18 surveyed residents living in 

double rooms all reported their roommates as friends. At the 

beginning of a school year, the average student socialized with half 

of the students living in his sector, and with only 2-3 of students 

living in different sectors. At the end of a school year, he 

socialized with about one-third of students in the same sector, and 

with only 1-2 students in other sectors. 

The students’ academic and extra-curricular activities were also 

important contexts for building relationships. The average student 

was five times more likely to report as a friend another student in 

the same year at school. The average numbers of friends reported 

by freshmen, sophomores, juniors, seniors, and graduate tutors 

were respectively 2.9, 7.1, 8.1, 5.4 and 4.7 in the first month of the 

school year. Students were less likely to report each other as 

friends if their year in school differed by more than one. Over time, 

every freshman made five friends on average, while every graduate 

tutor made up to nine friends. Residents who had already stayed in 

the dormitory for more than one year (sophomores, juniors, and 

seniors) changed less than 10% of their friendship relations. 

We speculate that friendship influenced the assignment of living 

sectors, because freshmen were distributed among the eight living 

sectors more randomly than other residents. (The entropy of 

freshman distribution among the eight living sectors is 1.8, while 

the entropies of the 2nd, 3rd, 4th-year students are all around 1.6.) 

Let us adopt the mild condition that the statistics of the freshmen 

were the same as the statistics of the sophomores one year before 

the Social Evolution experiment (when the sophomores were 

freshmen), and the statistics of the juniors two years before the 

experiment, and so on. Let us adopt the further another mild 

condition that the probability distributions under our inspection 

have maximum entropy among all distributions compatible with 

our observations –  that is, no one can deliberately arrange the data 

in a specific way to defeat our reasoning. It then follows that 

freshmen change their sectors to live in concentrations at the end 

of a school year. Since those who are the same year in school are 

more likely to be friends, we conclude that friends are more likely 

to change to live in a concentrated environment. 

Figure 1 shows how the friendship network evolves from 

September 2008 to March 2009. Different living sectors are 

represented with different colors. An opening in the firewall 

connects dormitory sectors “f282.3” and “f290.3.” Numbers 1 to 5 

represents freshman, sophomore, junior, senior and graduate 

resident tutor respectively. The relationships in September 2008 

were based mostly on living sectors, because the freshmen met 

mostly those in the same sector, and the other residents had already 

adjusted their living sectors based on existing relationships. New 

relationships between September 2008 and March 2009 were 

mostly connected with the freshmen. 

As such, the data suggest that friendship in a student dorm are 

based on common experiences of life and other friendships, which 

in turn shape experiences of life, where "experience" was 

 
Figure 1: Subjects in the dormitory formed clusters of 

relationships by their dormitory sectors (the primary 

factor) and their years in school (the second most 

important factor). 
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identified from surveys as common living sectors and curricula. 

This interaction between friendship and behavior coincides with 

findings elsewhere. 

Friends also have a higher correlation in their on-campus activities, 

as indicated by the monthly surveys. From September 2008 to May 

2009, 15 friend pairs each shared all on-campus activities that we 

surveyed, and 30% of friend pairs shared over 50% of their on-

campus activities. In comparison, non-friends shared less than 10% 

of on-campus activities. In particular, pairs who participated 

aerobic exercise about three times weekly were more likely to be 

friends. While the surveys show significant correlation between 

activity participation and friendship (hypothesis that the correlation 

of friends' activity participation has the same probability 

distribution as the correlation of non-friends' was rejected with       in a Kolmogorov-Smirnov test), activities and interactions 

collected by sensors are nonetheless necessary for estimating 

friendship or activities, as the surveys do not offer statistically-

significant correlations between friendship and factors that do not 

require shared space and time, such as shared websites and shared 

music. 

The left panel of Figure 2 compares activity participation between 

friend pairs and non-friend pairs with a quantile-quantile plot (QQ 

plot). A QQ plot compares the probability distributions of two 

samples. When the two samples (participation correlations among 

friends and participation correlations among non-friends) have 

equal sizes, the QQ plot draws in a coordinate system the lowest 

value in one sample (non-friends) against the lowest value in the 

other sample, draws the second-lowest value in one sample against 

the second-lowest value in the other sample, and so on. When the 

two samples have different sizes, the QQ plot interpolates the 

values in the two samples. The digits 1-9 in this panel mark the 

0.1-0.9 percentiles in the two distributions. For example, 20% of 

friend pairs and 5% of non-friend pairs (marked by red digit 8) 

have activity correlations greater than 0.4. If we identify friends as 

those whose activity correlations are greater than 0.4, we can 

successfully identify the 20% of friend pairs with the highest 

activity correlations, but also misidentify the 5% of non-friend 

pairs with the highest activity correlations as friend pairs.  

