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Abstract

One of the major obstacles to using Bayesian methods for pattern recognition has been
its computational expense� This thesis presents an approximation technique that can per�
form Bayesian inference faster and more accurately than previously possible� This method�
�Expectation Propagation�	 uni�es and generalizes two previous techniques
 assumed�
density �ltering� an extension of the Kalman �lter� and loopy belief propagation� an ex�
tension of belief propagation in Bayesian networks� The uni�cation shows how both of
these algorithms can be viewed as approximating the true posterior distribution with a
simpler distribution� which is close in the sense of KL�divergence� Expectation Propagation
exploits the best of both algorithms
 the generality of assumed�density �ltering and the
accuracy of loopy belief propagation�

Loopy belief propagation� because it propagates exact belief states� is useful for lim�
ited types of belief networks� such as purely discrete networks� Expectation Propagation
approximates the belief states with expectations� such as means and variances� giving it
much wider scope� Expectation Propagation also extends belief propagation in the op�
posite direction�propagating richer belief states which incorporate correlations between
variables�

This framework is demonstrated in a variety of statistical models using synthetic and
real�world data� On Gaussian mixture problems� Expectation Propagation is found� for the
same amount of computation� to be convincingly better than rival approximation techniques

Monte Carlo� Laplace�s method� and variational Bayes� For pattern recognition� Expecta�
tion Propagation provides an algorithm for training Bayes Point Machine classi�ers that is
faster and more accurate than any previously known� The resulting classi�ers outperform
Support Vector Machines on several standard datasets� in addition to having a comparable
training time� Expectation Propagation can also be used to choose an appropriate feature
set for classi�cation� via Bayesian model selection�
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Chapter �

Introduction

The dominant computational task in Bayesian inference is numerical integration� New
methods for fast and accurate integration are therefore very important and can have great
impact� This dissertation presents a new deterministic approximation framework� Expecta�
tion Propagation� which achieves higher accuracy than existing integration algorithms with
similar computational cost�

The general scenario of Bayesian inference is that there is some observed data and some
unobserved quantity of interest� Inferences about the unknown x are based on its posterior
distribution given the observed D


p�xjD� �
p�x�D�

p�D�
�

p�x�D�R
x p�x�D�dx

�����

For example� we may want to know the posterior mean and variance of the unknown� which
are integrals over the posterior


E�xjD� �
Z
x
xp�xjD�dx �

R
x xp�x�D�dxR
x p�x�D�dx

�����

E�x�jD� �

Z
x
x�p�xjD�dx �

R
x x

�p�x�D�dxR
x p�x�D�dx

���
�

var�xjD� � E�x�jD�� E�xjD�� �����

In real situations� there are many unknowns� not just the one we are interested in� In
Bayesian inference� these must be marginalized out of the joint distribution� which involves
yet more integrals


p�xjD� �

R
y�z p�x� y� z�D�R
x�y�z p�x� y� z�D�

�����

Thus numerical integration goes hand in hand with practical Bayesian inference�
Numerical integration algorithms can be principally divided into deterministic vs� non�

deterministic methods� Deterministic methods try to approximate the integrand with some�
thing whose integral is known exactly� They work from properties of the integrand like its
maxima and curvature� Nondeterministic methods sample the integrand at random points
to get a stochastic estimate of the integral� This approach is more general since it works for
almost any integrand� but it also requires a great deal more computation than deterministic
approximation�
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The proposed method� Expectation Propagation� is a deterministic approximation
method� It is an extension to assumed�density �ltering �ADF�� �Maybeck� ����� Lauritzen�
����� Bernardo � Giron� ����� Stephens� ����� Boyen � Koller� ����b� Barber � Sollich�
����� Opper � Winther� ����� Frey et al�� ����� a one�pass� sequential method for comput�
ing an approximate posterior distribution� In ADF� observations are processed one by one�
updating the posterior distribution which is then approximated before processing the next
observation� For example� we might replace the exact one�step posterior with a Gaussian
having the same mean and same variance �Maybeck� ����� Lauritzen� ����� Barber � Sol�
lich� ����� Opper � Winther� ������ Or we might replace a posterior over many variables
with one that renders the variables independent �Boyen � Koller� ����b� or approximates
them as Markovian �Frey et al�� ������ In each case� the approximate posterior is found by
minimizing KL�divergence� which amounts to preserving a speci�c set of posterior expecta�
tions� Note that the statistical model in question need not be a time series model� and the
processing order of observations need not correspond with time of arrival� The weakness of
ADF stems from its sequential nature
 information that is discarded early on may turn out
to be important later� Even if ADF is augmented with a backward pass �Boyen � Koller�
����a�� this information cannot be recovered� ADF is also sensitive to observation ordering�
which is undesirable in a batch context�

Expectation Propagation �EP� extends ADF to incorporate iterative re�nement of the
approximations� by making additional passes� The information from later observations re�
�nes the choices made earlier� so that the most important information is retained� When the
re�nement converges� the resulting posterior is independent of ordering and more accurate�
Iterative re�nement has previously been used in conjunction with sampling �Koller et al��
����� and extended Kalman �ltering �Shachter� ������ Expectation Propagation di�ers
by applying this idea to the deterministic approximation of general distributions� not just
Gaussian distributions as in Shachter ������� EP is more expensive than ADF by only a
constant factor�the number of re�nement passes �typically � or ��� As shown in chapter 
�
the accuracy of EP is signi�cantly better than ADF as well as rival approximation methods

Monte Carlo� Laplace�s method� and variational Bayes�

Thinking in this framework has a number of bene�ts� For example� in belief networks
with loops it is known that approximate marginal distributions can be obtained by iterating
the belief propagation recursions� a process known as loopy belief propagation �Frey �
MacKay� ����� Murphy et al�� ������ As described in chapter �� it turns out that this
heuristic procedure is a special case of Expectation Propagation� where the approximate
posterior is a completely disconnected network with no other constraints on functional form�
In other words� loopy belief propagation is a direct generalization of the ADF algorithm of
Boyen � Koller �����b��

Expectation Propagation can therefore be seen as a way of generalizing loopy belief
propagation�to less restrictive approximations that are not completely disconnected and to
useful constraints on functional form such as multivariate Gaussian� Partially disconnected
approximations are useful for improving accuracy� just as in variational methods �Jordan
et al�� ������ while constraints on functional form are useful for reducing computation�
Instead of propagating exact belief states� which may be intractable� EP only needs to
propagate expectations relevant to the chosen approximating distribution �e�g� means and
variances�� Hence the name �Expectation Propagation�	

Expectation Propagation also has connections to statistical physics techniques� Yedidia
et al� ������ have shown that belief propagation tries to minimize an approximate free en�
ergy on discrete networks� This is known as the TAP approach in statistical physics� Opper
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� Winther �����a� have generalized the TAP approach to networks with mixed continuous
and discrete nodes via the cavity method� and applied it to Gaussian process classi�ers
�Opper � Winther� ����c�� Chapter � shows that Opper � Winther�s algorithm� which
has excellent performance� is a special case of Expectation Propagation where the posterior
approximation is Gaussian� In this sense� Expectation Propagation as a generalization of
belief propagation parallels the cavity method as a generalization of TAP�

Expectation Propagation� as a general framework for approximate Bayesian inference�
can be applied to many real�world tasks� Chapter � demonstrates its use for the general
task of discriminating objects into classes� Classi�cation via Bayesian averaging has long
been popular in the theoretical community� but di�cult to implement in a computationally
competitive way� An excellent example of this is the Bayes Point Machine �Rujan� �����
Herbrich et al�� ������ With Expectation Propagation� the advantages of Bayesian averaging
can be achieved at less expense than previously possible�

In short


� Chapter � reviews the prior work in approximate Bayesian inference� excluding ADF�

� Chapter 
 reviews ADF and introduces Expectation Propagation� Both are illustrated
on simple statistical models�

� Chapter � addresses belief networks� describing how loopy belief propagation is a
special case of Expectation Propagation and how belief propagation may be extended�

� Chapter � applies Expectation Propagation to the Bayes Point Machine classi�er�

� Chapter � summarizes the results and o�ers suggestions for future work on Expecta�
tion Propagation�
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Chapter �

Methods of numerical integration

This chapter describes prior work in approximate Bayesian inference� The outline is


�� Numerical quadrature

�� Monte Carlo methods
 importance sampling� Gibbs sampling


� Laplace�s method

�� Variational bound on the integral using Jensen�s inequality

�� Variational bound on the integrand� variational Bayes

�� Statistical physics methods

�� Sequential �ltering

The classical approach to numerical integration is quadrature �Davis � Rabinowitz�
������ In this deterministic approach� the integrand is evaluated at several locations
��knots�� and a function is constructed that interpolates these values� The interpolant is
chosen from a simple family that can be integrated analytically� e�g� polynomials or splines�
The integral of the interpolant approximates the desired integral� and with enough knots
the approximation can be made arbitrarily accurate� By using a set of prede�ned knots
x�� ���� xn� the interpolation and integration procedure can be compiled down to a simple
summation of weighted function values


I �

Z
A
f�x�dx �����

�I �
nX
i��

wif�xi� �����

where the weights wi are known� This method is excellent with integrands that are simple�
i�e� that are easy to interpolate� In one dimension� quadrature is nearly unbeatable� But
in high dimensions it is infeasible� because of the vast number of knots required to get a
good interpolant of a complex function� In Bayesian inference problems� the integrands are
mostly zero except in small regions� i�e� they are sparse� which makes the situation even
worse�most of the knots will be wasted� Newer deterministic techniques try to avoid these
problems by exploiting more properties of the integrand than just its value at given points�
Another approach is nondeterminism�
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Nondeterministic� i�e� Monte Carlo� methods do not try to interpolate or otherwise
approximate the integrand at all�they merely appeal to the law of large numbers� In the
simplest approach� we sample knots uniformly in the region of integration A� The expected
value E�f�x�� under such a sampling must be the desired integral I divided by the area of
A� Hence the estimate