The right panel of Figure 2 shows the odds that two individuals 

will be friends given that they perform certain numbers of aerobic 

exercises per week. When both individuals participate in around 

three aerobic activities per week, they have higher odds of being 

friends. This suggests that friendship determines behavior, because 

otherwise it is hard to explain why people who do 2.5 aerobic 

activities per week like those who do 2.5 aerobic activities per 

week, but people who do 3.5 aerobic activities per week like those 

who do 3.5 aerobic activities per week. When both individuals 

have one and fewer aerobic activities per week they are more 

likely to be non-friends. This seems to suggest that physical 

exercise is an additional factor other than shared living sector and 

shared courses that also shape friendship relations. 

Figure 3 shows each socialization network, political discussant 

network, the Facebook network, the blog/Twitter network 

(columns 1-5) during December 2008, March 2009, April 2009 

and May 2009 (rows 1-4). Each of the 20 images shows whether a 

given person A (x-axis) reported the stated relationship with a 

given person B (y-axis) in a specific month. We have reordered the 

participants so that friends go together. The friendship networks, 

the socialization networks, and the political discussant networks all 

take the block diagonal form, and the blocks represent different 

living sectors. Hence, relationships and living sectors have the 

most important interactions. The Facebook networks and 

blog/Twitter networks are the least structured. Some individuals 

reported relationships with all other residents in the student hall, 

especially towards the end of the academic year. This may indicate 

that by the end of the year all 84 residents in the small student 

dorm know one another, and distinguishing between the different 

relationships in the survey is a difficult task as a result. 

3.2 Sensor Data 

While the monthly surveys offer important insights into the co-

evolution of relationships and behavior, the cell-phones 

applications record relationships and behavior in much deeper 

detail, and provide almost limitless data-mining potential. The 

behavior and interactions recorded by the cell phones show clear 

daily, weekly, and yearly patterns, and increased behavioral 

complexity the longer a resident stays in school. There are positive 

correlations between reports from surveys and data from the cell 

phones; as such, the phones provide a way to fill in details between 

the surveys, and to potentially understand the behavior-interaction 

co-evolution. 

 

Figure 2: A pair of friends has higher correlation in their on-

campus activity participation than a pair of non-friends. 
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Figure 3: Students in the dormitory reported clusters of 

relationships in the surveys. 



We make sense of the Wi-Fi data by collecting information about 

the access points – their latitudes and longitudes, and what 

activities people normally do around them – and use web-mapping 

technologies to visualize the co-evolution of behavior and 

interactions in time and space. This information from Wi-Fi access 

points and web mapping technologies was greatly helpful for us in 

making inferences and validating our models. 

Figure 4 is a heat map showing how individuals visited places 

daily. The x-axis is indexed by Wi-Fi access points, and the y-axis 

is indexed by time during the week from Monday morning to 

Saturday at midnight. An entry shows how often the residents 

accessed a Wi-Fi access point in a specific hour in the week. The 

Wi-Fi access points on the left side were in the dormitory building, 

and so had many accesses from midnight to morning. The Wi-Fi 

access points on the right had high usage during work hours, and 

correspond to the classrooms and offices. The Wi-Fi access points 

in the middle show high usage from evening to midnight, and 

correspond to fitness centers and the student activity center. 

More years students had been in school, more Wi-Fi access points 

they frequented. Since MIT is covered with Wi-Fi access points, 

and since each location on average is within the range of 10 such 

points, we infer that over the years in school students add new 

places to their repositories of familiar and frequented locations, 

and so increased the complexity of their on-campus activities. 