�I �
jAj
n

nX
i��

f�xi� ���
�

will converge to the true value� given enough samples� and this happens independent of
dimensionality and independent of the complexity of f � Thus while Monte Carlo is rather
ine�cient in low dimensions� requiring thousands of knots when quadrature would only need
around ��� it is often the only feasible method in high dimensions� In Bayesian inference
problems� the sparsity of the integrand can be addressed by the technique of importance
sampling� Instead of sampling uniformly in A� we sample from a proposal distribution p�x�
that matches the shape of jf j as well as possible� Then the estimate

�I �
�

n

nX
i��

f�xi�

p�xi�
�����

also converges to I � and much faster than ���
� would� Importance sampling also has the
advantage of working for in�nite regions A� Various enhancements to the basic importance
sampling procedure are possible �Ventura� ������ With importance sampling� the di�culties
of numerical integration are replaced by the di�culties of sampling from a complex distribu�
tion� Good proposal distributions may be hard to sample from� In this case� one can apply
Markov Chain Monte Carlo methods �Neal� ���
� Liu� ������ such as Metropolis sampling
and Gibbs sampling� In these methods� we generate samples that are approximately from
p�x�� and then apply ����� as before� For these methods� careful monitoring and restarting
is required to ensure that the samples adequately represent p�x�� The Billiard algorithm for
Bayes Point Machines� discussed in chapter �� is a particularly clever Markov Chain Monte
Carlo algorithm�

To learn about a function� we can compute its value at a large number of knots� but we
could also compute a large number of derivatives at a single knot� This is the basic idea of
Taylor expansion� By �nite di�erences� a given number of knots translates into an equivalent
number of derivatives� so theoretically this approach has no advantage over quadrature� But
for Bayesian inference problems it has certain conceptual advantages� Since the integrand is
sparse� it makes sense to focus on one area where the action is� Interpolation is also simpler
since we just match derivatives� The most popular application of this idea in statistics is
Laplace�s method �Kass � Raftery� ���
�� where we expand log�f� about its mode


log�f�x�� � log�f��x�� � gT�x� �x� �
�

�
�x� �x�TA�x� �x� �����

g �

�
d log�f�x��

dx

�
x��x

�����

H �
d� log f�x�

dxdxT

�����
x��x

�����

Because �x is the mode� g � 	 and we get

f�x� � f��x� exp�
�

�
�x� �x�TH�x� �x�� �����

I �

Z
A
f�x�dx � f��x�����rows�H��� j�Hj���� �����

�
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Figure ���
 Deterministic methods for integration try to approximate the integrand� �a�
Laplace�s method uses a Gaussian that has the correct curvature at the mode� It produces
approximations that are too local� �b� In one type of variational bound� the integrand is
bounded everywhere� It produces approximations that are too inaccurate� �c� The proposed
method� Expectation Propagation� tries to minimize KL�divergence� a global measure of
deviation� It produces the most accurate integrals�

What Laplace�s method does is approximate f by a scaled Gaussian density that matches
the value� �rst derivative� and second derivatives of f at �x� Figure ��� shows an example�
The drawback of this method is that it is di�cult to use higher order derivatives� resulting
in an approximation that is limited in its accuracy and scope�

Variational bounding is a deterministic approach more global than Laplace�s method�
We start by introducing an arbitrary function q�x�


I �

Z
x
q�x�

f�x�

q�x�
dx ������

Jensen�s inequality for convex functions says that �in the case of logarithm�

log

Z
x

q�x�g�x�dx �
Z
x

q�x� logg�x�dx ������

if

Z
x

q�x�dx � � ������

��



Combining ������ and ������ gives the following bound on I 


I � exp

�Z
x

q�x� log
f�x�

q�x�
dx

�
����
�

This of course requires that f�x� is positive� a condition that is satis�ed for most �but not
all� integrals in Bayesian inference� We are free to choose q�x� to get the tightest bound�
which corresponds to maximizing the right hand side of ����
�� Note that this is equivalent
to minimizing the �reversed� KL�divergence

D�q jj f� �
Z
x

q�x� log
q�x�

f�x�
dx ������

over q subject to the constraint ������� If q�x� is unconstrained� the maximum is achieved
at q�x� � f�x� and the bound matches the original integral� To achieve a simpli�cation
in the integral� we must constrain q�x� in some way� Typically� q�x� is constrained to be
Gaussian �Hinton � van Camp� ���
� Barber � Bishop� ����� Seeger� ����� but mixture
distributions have also been suggested �Jaakkola � Jordan� ����c�� Having a lower bound
is useful since it provides a �rm guarantee about the true value of the integral�something
none of the other methods can do� However it tends to be very computational and is feasible
in a limited number of cases� Jensen�s inequality takes advantage of the fact that log�f�x��
is often easy to integrate when f�x� is not� But this is not always true� For example�
in a mixture problem such as discussed in chapter 
� f is a product of sums� which does
not simplify under a logarithm� And in chapter �� the likelihood is a step function which
reaches zero� The step function could be softened into a sigmoid to make the Jensen bound
well�de�ned� but we could not expect a good �t to result�

A less accurate but simpler way to obtain a variational bound is to bound the integrand
and then integrate the bound


f�x� � g�x� for all x ������

I �
Z
x

g�x�dx ������

Figure ��� shows an example� Unlike the previous variational method� this approach can
be used in mixture problems� This approach was used explicitly by Jaakkola � Jordan
�����a� ����b� and implicitly by Waterhouse et al� ������� Attias ������� Ghahramani �
Beal ������� under the name �variational Bayes�	 The implicit approach introduces hidden
variables to de�ne a bound� Start by writing f�x� in terms of h�x�y�


f�x� �

Z
y

h�x�y�dy ������

Apply the Jensen bound to get

I �
Z
x�y

h�x�y�dydx ������

� exp

�Z
x�y

q�x�y� log
h�x�y�

q�x�y�
dydx

�
������

At this point� we constrain q�x�y� to factor into separate functions for x and for y


q�x�y� � qx�x�qy�y� ������

��



with no other constraints on functional form� The qx and qy functions are iteratively
optimized to maximize the value of the bound� To see that this is equivalent to ������� note
that for any qy we can solve analytically for the optimal qx� which is

qx�x� �
g�x�R

x g�x�dx
������

where g�x� � exp

�Z
y
qy�y� log

h�x�y�

qy�y�
dy

�
������

When we substitute this qx� the bound becomes

I �
Z
x

g�x�dx ����
�

Regardless of which approach we use�implicit or explicit�we can optimize the bound via
the EM algorithm� This is described in Minka �����c��

Besides variational bounds� there are other integration techniques that are inspired by
mean��eld statistical physics� Most of these are extensions of TAP� such as the cavity
method �Opper � Winther� ����a�� Bethe approximation �Yedidia� ������ and Plefka ex�
pansion �Kappen � Wiegerinck� ������ So far they have been applied to regular structures
such as the Boltzmann machine and rarely to general probabilistic models� where it is less
obvious how to apply them� An exception to this is the paper by Opper � Winther �����c��
The algorithm they derive is new and accurate� yet coincides with the framework proposed
in this thesis� It will be interesting to see what other algorithms come out of this mean��eld
line of research�

For approximating an integral� we thus �nd ourselves in the following position� We have
methods that work well for simple functions in low dimensions �quadrature� and complex
functions in high dimensions �Monte Carlo�� We have methods that are simple and fast but
inaccurate �Laplace�s method� variational Bayes�� We have methods that apply in special
cases �Jensen bound� TAP�� What is missing is a general and accurate deterministic method
in high dimensions� at least for simple functions� That is what this thesis provides�

The approach taken by this thesis continues the path started by the extended Kalman
�lter �EKF�� The EKF is a sequential method developed for inference in dynamical systems
with nonlinear dynamics� It is not a general method for integration� But there are several
variations on the EKF �Maybeck� ����� that have promise� One is sequential Monte Carlo�
a family of nondeterministic techniques �Liu � Chen� ����� Carpenter et al�� ������ Another
is the assumed�density �lter� a general deterministic method that approximately minimizes
the KL�divergence D�f jj g� between f�x� and its approximation g�x�� as shown in �gure ��
�� The next chapter discusses the assumed�density �lter and its extension to Expectation
Propagation�
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Chapter �

Expectation Propagation

This chapter describes recursive approximation techniques that try to minimize the KL�
divergence between the true posterior and the approximation� Assumed�density �ltering
is a fast sequential method for this purpose� Expectation Propagation is introduced as
an extension of assumed�density �ltering to batch situations� It has higher accuracy than
assumed�density �ltering and other comparable methods for approximate inference�

��� Assumed�density �ltering

This section reviews the idea of assumed�density �ltering �ADF�� to lay groundwork for
Expectation Propagation� Assumed�density �ltering is a general technique for computing
approximate posteriors in Bayesian networks and other statistical models� ADF has been in�
dependently proposed in the statistics �Lauritzen� ����� Bernardo � Giron� ����� Stephens�
������ arti�cial intelligence �Boyen � Koller� ����b� Opper � Winther� ����� Barber � Sol�
lich� ����� Frey et al�� ������ and control literature �Kushner � Budhiraja� ����� Maybeck�
������ �Assumed�density �ltering	 is the name used in control� other names include �on�
line Bayesian learning�	 �moment matching�	 and �weak marginalization�	 ADF applies
when we have postulated a joint distribution p�D� �� where D has been observed and � is
hidden� We would like to know the posterior over �� p��jD�� as well as the probability of
the observed data �or evidence for the model�� p�D�� The former is useful for estimation
while the latter is useful for model selection�

For example� suppose we have observations from a Gaussian distribution embedded in
a sea of unrelated clutter� so that the observation density is a mixture of two Gaussians


p�xj�� � ��� w�N �x� �� I�� wN �x� 	� ��I� �
���

N �x�m�V� �
�

j��Vj���
exp���

�
�x�m�TV���x�m�� �
���

The �rst component contains the parameter of interest� while the other component describes
clutter� The constant w is the known ratio of clutter� Let the d�dimensional vector � have
a Gaussian prior distribution


p��� � N �	� ���Id� �
�
�

The joint distribution of � and n independent observations D � fx�� ����xng is therefore

p�D� �� � p���

Y
i

p�xij�� �
���

�




t���� t���� t���� t���� t	���

qnew���

	p���q���

Figure 
��
 Assumed�density �ltering computes an exact one�step posterior �p��� and then
approximates it to get qnew����

To apply ADF� we �rst factor the joint distribution p�D� �� into a product of simple
terms


p�D� �� �
Y
i

ti��� �
���

There are many ways to do this� As a rule of thumb� fewer terms are better� since it entails
fewer approximations� However� we need each term to be simple enough to propagate
expectations through� In the mixture example� we can use the factoring into n � � terms
implied by �
���


t
��� � p��� �
���

ti��� � p�xij�� �
���

For a general Bayesian network� we would use the factoring into conditional probability
tables


Q
nodes Y p�Y jpa�Y ��� where pa�Y � is the parents of node Y in the graph�

The second step is to choose a parametric approximating distribution� It is essential that
the distribution be in the exponential family� so that only a �xed number of expectations �the
su�cient statistics� need to be propagated� Usually the nature and domain of � constrains
the distribution enough that there is no choice left to make� In the clutter problem� a
spherical Gaussian distribution is appropriate� The approximate posterior is therefore

q��� � N �m�� v�I� �
���

Finally� we sequence through and incorporate the terms ti into the approximate poste�
rior� At each step we move from an old q��� to a new q���� as shown in �gure 
��� �For
notational simplicity� we drop the dependence of q��� on i�� Initialize with q��� � �� Incor�
porating the prior term is trivial� with no approximation needed� To incorporate the next
term ti���� take the exact posterior

�p��� �
ti���q���R

� ti���q���d�
�
���

and minimize the KL�divergence D��p���jjqnew���� subject to the constraint that qnew��� is
a Gaussian distribution� Zeroing the gradient with respect to �m�� v�� gives the conditions

mnew
� �

Z
�
�p���� d� �
����

vnew� d� �mnew
� �T�mnew

� � �

Z
�
�p����T� d� �
����

or in other words� expectation constraints


Eqnew ��� � E�p��� �
����

Eqnew ��
T�� � E�p��

T�� �
��
�

��



We see that the spherical Gaussian distribution is characterized by the expectations
�E���� E��T���� For other members of the exponential family� we will get constraints on
di�erent expectations� as illustrated in section 
�
�

To compute these expectations� it is helpful to exploit the following relations


Z�m�� v�� �
Z
�
t���q��� d� �
����

�
Z
�

t���

���v��d��
exp�� �

�v�
�� �m��

T�� �m��� d� �
����

rm logZ�m�� v�� �
�

Z

Z
�

�� �m��

v�

t���

���v��d��
exp�� �

�v�
�� �m��

T�� �m��� d��
����

�
E�p���

v�
� m�

v�
�
����

E�p��� � m� � v�rm logZ�m�� v�� �
����

E�p��
T�� �E�p���

TE�p��� � v�d� v�� �rT
mrm � �rv logZ�m�� v��� �
����

These relations are a property of the Gaussian distribution and hold for any t���� In the
clutter problem� we have

Z�m�� v�� � ��� w�N �x�m�� �v� � ��I� � wN �x� 	� ��I� �
����

r �
��� w�N �x�m�� �v� � ��I�

��� w�N �x�m�� �v� � ��I� � wN �x� 	� ��I�
�
����

rm logZ�m�� v�� � r
x�m�

v� � �
�
����

rv logZ�m�� v�� � � rd

��v� � ��
�
r�x�m��

T�x�m��

��v� � ���
�
��
�

rT
mrm � �rv logZ�m�� v�� �

rd

v� � �
� r��� r�

�x�m��
T�x�m��

�v� � ���
�
����

An estimate of the probability of the data� p�D�� is a trivial byproduct of ADF� Sim�
ply accumulate the normalization factors Zi�m�� v�� produced by each update� to get an
overall normalization for the posterior� This normalizer estimates p�D� because p�D� �� �
p��jD�p�D��

The �nal ADF algorithm is


�� Initialize m� � 	� v� � ��� �the prior�� Initialize s � � �the scale factor��

�� For each data point xi� update �m�� v�� s� according to

mnew
� � m� � v�ri

xi �m�

v� � �
�
����

vnew� � v� � ri
v��

v� � �
� ri��� ri�

v���xi �m��T�xi �m��

d�v� � ���
�
����

snew � s� Zi�m�� v�� �
����

This algorithm can be understood in an intuitive way
 for each data point we compute its
probability r of not being clutter� make a soft update to our estimate of � �m��� and change
our con�dence in the estimate �v��� However� it is clear that this algorithm will depend on

��



the order in which data is processed� because the clutter probability depends on the current
estimate of ��

This algorithm was derived using a spherical Gaussian approximating distribution� If
we use a richer set of distributions like diagonal or full�covariance Gaussians� we can get
a better result� since more expectations will be preserved� Unlike �tting models to data�
there is no over�tting problem when �tting approximations to posteriors� The only penalty
is computational cost�

Figure 
�� shows the output of this algorithm using three random orderings of the same
data� Synthetic data was generated using w � ��� and � � �� No theory is available
for how ADF varies with ordering� but some empirical observations can be made� The
error increases whenever similar data points are processed together� Processing the data
in sorted order is especially bad� This is because the algorithm overcommits to one part
of input space� only to realize that there is also data somewhere else� The approximate
mean and especially the variance will su�er because of this� So one approach to improve
ADF is to �nd an ordering that best re ects the natural variation in the data� if this can
be quanti�ed somehow� Another approach is to modify ADF to eliminate the dependence
on ordering� which is described in the next section�

−1 0 1 2 3 4 5
θ

p(
θ,

D
)

Exact
ADF  

Figure 
��
 The approximate posterior resulting from ADF� using three di�erent orderings
of the same data� The posterior is scaled by the evidence estimate� p�D��
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�

 An alternative view of ADF as approximating each term and then computing
qnew��� exactly� EP re�nes each term in the context of all other terms�

��� Expectation Propagation

This section describes the Expectation Propagation algorithm and demonstrates its use
on the clutter problem� Expectation Propagation is based on a novel interpretation of
assumed�density �ltering� Normally we think of ADF as treating each observation term ti
exactly and then approximating the posterior that includes ti� But we can also think of it
as �rst approximating ti with some !ti and then using an exact posterior with !ti ��gure 
�
��
This interpretation is always possible because we can de�ne the approximate term !ti to be
the ratio of the new posterior to the old posterior times a constant


!t��� � Z
qnew���

q���
�
����

Multiplying this approximate term by q��� gives qnew���� as desired� An important property
is that if the approximate posterior is Gaussian� i�e� an exponentiated quadratic in �� then
the equivalent term approximation� which is a ratio of these� will also be an exponentiated
quadratic� If the approximate posterior is any distribution in the exponential family� then
the term approximations will have the same functional form as that distribution�

The algorithm of the previous section can thus be interpreted as sequentially comput�
ing a Gaussian approximation !ti��� to every observation term ti���� then combining these
approximations analytically to get a Gaussian posterior on �� Under this perspective� the
approximations do not have any required order�the ordering only determined how wemade
the approximations� We are free to go back and re�ne the approximations� in any order�
From this idea we get Expectation Propagation�

Consider how this new interpretation applies to the previous section� From the ratio of
spherical Gaussians� we get the following term approximation


Zi�m�� v�� �

Z
�
ti���q���d� �
����

!ti��� � Zi�m�� v��
qnew���

q���
�
�
��

� Zi�m�� v��

�
v�
vnew�

�d��

exp�� �

�vnew�

�� �mnew
� �T�� �mnew

� ��

exp�
�

�v�
�� �m��

T�� �m��� �
�
��

Now de�ne �mi� vi� according to

v��i � �vnew� ��� � v��� �
�
��

��



mi � vi�v
new
� ���mnew

� � viv
��
� m� �
�

�

� m� � �vi � v��v
��
� �mnew

� �m�� �
�
��

to get the simpli�cation

!ti��� � Zi�m�� v��

�
vi � v�
vi

�d��
exp�� �

�vi
�� �mi�

T�� �mi�

exp�
�

��vi � v��
�mi �m��

T�mi �m��� �
�
��

�
Zi�m�� v��

N �mi�m�� �vi � v��I�
N ���mi� viI� �
�
��

By construction� multiplying q��� by this approximation gives exactly the ADF update�
with the proper scale factor� The N notation is here used formally as shorthand� not to
imply a proper density� The approximation is an exponentiated quadratic in �� which has
the form of a Gaussian with mean mi and variance viI� times a scale factor� What makes
this approximation di�erent from a Gaussian is that the variance vi may be negative or
in�nite� which for !ti is perfectly �ne
 negative variance corresponds to a function that
curves upward and in�nite variance corresponds to a constant�

Figure 
�� illustrates ti��� and !ti��� for the clutter problem� The exact term ti��� �
p�xij�� is a Gaussian in �� raised by a constant� The approximate term !ti��� is an expo�
nentiated quadratic� The current posterior q��� determines where the approximation will
be accurate� When q��� is narrow� i�e� v� is small� then !ti��� is accurate only in a narrow
range of � values� determined bym�� When v� is large� then !ti��� tries to approximate ti���
more broadly� and m� is less important�
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Figure 
��
 The approximate term !t��� as a function of �� plotted versus the exact term
t��� and the current posterior q���� The current posterior controls where the approximation
will be accurate�
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So far we have just rewritten the ADF updates in a di�erent way� To get EP� we
re�ne the term variables �mi� vi� based on all of the other approximations� The general EP
algorithm is


�� Initialize the term approximations !ti

�� Compute the posterior for � from the product of !ti


qnew��� �

Q
i
!ti���R Q

i
!ti���d�

�
�
��


� Until all !ti converge


�a� Choose a !ti to re�ne

�b� Remove !ti from the posterior to get an �old� posterior q���� by dividing and
normalizing


q��� � qnew���
!ti���

�
�
��

�For notational simplicity� we drop the dependence of q��� on i� However qnew���
is not a function of i��

�c� Compute the posterior qnew��� and normalizing factor Zi from q��� and ti��� via
ADF�

�d� Set

!ti � Zi
qnew���

q���
�
�
��

�� Use the normalizing constant of qnew��� �from �
�
��� as an approximation to p�D�


p�D� �
Z Y

i

!ti���d� �
����

At convergence� the result will be independent of processing order� as desired� In this
algorithm� we have used division to remove !ti from the posterior� Step 
b can also be
performed without division� by accumulating all terms except for !ti


q��� �
Y
j ��i

!tj��� �
����

but division is usually more e�cient�
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����� The clutter problem

For the clutter problem of the previous section� the EP algorithm is


�� The term approximations have the form

!ti��� � si exp�� �

�vi
�� �mi�

T�� �mi�� �
����

Initialize the prior term to itself


v
 � ��� �
��
�

m
 � 	 �
����

s
 � ���v
�
�d�� �
����

Initialize the data terms to �


vi � � �
����

mi � 	 �
����

si � � �
����

�� mnew
� �m
� v

new
� � v



� Until all �mi� vi� si� converge �changes are less than �����


loop i � �� ���� n


�a� Remove !ti from the posterior to get an �old� posterior


v��� � �vnew� ��� � v��i �
����

m� � v��v
new
� ���mnew

� � v�v
��
i mi �mnew

� � v�v
��
i �mnew

� �mi� �
����

�b� Recompute �mnew
� � vnew� � Zi� from �m�� v�� �this is the same as ADF�


ri �
��� w�N �xi�m�� �v� � ��I�

��� w�N �xi�m�� �v� � ��I� � wN �xi� 	� ��I�
�
����

mnew
� � m� � v�ri

xi �m�
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�
����
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v� � �
� ri��� ri�

v���xi �m��
T�xi �m��
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�
��
�

Zi � ��� w�N �xi�m�� �v� � ��I� � wN �xi� 	� ��I� �
����

�c� Update !ti
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����

�

�
ri
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� ri��� ri�

�xi �m��
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�� Compute the normalizing constant


B �
�mnew

� �Tmnew
�

vnew�

�
X
i

mT
i mi

vi
�
����

p�D� �
Z Y

i

!ti���d� �
����

� ���vnew� �d�� exp�B���
nY
i�


si �
����

Because the term approximations start at �� the result after one pass through the data is
identical to ADF� On later passes� the re�nement may sometimes fail due to a negative
value for v�� This happens when many of the vi are negative and we wish to re�ne a term
with positive vi� In the subtraction step �
����� we subtract a positive value from vnew� and
are left with something negative� From this Zi does not exist and the algorithm fails�

Another problem is that the term approximations may oscillate without ever converging�
This tends to occur in conjunction with negative vi�s� which suggests a simple work�around

force all vi � � by relaxing some of the expectation constraints� Whenever a vi would become
negative� make it large ����� instead and set vnew� � v� �because v

new
� � �v��� �v��i ����� This

trick does provide convergence� but leads to inaccurate posteriors since we are e�ectively
ignoring some of the data� When EP does converge with negative vi�s� the result is always
better than having forced vi � �� So a better solution would be to use a re�nement algorithm
with better convergence properties�see the discussion at the end of section ����

����� Results and comparisons

This section evaluates ADF and EP on the clutter problem and compares them to four other
algorithms for approximate inference
 Laplace�s method� variational Bayes� importance
sampling �speci�cally likelihood�weighted sampling�� and Gibbs sampling�

In Laplace�s method� we �rst run EM to get a MAP estimate of �� Then we construct a
Gaussian approximation to the posterior by using the curvature of the posterior at ��� This
curvature is �Minka� ����c�

H � r��T log p��jD� � � �

���
I�

X
i

riI�
X
i

ri��� ri��xi � ����xi � ���T �
��
�

ri �
��� w�N �x� ��� I�

��� w�N �x� ��� I� � wN �x� 	� ��I�
�
����

The Gaussian approximation and normalizing constant are

p��jD� � N �����H��� �
����

p�D� � p�D� �������d�� j�Hj���� �
����

For variational Bayes� we lower bound the joint distribution by bounding each data term
�Minka� ����c�


p�xij�� �
�
��� w�N �x� �� I�
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�qi� �wN �x� 	� ��I�

qi�

�qi�
�
����
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The variational parameters qij are optimized to give the tightest bound� Given the bounds�
the posterior for � is Gaussian
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For importance sampling� or more speci�cally likelihood�weighted sampling� we draw
samples f��� ���� �Sg from p��� and approximate the integrals via

p�D� � �

S

SX
i��

p�Dj�i� �
����

E��jD� �
PS

i�� �ip�Dj�i�PS
i�� p�Dj�i�

�
����

For Gibbs sampling� we introduce hidden variables ci which indicate whether xi is clutter
or not� Given a choice for �� we sample ci from a Bernoulli distribution with mean ri� Then
given ci� we form an exact Gaussian posterior for � and sample a new �� The average of the
��s that arise from this process is our estimate of the posterior mean�

The three deterministic algorithms� EP� Laplace� and VB all obtain approximate pos�
teriors close to the true one� The sampling algorithms only estimate speci�c integrals� To
compare the algorithms quantitatively� we compute the absolute di�erence between the es�
timated and exact evidence and the estimated and exact posterior mean� Figure 
�� shows
the results on a typical run with data size n � �� and n � ���� It plots the accuracy vs� cost
of the algorithms on the two integrals� Accuracy is measured by absolute di�erence from
the true integral� Cost is measured by the number of  oating point operations �FLOPS� in
Matlab� via Matlab�s flops function� This is better than using CPU time because FLOPS
ignores interpretation overhead�

The exact shape of these curves� especially the EP curve� should not be taken too
seriously since the convergence properties of EP� including whether it converges at all� can
be substantially a�ected by the particular dataset and data ordering� The Laplace curve is
generated by applying �
���� to intermediate values of ��� even though the gradient may not
be zero�
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Figure 
��
 Cost vs� accuracy curves for expectation propagation �EP�� Laplace�s method�
variational Bayes �VB�� importance sampling� and Gibbs sampling on the clutter problem
with w � ��� and � � �� Each �x� is one iteration of EP� ADF is the �rst �x��
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ADF is equivalent to the �rst iteration of EP �the �rst �x� on the curve�� It performs sig�
ni�cantly worse than variational Bayes and Laplace�s method� which are o#ine algorithms�
Yet by re�ning the ADF approximations� we move from last place to �rst� The worth of an
algorithm is not always what it seems�

It is interesting to see how the di�erent properties of the algorithms manifest themselves�
EP� Laplace� and VB all try to approximate the posterior with a Gaussian� and their
performance depends on how well this assumption holds� With more data� the posterior
becomes more Gaussian so they all improve� Sampling methods� by contrast� assume very
little about the posterior and consequently cannot exploit the fact that it is becoming more
Gaussian�

However� this disadvantage turns into an advantage when the posterior has a complex
shape� Figure 
�� shows a run with n � �� where the true posterior has three distinct
modes� EP crashes on this data� due to negative variances� Restricted EP� which forces
all vi � �� does converge but to a poor result that captures only a single mode� Laplace�s
method and variational Bayes are even worse� For all three algorithms� the error in the
posterior mean increases with more iterations� as they focus on a single mode� Sampling
methods� by contrast� are only slightly challenged by this posterior�
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Figure 
��
 A complex posterior in the clutter problem� �a� Exact posterior vs� approx�
imations obtained by Restricted EP� Laplace�s method� and variational Bayes� �b� Exact
posterior vs� approximation obtained by Gibbs sampling and complete conditional density
averaging �Gelfand � Smith� ������ �c�d� Cost vs� accuracy� EP only converged when
restricted to positive vi�
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��� Another example� Mixture weights

This section demonstrates how the structure of ADF and EP are preserved with a di�er�
ent approximating distribution�a Dirichlet distribution� Let the probabilistic model be a
mixture of K known densities� p��x�� ���� pK�x�� with unknown mixing weights w


p�xjw� �
X
k

wkpk�x� �
����

X
k

wk � � �
����

p�w� � � �
����

p�D�w� � p�w�
Y
i

p�xijw� �
����

We want to compute the posterior p�wjD� and the evidence p�D�� ADF was applied to this
problem by Bernardo � Giron ������ and Stephens �������

Break the joint distribution p�D�w� into n�� terms as given by �
����� The parameter
vector w must lie in the simplex

P
k wk � �� so a Dirichlet distribution is an appropriate

approximation to the posterior� The approximate posterior will have the form

q�w� �
$�
P

k ak�Q
k $�ak�

Y
k

wak��
k �
��
�

����� ADF

For ADF� we sequence through and incorporate the terms ti into the approximate posterior�
The prior is a Dirichlet distribution� so we initialize with that� To incorporate a data term
ti�w�� take the exact posterior