Figure 5 uses QQ plots to compare the numbers of frequently-

encountered Wi-Fi points for the freshmen, sophomores, juniors, 

seniors, and graduate student tutors. The freshmen averaged 50 

frequently-visited Wi-Fi access points, the equivalent of 5 distinct 

locations. The sophomores begin to demonstrate a trend of adding 

new places to frequent, and the juniors and seniors demonstrate an 

average of 80 frequently-visited Wi-Fi access points, the 

equivalent of 8 locations. To compute the number frequently-

visited places, we first count how many times a student visited 

each of the Wi-Fi access points that he visited, then compute the 

entropy (the average of the logarithm of the visiting counts), and 

use the exponential of entropy as an indicator of the number of 

frequently visited places. 

Friends "infect" one another in terms of how frequently they visit 

places. Hence, friendship is an important contributor to the 

increased number of frequently-visited places. This infection 

manifests itself as friends visiting places with increasingly-similar 

frequencies over time. On the other hand, two people are also more 

likely to become friends when they share spaces for significant 

amounts of time (Figure 6). We argue that shared space shapes 

friendship, since the higher correlation of space usage among 

freshmen (who didn't know one another before the experiment) 

cannot be otherwise explained. 

Figure 7 shows the odds that two persons became friends, given 

that they met at a specific longitude and latitude. Only at a few 

locations – such as the dormitory, office buildings, classrooms, 

cafeteria, and athletic center – were two students more likely to be 

friends. In other locations, any person encountered was more likely 

to be a non-friend. This can be explained by the fact that friends 

often stay together longer at meaningful places, while the non-

friend pairs often just passed by one another. 

 
Figure 4: The student dormitory community cycled among 

dormitory (left), athletic center (middle) and 

classroom/office (right) from Sunday (bottom stripe) to 

Saturday (upper stripe), as indicated by Wi-Fi access-point 

usage. 

 
Figure 5: Students frequented more locations as they 

stayed in school longer. 
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Figure 6: Friends have similar location-visiting patterns (left), 

and increase in location-visiting similarity over time (right).  

 



 

4. OUR MODEL 

We use the Markov jump process to model sensor events regarding 

location and proximity related to the reported behaviors and 

interactions in the surveys. The events of this Markov jump 

process model are the time-stamped records from Wi-Fi hotspot 

access, Bluetooth scans, SMS’s and phone calls. The rates of 

different events are parameterized by the surveyed individual 

behavior and interpersonal relationships.  Using the Markov jump 

process model, we translate monthly surveys into minute-scale 

estimations about behavior and relationships in order to test 

traditional findings such as meme diffusion and the co-evolution of 

network topology and node attributes, and to remove errors and fill 

in missing records in the sensor network data. To prevent 

overfitting, we set the priors according to patterns that are not 

controversial in this context, such as the periodicity of human 

activity, the small-world property of social networks, the 80-20 

law of human behavior, and the existence of time and space for 

events to happen. 

Let us assume that two persons became friends over two 

consecutive monthly-relationship surveys, and both reported 

convergence in their activities and opinions in behavior surveys. 

We cannot determine the rich interaction between relationships and 

behaviors from only the surveys of the coarse temporal resolution. 

However, by looking at the proximity and location tracking of 

these two persons, and by relating survey reports to tracking 

records, we know the order of events in the co-evolution of the 

social network and the attitudes and behaviors of the individuals – 

when and where the two persons met initially and became friends, 

when and where they co-appear afterwards, and how their attitudes 

and behaviors converge due to interpersonal influence. 

Our model of sensor events follows our Bayesian heuristic to 

locate a person and to anticipate his proximity with other persons 

when he is out of sight. We form this Bayesian belief of how likely 

it is that this person will appear at each location, and how likely he 

is to connect with another person, by weighting where he spends 

time generally, where he is at a specific time-of-day and day-of-

week, where his friends spend time generally and specifically, 

where people like him often spend time, and how likely it is that he 

is collocated with other people. In doing this, we enumerate 

consistent possibilities about location and proximity. For example, 

two persons cannot be in physical proximity while not being 

collocated. When we have missing information about location and 

proximity, we iteratively adjust our Bayesian belief and our 

imputation of the missing information until we reach maximum 

likelihood estimation. To this end, we use survey data differently 

to suit different purposes: when the goal is to achieve the most 

accurate estimation on missing information about location and 

proximity, we weight between survey data and previous 

observations to form a Bayesian belief. When our goal is to find 

the relationship between survey data and sensor observations, we 

use survey data as covariates, and fit parameters to achieve 

maximum likelihood of the sensor data events. 