�p�w� �
ti�w�q�w�R

w ti�w�q�w�dw
�
����

and minimize the KL�divergence D��p�w�jjqnew�w�� subject to the constraint that qnew�w�
is a Dirichlet distribution� Zeroing the gradient with respect to anewk gives the conditions
�k � �� ���� K�

%�anewk ��%�
X
j

anewj � �
Z
w

�p�w� log�wk�dw �
����

where %�a� �
d log $�a�

da
�
����

As usual� these are expectation constraints


Eqnew �log�wk�� � E�p�log�wk�� k � �� ���� K �
����

The Dirichlet distribution is characterized by the expectations E�log�wk���
How do we solve for anew& Given the values E�p�log�wk��� Newton�s method is very e�ec�

tive� and EM�like algorithms are also possible �Minka� ����b�� To compute the expectations�
use integration by parts to �nd

Z�a� �
Z
w

t�w�q�w�dw �
����

E�p�log�wk�� � %�ak�� %�
X
j

aj� �rak logZ�a� �
����

��



This is a property of the Dirichlet distribution� valid for any t�w�� In the mixture weight
problem� we have

t�w� �
X
k

pk�x�wk �
����

Z�a� �
X
k

pk�x�Eq�wk� �

P
k pk�x�akP

k ak
�
����

rak logZ�a� �

�
pk�x�P

j aj
�
P

j pj�x�aj

�
P

j aj�
�

�
�Z�a� �
����

�
pk�x�P
j pj�x�aj

� �P
j aj

�
��
�

So the �nal ADF algorithm is

�� Initialize a � � �the prior�� Initialize s � � �the scale factor��

�� For each data point xi in turn� solve the equations �k � �� ���� K�

%�anewk �� %�
X
j

anewj � � %�ak��%�
X
j

aj� �
pk�xi�P
j pj�xi�aj

� �P
j aj

�
����

to get anew � Update s via

snew � s � Zi�a� � s

P
j pj�xi�ajP

j aj
�
����

Bernardo � Giron ������ and Stephens ������ show that this algorithm performs better
than simpler rules like Directed Decision and Probabilistic Teacher� With a little extra
work we can get an EP algorithm that is even better�

����� EP

Divide the new posterior by the old to get a term approximation parameterized by b


!t��� � Z
qnew���

q���
�
����

� Z
$�
P

k a
new
k �Q

k $�a
new
k �

Q
k $�ak�

$�
P

k ak�

Y
k

wbk
k �
����

where bk � anewk � ak �
����

The EP algorithm is


�� The term approximations have the form

!ti��� � si
Y
k

wbik
k �
����

Initialize the prior term to itself


b
 � 	 �
�����

s
 � � �
�����

Initialize the data terms to �


bi � 	 �
�����

si � � �
���
�

��



�� anewk � � �
Pn

i�
 bik � �


� Until all �bi� si� converge


loop i � �� ���� n


�a� Remove !ti from the posterior to get an �old� posterior


a � anew � bi �
�����

�b� Recompute anew from a by solving �k � �� ���� K�

%�anewk ��%�
X
j

anewj � � %�ak�� %�
X
j

aj� �
pk�xi�P
j pj�xi�aj

� �P
j aj

�
�����

�c� Update !ti


bi � anew � a �
�����

si � Zi�a�
$�
P

k a
new
k �Q

k $�a
new
k �

Q
k $�ak�

$�
P

k ak�
�
�����

�� Compute the normalizing constant


p�D� �
Q
k $�a

new
k �

$�
P

k a
new
k �

nY
i�


si �
�����

����� A simpler method

The complexity of this algorithm results from preserving the expectations E�log�wk��� Cow�
ell et al� ������ suggest instead preserving only the �rst two moments of the posterior dis�
tribution� i�e� the expectations �E�wk��

P
k E�w

�
k��� Preserving these expectations will not

minimize KL�divergence� but allows a closed�form update� Their proposed ADF update is


mk � E�p�wk� �
�����

�
ak

Zi�a�
P

j aj

pk�xi� �
P

j pj�xi�aj

� �
P

j aj
�
�����

m
���
k � E�p�w

�
k� �
�����

�
�ak � ��ak

Zi�a��� �
P

j aj��
P

j aj�

�pk�xi� �
P

j pj�xi�aj

� �
P

j aj
�
�����

anewk �

�P
k�mk �m

���
k �P

k�m
���
k �m�

k�

�
mk �
���
�

This update can be incorporated into EP by replacing �
������ The bene�t of this change
is determined empirically in the next section�
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Figure 
��
 �a� Exact posterior vs� approximations� scaled by evidence p�D�� The varia�
tional Bayes approximation is a lower bound while the others are not� The approximation
from EP� is very similar to EP� �b� Cost vs� accuracy in approximating p�D�� ADF is the
�rst �x� on the EP curve� EP� uses the fast update of Cowell et al�

����� Results and comparisons

EP is compared against Laplace�s method and variational Bayes� For Laplace�s method�
we use a softmax parameterization of w �MacKay� ������ which makes the approximate
posterior a logistic�normal distribution �the result of passing a Gaussian random variable
through the logistic function� �Aitchison � Shen� ������ For variational Bayes� we use a
Jensen bound as before� to get a Dirichlet approximation �Minka� ����c��

Figure 
�� shows a typical example with w � ����� �����n � ��� The component densities
were two closely spaced Gaussians


p��x� � N ��� 
� �
�����

p��x� � N ��� 
� �
�����

The accuracy of the three methods at estimating p�D� can be seen immediately from the
di�erent posterior approximations� EP� using either the exact update or the fast update�
is the most accurate� Even ADF� the �rst iteration of EP� is very accurate� The success
of the fast update illustrates that it is sometimes good to consider criteria other than KL�
divergence�
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Chapter �

Disconnected approximations of

belief networks

This chapter describes how Expectation Propagation can be used to approximate a belief
network by a simpler network with fewer edges� Such networks are called disconnected
approximations�

��� Belief propagation

Belief propagation is normally considered an algorithm for exact marginalization in tree�
structured graphs� But it can also be applied to graphs with loops� to get approximate
marginals �Frey � MacKay� ����� Murphy et al�� ������ In this section� it is shown that
belief propagation applied in this heuristic way is actually a special case of Expectation
Propagation� Loopy belief propagation arises when the approximating network in EP is
required to be completely disconnected �all variables independent�� This is interesting be�
cause loopy belief propagation is normally considered distinct from techniques that compute
approximate models �but see Rusmevichientong � Roy ������ for a similar interpretation��
The equivalence also suggests how to improve both algorithms�

First consider the ADF case� where a completely disconnected approximation was stud�
ied by Boyen � Koller �����b�� Let the hidden variables be x�� ���� xK and collect the
observed variables into D � fy�� ���� yNg� A completely disconnected distribution for x has

q��x��

q��x��

q��x��

q	�x	� q��x��

p�x�� x�� x�� x�� x	�

Figure ���
 Loopy belief propagation corresponds to approximating a complex Bayesian
network by a disconnected network
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the form ��gure ����

q�x� �
KY
k��

qk�xk� �����

To incorporate a term ti�x�� take the exact posterior

�p�x� �
ti�x�q�x�P
x ti�x�q�x�

�����

and minimize the KL�divergence D��p�x�jjqnew�x�� subject to the constraint that qnew�x� is
completely disconnected� Zeroing the gradient with respect to qnewk gives the conditions

qnewk �xk� � �p�xk� �
X
xnxk

�p�x� k � �� ���� K ���
�

i�e� the marginals of qnew and �p must match� As usual� these are expectation constraints


Eqnew ���xk � v�� � E�p���xk � v�� k � �� ���� K� all values of v �����

From this we arrive at the algorithm of Boyen � Koller �����b�


�� Initialize qk�xk� � � and s � �

�� For each term ti�x� in turn� set qnewk to the kth marginal of �p


qnewk �xk� �
X
xnxk

�p�x� �����

�
�

Zi

X
xnxk

ti�x�q�x� �����

where Zi �
X
x

ti�x�q�x� �����

Update s via
snew � s� Zi �����

While it appears that we have circumvented the exponential family� in practice we must
still use it� The marginals of �p are feasibly computed and stored only if �p is in the exponential
family� which means q�x� and ti�x� must also be in the family� The most common use of
belief propagation is for discrete x where �p is a multinomial distribution�

Now we turn this into an EP algorithm� From the ratio qnew�q� we see that the approx�
imate terms !ti�x� are completely disconnected� The EP algorithm is thus


�� The term approximations have the form

!ti�x� �
Y
k

!tik�xk� �����

Initialize !ti�x� � ��

�� Compute the posterior for x from the product of !ti


qnewk �xk� �
Y
i

!tik�xk� ������


�




� Until all !ti converge


�a� Choose a !ti to re�ne

�b� Remove !ti from the posterior� For all k


qk�xk� � qnewk �xk�
!tik�xk�

������

�
Y
j ��i

!tjk�xk� ������

�c� Recompute qnew�x� from q�x� as in ADF�

qnewk �xk� �
�

Zi

X
xnxk

ti�x�q�x� ����
�

Zi �
X
x

ti�x�q�x� ������

�d� Set

!tik�xk� � Zi
qnewk �xk�

qk�xk�
�

P
xnxk

ti�x�q�x�

qk�xk�
������

�
X
xnxk

ti�x�
Y
j ��k

qj�xj� ������

�� Compute the normalizing constant


p�D� �
Y
k

�X
xk

Y
i

!tik�xk�

�
������

To make this equivalent to belief propagation �see e�g� Murphy et al� �������� the original
terms ti should correspond to the conditional probability tables of a directed belief network�
That is� we should break the joint distribution p�D�x� into

p�D�x� �
Y
k

p�xkjpa�xk��
Y
j

p�yj jpa�yj�� ������

where pa�X� is the set of parents of node X � The network has observed nodes yj and hidden
nodes xk� The parents of an observed node might be hidden� and vice versa� The quantities
in EP now have the following interpretations