What we have described is a Markov jump process model on the 

interaction of events and states, and the co-evolution of locations 

and proximity of a system of individuals. We define the state of 

this system as the locations of the individuals, and we express the 

state of   individuals at time   as a state vector: x(t)=(Is person 1 at 

location 1? Is person 2 at location 2? … Is person C at location 
L?). The state      of the system is changed by different events        , and the state also determines the rates          at which 

different events will occur. We use an event vector to describe the 

number of different events happening in a time window:             where    is the number of events of type  . We denote an 

event by a “reaction”               , where    number of 

reactant    has been consumed and    number of product has been 

generated. In our model of location-proximity co-evolution, 

individuals change locations either due to their own volition or due 

to interaction with other individuals, and   ,    are all one.  

We are concerned with two types of events in our modeling: 

change of location not due to interaction with other people, and 

change of location due to interaction with other people. We 

express the rate            that an individual   changes location to   

due to his own volition as a linear combination of the contributions 

of different surveyed individual attributes      , where s indicates 

different attributes. We express the rate              that an 

individual   changes location to   due to his interaction with 

individual   who is at location   as a linear combination of 

surveyed relationships        , where s indicates different pair-wise 

relations.                              ,                                        . 

In the above,    and    are parameters. The likelihood of the 

Markov process is maximized when the rates computed from 

surveys best fit the rates from the sensors.  

We use matrix algebra to express how events change state. To this 

end we define the reaction matrix   as a     matrix, where   is 

the length of the state vector      and   is the number of reactions. 

An element at column   and row   represents the amount added to 

state       if reaction   happens. In our modeling of group 

dynamics, entries of   are either    or   , representing moving 

into a state (location) or moving out of a state. For example, in the 

following equation involving four persons and two locations per 

person, the first three columns of   represent when person 1 moves 

from location 1 to location 2, person 2 and 3 switch their positions, 

and speaker 4 moves from location 2 to location 1. The column 

vector   means an event. If we multiply A by r, we get an update of 

the state matrix. 

Figure 7: Friends often met at a few meaningful places. In 

contrast, non-friends passed each other randomly. 



    
  
   
                 

   
         

  
   
         

   
     

Let       be the event vector representing the numbers of different 

events happening between    and     . In the Markov jump 

process, formulation           and the other elements of       are 

0 with probability 1. The system states starting from       and 

corresponding to the sequence of events are updated according to                      . 

In order to derive the inference algorithm for estimating the 

dynamics of behavior-interaction co-evolution from noisy sensor 

data, we begin with the ideal situation that we know all events        , where        ,             = T, and            . The probability for this sequence of events to occur 

is  

P                                          

In reality, we have only discrete time noisy observations         

regarding Wi-Fi hotspot accessibility and proximity, and we want 

to infer from these discrete time observations how many, when, 

and what events happened between these observations. The 

inference algorithm becomes non-trivial when the time interval 

between two consecutive observations becomes large, when we 

have missing data, and when we have data that are incompatible 

with the model. However it is possible to construct exact MCMC 

algorithms for inference based on discrete time observations, and it 

is possible to posit inferences through mean field approximation 

and variational method [22]. 

We introduced the following approximations to make the inference 

of co-evolution dynamics much simpler. Our first approximation is 

that events occur only at the times of observation, and this 

approximation introduces 12-minute error into event times. Our 

second approximation is that the observations for inferring the 

state have joint Gaussian distributions conditioned on that state. 

Thus the probability of a sequence of latent events     , together 

with the corresponding latent states      and observations     , is 

as follows:                                                    ,                            ,                                                    ,                                        . 

We use Gibbs sampling to infer latent states and parameters:                                                                                                        , 

                                                                   , 

                               . 

The Markov jump process model is related to the influence model 

[1]. In the Markov jump model, system state is updated by 

multiplying a reaction matrix and an event vector. In the influence 

model, system state is updated by multiplying an influence matrix 

and a marginal state vector. The two models can be translated into 

one another by translating between the event vector and the 

marginal state vector and subsequently translating between the 

reaction matrix and influence matrix. 

The Markov jump process model is also related to the temporal 

exponential random graph model (tERGM) [10] in that both 

models can encode different statistics about network topology in 

the likelihood function, and can subsequently study the evolution 

of network topology. However, tERGM requires that the network 

topology at each time step be in equilibrium in terms of the 

concerned network topology statistics, and this requirement make 

tERGM inappropriate for studying dynamics in networks where 

equilibrium is not attained.  