� qnewk �xk� is the belief state of node xk� i�e� the product of all messages into xk�

� The �old� posterior qk�xk� for a particular term i is a partial belief state� i�e� the
product of messages into xk except for those originating from term i�

� When i 	� k� the function !tik�xk� is the message that node i �either hidden or observed�
sends to its parent xk in belief propagation� For example� suppose node i is hidden
and ti�x� � p�xijpa�xi��� The other parents send qj�xj�� and the child combines them
with qi�xi� to get ��gure ����a��

!tik�y� �
X
xnxk

p�xijpa�xi��qi�xi�
Y

other parents j

qj�xj� ������
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�����

��

����
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����

����� �����
�� ��

!tik�xk� �
P

xi�xj p�xijxk� xj�qi�xi�qj�xj� !tii�xi� �
P

xk �xj
p�xijxk� xj�qk�xk�qj�xj�

�a� �b�

Figure ���
 The messages in belief propagation correspond to term approximations in EP

� When node i is hidden� the function !tii�xi� is a combination of messages sent to node
i from its parents in belief propagation� Each parent sends qj�xj�� and the child
combines them according to ��gure ����b��

!tii�xi� �
X

pa�xi�

p�xijpa�xi��
Y

parents j

qj�xj� ������

Unlike the traditional derivation of belief propagation in terms of � and � messages� this
derivation is symmetric with respect to parents and children� In fact� it is the form used in in
factor graphs �Kschischang et al�� ������ All of the nodes that participate in a conditional
probability table p�X jpa�X�� send messages to each other based on their partial belief
states�

This algorithm applies generally to any decomposition into terms ti�x�� not just that
given by ������� For example� equivalence also holds for undirected networks� if the terms ti
are the clique potentials�compare to the equations in Yedidia et al� ������� See section ���
for an example with an undirected network�

The remaining di�erence between belief propagation and EP is that belief propagation
does not specify the order in which messages are sent� In the EP algorithm above� each
node must exchange messages with all of its parents at each step� However� we can relax
this condition by considering a simple variation of EP� where we do not minimize KL�
divergence completely at each step� but only partially� Speci�cally� we only update one of
the !tik functions each time� With this variation� we can pass messages in any order� This
reordering will not change the result at convergence�

This equivalence shows that there is a close connection between Boyen � Koller�s al�
gorithm and loopy belief propagation� Boyen � Koller�s algorithm for dynamic Bayesian
networks is simply one pass of loopy belief propagation where each term ti is the prod�
uct of multiple conditional probability tables�all of the tables for a given timeslice� This
equivalence was also noticed by Murphy � Weiss ������� though described in terms of
modi�cations to the graph�

The equivalence also tells us two things about EP


� Even though EP is derived as an approximation� in some cases the �nal expectations
may be exact� We know this because the marginals resulting from belief propagation
are exact on tree�structured networks� But for other EP algorithms we do not yet
know how to predict when this will happen�


�



� EP may not converge for some models and'or approximating densities� We know this
because belief propagation does not always converge on graphs with loops�

Unlike the clutter problem of section 
����� there is no obvious constraint like positive
variance that we can use to ensure convergence� The convergence of EP can be helped in two
ways� One way is to improve the quality of the approximation� For example� Yedidia et al�
������ have shown that clustering nodes in a belief network can encourage belief propagation
to converge �as well as improve its accuracy�� Clustering corresponds to an approximating
density that is partially disconnected� such as q�x� � q�x�� x��q�x�� x��� As described in
section ������ we can also cluster some of the terms ti�x� to get fewer approximations� Or
we can use a Markov chain approximation� as described in section ������

A second way to improve convergence is to devise a better iteration scheme� Analogous
to belief propagation� EP can be derived by minimizing a free energy�like objective� The
expression is similar to that of Yedidia et al� ������ but involving expectation constraints�
Di�erent EP iterations can be found by applying di�erent optimization techniques to this
objective� �The same applies to belief propagation�� This technique will be described more
fully in a separate paper�

��� Extensions to belief propagation

This section shows how the  exibility of EP allows us to extend loopy belief propagation
for higher accuracy� In ADF'EP there are two decisions to make
 how to factor the joint
distribution p�x� D� into terms ti�x� and what approximating family q�x� to apply� As a
running example� consider the undirected network in �gure ��
� The joint distribution of
all nodes is proportional to a product of pairwise potentials� one for each edge


p�x�� x�� x�� x�� x	� x�� � h�x�� x��h�x�� x��h�x�� x��h�x�� x��h�x�� x	�h�x	� x��h�x�� x��
������

We want to approximate this distribution with a simpler one�

x�x�

x� x�

x	 x�

Figure ��

 An undirected belief network
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����� Grouping terms

Belief propagation arises when the EP terms ti�x� correspond to the edges of the graph�
that is t��x� � h�x�� x��� t��x� � h�x�� x��� etc� Instead of breaking the joint into seven
factors� we could break it into only two factors� say

t��x�� x�� x�� x�� � h�x�� x��h�x�� x��h�x�� x��h�x�� x�� ������

t��x�� x�� x	� x�� � h�x�� x	�h�x	� x��h�x�� x�� ����
�

as illustrated in �gure ���� Let the approximating family q�x� be completely disconnected
as before�

t�

x	 x�

x�

x� x�

x�

t�

Figure ���
 Belief propagation can be improved by factoring the joint distribution into
subgraphs instead of individual edges

It is su�cient to consider the ADF updates� Start with a uniform distribution on x

�assuming all variables are binary�


q�x� �
�

��
������

The �rst step of ADF will be

Z �
X
x

t��x�� x�� x�� x��q�x� ������

�p�x� �
�

Z
t��x�� x�� x�� x��q�x� ������

qnew� �x�� � �p�x�� �
�

Z

X
xnx�

t��x�� x�� x�� x��q�x� ������

qnew� �x�� �
�

Z

X
xnx�

t��x�� x�� x�� x��q�x� ������

��� ������

qnew	 �x	� � q	�x	� �unchanged� ���
��

qnew� �x�� � q��x�� �unchanged� ���
��
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The second step of ADF will be

Z �
X
x

t��x�� x�� x	� x��q�x� ���
��

�p�x� �
�

Z
t��x�� x�� x	� x��q�x� ���

�

qnew� �x�� � q��x�� �unchanged� ���
��

qnew� �x�� � q��x�� �unchanged� ���
��

qnew� �x�� �
�

Z

X
xnx�

t��x�� x�� x	� x��q�x� ���
��

��� ���
��

In the usual way� these ADF updates can be turned into an EP algorithm� which will be
more accurate than belief propagation� However� it will involve signi�cantly more work�
since each message requires marginalizing three variables �the number of variables in each
term� minus one� instead of marginalizing just one variable�

����� Partially disconnected approximations

Besides the factoring of the joint into individual edges� belief propagation arises when the
approximating network is completely disconnected
 q�x� � q��x��q��x�� 
 
 
� Instead of
going to this extreme� we can use a Markov chain approximation� as shown in �gure ���


q�x� � q�x��q�x�jx��q�x�jx��q�x�jx��q�x	jx��q�x�jx	� ���
��

Let the terms ti�x� be the individual edges� as in belief propagation� Partially disconnected
approximations have previously been used in ADF by Frey et al� ������ and in the context
of variational bounds by Ghahramani � Jordan ������� Barber � Wiegerinck ������� and
references therein�

x�x�

x� x�

x	 x�

Figure ���
 Belief propagation can also be improved by using a Markov chain approximation
instead of a completely disconnected approximation

Note that we could equally well parameterize the Markov chain as

q�x� � q�x�jx��q�x�jx��q�x��q�x�jx��q�x	jx��q�x�jx	� ���
��
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Before� x� was the root� now x� is the root� Given a distribution in one parameterization�
it is straightforward to convert to another parameterization� This will be called changing
the root�

In ADF� we incorporate edges h�xi� xj� from the original graph one at a time� We take
the exact posterior

�p�x� �
ti�x�q�x�P
x ti�x�q�x�

������

and minimize the KL�divergence D��p�x�jjqnew�x�� subject to the constraint that qnew�x�
has the form ���
��� Zeroing the gradient with respect to qnew gives the conditions

qnew�x�� � �p�x�� ������

qnew�x�jx�� � �p�x�jx�� ������

qnew�x�jx�� � �p�x�jx�� ����
�

���

These directly generalize the marginal constraints ���
� for belief propagation�
The approximation we have chosen preserves all edges in the graph except two� The

preserved edges can be incorporated into q�x� without approximation


q�x� � h�x�� x��h�x�� x��h�x�� x��h�x�� x	�h�x	� x�� ������

Now we process the edge h�x�� x��� The marginals of the exact posterior are

Z �
X
x

h�x�� x��q�x� ������

�
X

x��x��x��x�

h�x�� x��q�x��q�x�jx��q�x�jx��q�x�jx�� ������

�p�x�� �
�

Z

X
xnx�

h�x�� x��q�x� ������

�
�

Z

X
x��x��x�

h�x�� x��q�x��q�x�jx��q�x�jx��q�x�jx�� ������

�p�x�� x�� �
�

Z

X
xn�x��x��

h�x�� x��q�x� ������

�
�

Z

X
x��x�

h�x�� x��q�x��q�x�jx��q�x�jx��q�x�jx�� ������

�p�x�jx�� �
�p�x�� x��

�p�x��
������

��� �same for x� and x��

�p�x	jx�� � q�x	jx�� ������

�p�x�jx	� � q�x�jx	� ����
�

There is a simple pattern going on here� Adding the edge �x�� x�� creates a loop in �p�
involving the nodes x�� ���� x�� which include the root� The conditional distributions for
nodes outside the loop do not change� The marginal for a node inside the loop only involves
summing over the rest of the loop� and similarly for pairwise marginals�

This leads us to a general update rule



�



�� To incorporate an edge h�xa� xb�� �rst change the root to xa�

�� Let xL be the set of nodes on the loop created by adding �xa� xb��

Z �
X
xL

h�xa� xb�q�xL� ������

For nodes xi on the loop


�p�xi� �
�

Z

X
xLnxi

h�xa� xb�q�xL� ������

For edges �xi� xj� on the loop


�p�xi� xj� �
�

Z

X
xLn�xi�xj�

h�xa� xb�q�xL� ������

qnew�xijxj� � �p�xi� xj���p�xj� ������

For a large loop� these sums can be computed e�ciently via forward�backward recur�
sions�


� For edges �xi� xj� not on the loop


qnew�xijxj� � q�xijxj� ������

Returning to the example� after processing h�x�� x�� the pairwise marginal for �x�� x��
under q�x� will be

q�x�� x�� �
X
x��x�

h�x�� x��h�x�� x��h�x�� x��h�x�� x�� ������

This is a step forward from section ������ where only the marginals q�x�� and q�x�� were
retained between terms� After processing the second edge� h�x�� x��� the pairwise marginal
will be

qnew�x�� x�� � q�x�� x��
X
x��x�

h�x�� x	�h�x	� x��h�x�� x�� ������

�

�X
x��x�

h�x�� x��h�x�� x��h�x�� x��h�x�� x��

�
�X
x��x�

h�x�� x	�h�x	� x��h�x�� x��

�
������

This is an interesting result
 it is the exact marginal for �x�� x�� in the original graph(
The same is true for qnew�x�� x	� and qnew�x	� x��� This is after processing both edges
with ADF� If we use EP to re�process the original edge� then the exact qnew�x�� x�� will be
used to recompute qnew�x�� x�� and q

new�x�� x��� which will also be exact� Thus by moving
from a completely disconnected approximation to a Markov chain� we move from having
approximate marginals to having exact marginals throughout the entire chain� Obviously
this is a special property of the graph and the approximation we have chosen� and we
would not expect it in general� But it demonstrates how e�ective partially disconnected
approximations can be�
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����� Combining both extensions

The extensions described in the last two sections can be combined in the same algorithm�
Consider the two�term grouping

t��x�� x�� x�� x�� � h�x�� x��h�x�� x��h�x�� x��h�x�� x�� ������

t��x�� x�� x	� x�� � h�x�� x	�h�x	� x��h�x�� x�� ����
�

along with the clustered approximation

q�x� � q�x�� x��q�x�� x��q�x	� x�� ������

as shown in �gure ����

x�x�

x� x�

x	 x�

t�

t�

Figure ���
 We can group edges in addition to using a partially disconnected approximation

Starting from a uniform q�x�� the �rst step of ADF will be

Z �
X
x

t��x�� x�� x�� x��q�x� ������

�
X

x��x��x��x�

t��x�� x�� x�� x��q�x�� x��q�x�� x�� ������

�p�x� �
�

Z
t��x�� x�� x�� x��q�x� ������

qnew�x�� x�� �
q�x�� x��

Z

X
x��x�

t��x�� x�� x�� x��q�x�� x�� ������

qnew�x�� x�� �
q�x�� x��

Z

X
x��x�

t��x�� x�� x�� x��q�x�� x�� ������

qnew�x	� x�� � q�x	� x�� ������

The second step will be

Z �
X
x

t��x�� x�� x	� x��q�x� ������

�
X

x��x��x��x�

t��x�� x�� x	� x��q�x�� x��q�x	� x�� ������

��



�p�x� �
�

Z
t��x�� x�� x	� x��q�x� ����
�

qnew�x�� x�� � q�x�� x�� ������

qnew�x�� x�� �
q�x�� x��

Z

X
x��x�

t��x�� x�� x	� x��q�x	� x�� ������

qnew�x	� x�� �
q�x	� x��

Z

X
x��x�

t��x�� x�� x	� x��q�x�� x�� ������

Once again� qnew�x�� x�� is the exact pairwise marginal in the original graph� So is
qnew�x	� x��� and after one re�nement pass qnew�x�� x�� will also be exact� In this case� it is
clear why the results are exact
 the algorithm is equivalent to running belief propagation on
a clustered graph where the pairs �x�� x��� �x�� x��� and �x	� x�� are merged into super�nodes�

Interestingly� if we did not group terms� and used individual edges� the algorithm would
be identical to belief propagation on the remaining edges� and we would have gained little
from making the clustered approximation� This is because adding an edge to q does not
create a loop in �p� EP approximates each edge by a ratio qnew�q� If the edge joins two
disconnected clusters in q� then there is no way for EP to represent the correlation induced
by the edge�

����� Future work

This section showed that improvements to belief propagation were possible if we grouped
terms� used a partially disconnected approximation� or both� For a general graph� it would
be useful to know what combination of grouping and disconnection gives the highest ac�
curacy for the least cost� i�e� which is most e�cient� Determining the cost of a given
grouping'disconnection scheme is straightforward� but estimating the accuracy is not� For
example� as described in the last subsection� it is not a good idea to break the graph into
disconnected subgraphs� unless terms are grouped appropriately� Similar complexities arise
when choosing the right approximating structure for variational methods �Jordan et al��
������ This is a useful area for future work�

��



Chapter �

Classi�cation using the Bayes Point

This chapter applies Expectation Propagation to inference in the Bayes Point Machine�
The Bayes Point Machine is a Bayesian approach to linear classi�cation that competes
with the popular but non�Bayesian Support Vector Machine �SVM�� Bayesian averaging
of linear classi�ers has been proven both theoretically and empirically optimal in terms of
generalization performance �Watkin� ���
� Bouten et al�� ����� Buhot et al�� ������ But
an e�cient algorithm has remained elusive� The Bayes Point Machine approximates the
Bayesian average by choosing one �average� classi�er� the Bayes Point �Watkin� ���
� Rujan�
����� Herbrich et al�� ������ Computing the Bayes Point is a simpler� but still very di�cult
task�

This chapter shows that Expectation Propagation� using a full�covariance Gaussian ap�
proximation to the posterior� provides an accurate estimate of the Bayes Point�an ap�
proximation to the full Bayesian average� The algorithm turns out to be identical to what
Opper � Winther �����c� derived by statistical physics methods� However� EP uses a dif�
ferent optimization scheme that is faster and does not require a stepsize parameter� EP
also provides an estimate of the evidence p�D�� which is useful for feature selection but not
provided by Opper � Winther�

	�� The Bayes Point Machine

The Bayes Point Machine �BPM� is a Bayesian approach to linear classi�cation� A linear
classi�er classi�es a point x according to y � sign�wTx� for some parameter vector w �the
two classes are y � ���� Given a training set D � f�x�� y��� ���� �xn� yn�g� the likelihood for
w can be written

p�Djw� �
Y
i

p�yijxi�w� �
Y
i

)�yiw
Txi� �����

)�z� �

�
� if z � �
� if z � �

�����

This is a slight abuse of notation since p�Djw� is only a distribution for y� not x� This
likelihood is � if w is a perfect separator and � otherwise� A simple way to achieve linear
separation is to progressively enlarge the set of features� e�g� by computing squares and third
powers� until the data is separable in the new feature space� This has the e�ect of producing
a nonlinear decision boundary in the original measurement space� Feature expansion can
be implemented e�ciently using the �kernel trick�� where we rewrite the algorithm in terms
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x1

x2

x1

x2

�a� �b�

Figure ���
 Two di�erent classi�cation data sets� with label information removed� The
Bayes Point Machine assumes that� without labels� we cannot infer where the boundary
lies� In �b�� one might be inclined to think that the horizontal axis determines the decision�
But the horizontal axis could easily be something irrelevant� like the time of day the datum
was collected� Only domain knowledge can determine the validity of the assumption�

of inner products and perform the feature expansion implicitly via the inner product� This
technique will be described more fully later�

Because it is conditional on xi� this model assumes that the distribution of the x�s is
unrelated to the true decision boundary� That is� if we were given the x�s without any
labels� we would have no information about where the boundary lies� The validity of this
assumption must come from domain knowledge�it cannot be determined from the data
itself �see �gure ����� The Support Vector Machine �SVM�� for example� does not seem to
make this assumption� Tong � Koller ������ show that the SVM follows from assuming
that the x�s follow a Gaussian mixture distribution in each class� In addition� some workers
have used the SVM with unlabeled data �Bennett � Demiriz� ������ while the BPM� by
design� cannot� The advantage of assuming independence in the BPM is that we avoid
stronger assumptions about the nature of the dependence� and thus obtain a more general
algorithm� Experiments show it is quite robust �section �����

A re�nement to the basic model is to admit the possibility of errors in labeling or
measurement� A labeling error rate of 	 can be modeled using �Opper � Winther� ����b�

p�yjx�w� � 	���)�ywTx�� � ��� 	�)�ywTx� ���
�

� 	� ��� �	�)�ywTx� �����

Under this model� the likelihood p�Djw� for a given w will be 	r��� 	�n�r � where r is the
number of errors on the training set� Only the number of errors is important� not where
they are� This way of modeling errors can automatically reject outliers� because it doesn�t
care how far an error is from the boundary� Other approaches based on adding �slack�
to the boundary only allow errors near the boundary and are sensitive to outliers� These
approaches can be simulated by using a smooth likelihood function such as

p�yjx�w� � 
�ywTx� �����

where 
 is the cumulative distribution function for a Gaussian� The tails of this function
fall like exp��x��� so it provides �quadratic slack�� The logistic function could also be