We can gain insight into this Markov jump process model from a 

simplification of the model. In this simplification, the surveyed 

relationships and attributes are constant (that is, time is 

homogeneous) within each survey period, and the rate that a 

location or a proximity instance is detected is also constant within 

each survey period. Without confirmed reports about the 

probability distributions of sensor data regarding the average 

behavior, we assume normal distribution, and focus on the average 

behavior. This simplification results in linear regression models. 

The rate that a person is detected at a location is a linear 

combination of the surveyed attributes about the person, and      
 

represents how a surveyed attribute contributes to the rate of 

location detection. The rate that a dyad between two persons is 

detected is a linear combination of the surveyed relations about this 

dyad, and      
 represents how a surveyed relationship contributes 

to the rate of dyad detection. By relating the rate of location 

detection and the rate of proximity detection               , 

we have built a generalized regression model to explain a surveyed 

relationship with surveyed locations                                          , or to explain a 

surveyed relationship with location and proximity sensing, and so 

on. 

The potential of a Markov model of human dynamics is supported 

by the previous successful applications of regression models to 

predict relationships from sensor data. Eagle, for example, reported 

that sensor data such as off-campus proximity during weekends 

and nights, who called whom, and who sent short messages to 

whom could explain friendship with 95% accuracy [2].  

A Markov process model gives us more power than a regression 

model when sample data are scarce, or data have missing or 

erroneous content. In the task of identifying the dyads in a cluster 

of friends from a short time window of observation, we have a 

small chance of observing calls or co-occurrence between all pairs, 

but we have a larger chance of observing higher rates of a potential 

calls or co-occurrence within this cluster.  

5. EXPERIMENTAL RESULTS 

We demonstrate that relationships and individual behaviors 

interact with each other. In our analysis, we propose a dynamical 

process model to track the co-evolution of relationships and 



behavior. We can often relate sensor data (where people go and 

who is around them) to labels such as friendship, number of years 

in school, and activities, by applying machine-learning methods. In 

this section, we put the structure of human dynamics and its 

modeling into useful applications. 

5.1 Predicting relations 

Our first application tracks friendship based on how friendship is 

related to factors such as where people live, how many years they 

have been in school, where people go, and how often people go 

together. Tracking friendship is useful, because friendship shapes 

many of the aspects of behavior that we previously described, or 

that other researchers have documented, and tracking friendship 

through surveys is neither user-friendly nor indicative of friendship 

diagnostics. There will be no difficulty in using the same technique 

to track behaviors and attributes such as happiness and fitness, 

given that a relation between sensor data and attributes exists. 

Prior to the availability of sensor data for understanding human 

behavior, researchers predicted friendship based on the collected 

labels about individuals and some known relationships. Many 

researchers adopted the model that says whether A and B are 

friends is positively related to whether A or B likes to make many 

friends (sociability), whether A and B have many characteristics in 

common (assortativity), and how many common friends A and B 

have (triangle closure). They proceeded to use logistic regression 

to relate the log odds of friendship to a linear combination of 

sociability, assortativity, and triangle closure. Logistic regression 

and surveyed attributes can predict friendship well in the Social 

Evolution data, because people in the same dormitory sector and 

people in the same years in school are five times more likely to be 

friends. Logistic regression and surveyed attributes can even 

predict how new links were added into the friendship network of 

the residents if we add the interaction between the elapsed time 

since the beginning of a semester and the students' years in school, 

because freshmen made new friends over time and the friendship 

relations of other students were stable. 

However, the prediction based on the traditional data collection 

method fails to predict the differences among individuals who have 

the same predictor attributes (in the Social Evolution data set, 

dormitory sector and years in school) and how friendship varies 

daily, which are perhaps more useful for the residents. The sensor 

data solves this problem by allowing us to model the everyday 

locations and proximities collected by sensors, which are 

probabilistically conditioned on the attributes collected by surveys. 

In other words, the sensor data now sit between the relationship to 

predictors and the surveyed attributes. 

To evaluate sensor data in estimating friendship, we simulate our 

dynamical process model conditioned on the survey data to find 

the log-odds that two persons were friends, and compare the log-

odds and the explained deviance with those from the logistic 

regression model. We constructed the logistic regression model to 

predict, from whether two persons share the same dormitory 

sector, whether they are the same year in school, and how long the 

experiment had been conducted if one person was a freshman, 

whether A reported B as a friend in the surveys. ANOVA shows 

that a shared dormitory sector explains about 8% variance, shared 

year explains an additional 4%, the evolution of a freshmen's 

friendship links explains 4%, and the sensor data explains an 

additional 6%. Overall 22% variance of friendship relation is 

explained, where friendship relation has binomial distribution.  

Figure 9 shows that by using the surveyed attributes of individuals 

and logistic regression we can correctly identify the structure of the 

friendship network of the student dorm residents, and using the 

sensor data (where people were, how often people were together) 

and the simulation approach we can not only capture the structure 

induced by common dorm sector and year, but also verify whether 

a relationship really exists when we predict that it should. 

It could be misleading to use precision (the fraction of retrieved 

instances that are relevant) and recall (the fraction of relevant 

instances that are retrieved) to access a method to detect 

friendship, and a better way is to ask whether the method correctly 

captures the structure statistics of friendship. In the Social 

Evolution data, a person on average had five to six friends. Only 

5% of all pairs were friendship pairs. Hence, a null classifier could 

easily archive 95% accuracy by saying that all pairs are non-friend 

pairs. Both logistic regression and simulation-based approaches 

identify the structure of the friendship network. 

5.2 Predicting sensor data from the survey  

Our second application samples typical time series regarding 

where people go and how people come together based on the 

trained dynamical process model. Sampling time series is 

important for protecting privacy and for planning and evaluating 

intervention.  

The privacy issues arise because the behavioral data collected by 

sensors have considerable commercial and research value, and 

collecting and distributing such data often involves significant 

legal and ethnical issues. The Social Evolution data, for example, 

cannot leave a dedicated server. Distributing synthesized sensor 

data has good potential in addressing the privacy issue, because by 

fusing sensor data from many subjects of the same attributes into 

synthesized typical behavior and interaction, we can both get rid of 

subject-identifiable features and also control the level of detail that 

we provide. Synthesizing time series also enables us to simulate 

 

Figure 9: Dormitory sector, year in school, and time since 

enrollment as a freshman explain the structure and evolution 

of friendship (left column). Proximity and place-visiting 

similarity explain more variations about friendship (middle 

column). 



different ways of shaping group or individual behavior before we 

put such methods into practice. For example, if we put an 

attraction at the athletics center, how likely is this attraction to be 

picked up by an individual in the student dorm, how likely is it to 

attract the individual again and to foster regular aerobic exercise, 

and how likely will the influenced individual be in turn to 

influence other individuals? 

While the mathematics of the Markov jump process is 

complicated, simulating behavior and interaction is 

straightforward. At any given time, an individual decides whether 

to leave his current place. If he does not leave his current place, he 

will decide whether to leave a moment later. If he leaves his 

current place, he then decides which next place to go to, or which 

friend to go to. If he has seen a non-friend a lot in the previous two 

weeks, he then decides whether he should make friends with that 

person. If he hasn't seen a friend in the previous two weeks, he 

then decides whether he should turn this person into a non-friend. 

The rates at which he makes different decisions can be found from 

persons like him (that is, same year, living in the same dorm 

sector, or working in the same department) in a training data set. 

Figure 10 illustrates two synthesized paths. One is synthesized 

from a computer science senior who has friends working in the 

media laboratory and who undertakes regular physical exercise. 

Another path is synthesized from a biology sophomore who is 

quite arduous in physical exercise. Such paths are typical of how a 

computer science senior or a biology sophomore moves around 

every day. However, such paths do not exist in real life. 

6. CONCLUSION AND FUTURE WORKS 

How social relationships and individual behaviors co-evolve in 

time and space has important implications, but is poorly 

understood due to the lack of data. We have shown evidence that 

relationships and behaviors co-evolve in a student dormitory, 

based on monthly surveys and locations/proximities tracked by cell 

phones for a nine-months period. We describe a Markov jump 

process model to capture this co-evolution in terms of the rates of 

going to places and friends. We demonstrate that by modeling the 

dynamics in sensor data, we can predict friendship, and  can 

synthesize useful and accurate behavior and interaction 

projections. 
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