�




used� it falls like exp��x�� providing �linear slack�� By changing ) to one of these smooth
functions� the labeling error model ���
� can be combined with slack� with no computational
di�culties� However� this chapter focuses on ���
� without slack�

To complete our Bayesian model� we need to specify a prior on w� Since the magnitude
of w is irrelevant for classi�cation� some authors have restricted w to the unit sphere in
d dimensions� and have given w a uniform distribution on the sphere �Rujan� ������ This
distribution is nice because it is fair to all decision boundaries� but it is not very convenient
to work with� A more general non�informative prior is an average over spheres� Let r � kwk
be the magnitude of w� Given r� let w be uniformly distributed on the sphere of radius
r� This prior is non�informative for any r� It is also non�informative if r is unknown with
distribution p�r�� For example� p�r� could be uniform from � to �� allowing w to live in the
unit ball instead of on the unit sphere� By choosing p�r� appropriately� we can also give w
a spherical Gaussian distribution


p�w� � N �	� I� �����

It is a property of the spherical Gaussian distribution that� conditional on any r� w is
uniformly distributed on the sphere of radius r� so no particular decision boundary is favored
by this prior�

Given this model� the optimal way to classify a new data point x is to use the predictive
distribution for y given the training data


p�yjx� D� �
Z
w

p�yjx�w�p�wjD�dw �����

However� this requires solving an integral each time� A practical substitute is to use a single
value ofw which approximates the predictive distribution as well as possible� Watkin ����
�
and Rujan ������ have de�ned the �Bayes point� as the single best w� However� this point
is di�cult to �nd� Thus� following Rujan ������� we use the posterior mean for w� E�wjD��
Following convention� we will be sloppy and also call this the �Bayes point�� Our strategy
will be to make a Gaussian approximation to the posterior and use its mean as the estimated
Bayes point� Of course� if we really wanted to� we could also use EP to solve the integral
����� for each test point� The normalizing constant of the posterior is also useful because�
as an estimate of p�D�� it allows us to choose among di�erent models �see section �����

	�� Training via ADF

Start with the ADF updates� ADF was previously applied to the Bayes Point Machine
by Csato et al� ������� Divide the joint distribution p�D�w� into n terms� one for each
data point� Since y and x always appear multiplied together� the formulas will drop y and
assume that xi is already scaled by yi� Let the approximate posterior have the form

q�w� � N �mw�Vw� �����

From minimizing the KL�divergence we get the expectation constraints

Eqnew �w� � E�p�w� �����

Eqnew �ww
T� � E�p�ww

T� ������

��



To compute these expectations� use the following relations �obtained from integration�by�
parts�


Z�mw�Vw� �

Z
w

t�w�q�w� dw ������

E�p�w� � mw �Vwrm logZ�mw�Vw� ������

E�p�ww
T�� E�p�w�E�p�w�T � Vw �Vw�rmrT

m � �rv logZ�mw�Vw��Vw ����
�

These hold for any t�w�� For the Bayes Point Machine� we have �combining yx into x�


t�w� � 	� ��� �	�)�wTx� ������


�z� �
Z z

��
N �z� �� ��dz ������

z �
mT

wxp
xTVwx

������

Z�mw�Vw� � 	� ��� �	�
�z� ������

� �
�p

xTVwx

��� �	�N �z� �� ��

	 � ��� �	�
�z�
������

rm logZ�mw�Vw� � �x ������

rv logZ�mw�Vw� � ��

�

�mT
wx

xTVwx
xxT ������

rmrT
m � �rv logZ�mw�Vw� � ��xxT �

�mT
wx

xTVwx
xxT ������

�
��mw �Vw�x�

Tx

xTVwx
xxT ������

The ADF algorithm is thus


�� Initialize mw � 	� Vw � I �the prior�� Initialize s � � �the scale factor��

�� For each data point xi� update �mw�Vw� s� according to

mnew
w � mw �Vw�ixi ����
�

Vnew
w � Vw � �Vwxi�

�
�ix

T
i m

new
w

xTi Vwxi

�
�Vwxi�

T ������

snew � s � Zi�mw�Vw� ������

The �nal mw is the estimate of w used for classi�cation� Note that this algorithm does not
require matrix inversion� It is the same algorithm obtained by Csato et al� ������� except
they expressed it in terms of kernel inner products� which makes it more complex�

	�� Training via EP

Now we turn the ADF algorithm into an EP algorithm� By dividing two consecutive Gaus�
sian posteriors� we �nd that the term approximations are also Gaussian� parameterized by
mi and Vi


!t�w� � Z
qnew�w�

q�w�
������

��



�
Z

N �mi�mw�Vi �Vw�
N �w�mi�Vi� ������

where V��
i � �Vnew

w ��� �V��
w ������

mi � Vi�V
new
w ���mnew

w �ViV
��
w mw ������

� mw � �Vi �Vw�V
��
w �mnew

w �mw� ���
��

To simplify this� combine it with the ADF updates ����
������ to get �mi�Vi� directly from
�mw�Vw�


Vi �

�
�ix

T
i m

new
w

xTi Vwxi
xix

T
i

���
�Vw ���
��

mi � mw � �Vi �Vw��ixi ���
��

The matrix
�ixTi m

new
w

xT
i
Vwxi

xix
T
i has one nonzero eigenvalue� which means Vi will have one �nite

eigenvalue� in the direction of xi� This makes sense because term i only constrains the
projection of w along xi� This special structure allows us to represent Vi with a scalar� vi


V��
i � v��i xix

T
i ���

�

xTi Vixi � vi ���
��

From ���
��� we know that

xTi Vixi �
xTi Vwxi

�ixTi m
new
w

� xTi Vwxi ���
��

which means the update for vi is

vi � xTi Vwxi

�
�

�ix
T
i m

new
w

� �

�
���
��

Another consequence of this special structure is that instead of the full vector mi� we only
need the projection mT

i xi� which can be stored as a scalar mi�

��



Now we can write an e�cient EP algorithm


�� Except for the prior� the term approximations
have the form

!ti�w� � si exp�� �

�vi
�wTxi �mi�

�� ���
��

Initialize them to �


vi � ����
��

mi � � ���
��

si � � ������

�� mnew
w � 	�Vnew

w � I �the prior�


� Until all �mi� vi� si� converge �changes are less than �����


loop i � �� ���� n


�a� Remove !ti from the posterior to get an �old� posterior


Vw � ��Vnew
w ��� � v��i xix

T
i �
�� ������

� Vnew
w � �Vnew

w xi��vi � xTi V
new
w xi�

���Vnew
w xi�

T ������

mw � mnew
w �VwV

��
i �mnew

w �mi� ����
�

� mnew
w � �Vwxi�v

��
i �xTi m

new
w �mi� ������

These expressions involving Vw can be computed e�ciently


Vwxi � �Vnew
w xi�

vi

vi � xTi V
new
w xi

������

xTi Vwxi �

�
�

xTi V
new
w xi

� �

vi

���
������

�b� Recompute �mnew
w �Vnew

w � Zi� from �mw�Vw�� as in ADF�

�c� Update !ti


vi � xTi Vwxi

�
�

�ixTi m
new
w

� �

�
������

mi � xTi mw � �vi � xTi Vwxi��i ������

si � Zi
jVi �Vwj���

jVij���
exp�

�

�
�mi �mw�

T�Vi �Vw�
���mi �mw��������

� Zi

q
� � v��i xTi Vwxi exp�

�

�

xTi Vwxi

xTi m
new
w

�i� ������

�� Compute the normalizing constant


B � �mnew
w �T�Vnew

w ����mnew
w ��

X
i

m�
i

vi
������

p�D� � jVnew
w j��� exp�B���

nY
i��

si ������

This algorithm processes each data point in O�d�� time� Assuming the number of iterations
is constant� which seems to be true in practice� computing the Bayes point therefore takes
O�nd�� time� Computing the normalizing constant at the end requires O�d�� time�
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	�� EP with kernels

To use the kernel trick� we need to rewrite EP in terms of inner products� Following the
notation of Opper � Winther �����c�� de�ne

�i � xTi V
ni
wxi �V

ni
w is the Vw when term i is left out� ����
�

Cij � xTi xj ������

* � diag�v�� ���� vn� ������

hi � xTi m
new
w ������

h
ni
i � xTi m

ni
w ������

From the de�nition of qnew�w� as the product of approximate terms !ti�w�� we know that

Vnew
w �

�
I�

X
i

xix
T
i

vi

���
�
�
I�X*��XT

���
������

mnew
w � Vnew

w

X
j

mjxj

vj
������

xTi m
new
w �

X
j

�xTi V
new
w xj�

mj

vj
������

From the matrix inversion lemma we therefore have

�C� *��� � *�� � *��XTVnew
w X*�� ������

XTVnew
w X � *� *�C�*���* ������

� �C�� �*����� ����
�

In this way� we can compute xTi V
new
w xj for any �i� j� using only C and *� The EP algorithm

becomes


�� Initialize vi ��� mi � �� si � ��

�� Initialize hi � �� �i � Cii�


� Until all �mi� vi� si� converge


loop i � �� ���� n


�a� Remove !ti from the posterior to get an �old� posterior


h
ni
i � hi � �iv

��
i �hi �mi� ������

�b� Recompute �part of� the new posterior� as in ADF


z �
h
ni
ip
�i

������

Zi � 	� ��� �	�
�z� ������

�i �
�p
�i

��� �	�N �z� �� ��

	� ��� �	�
�z�
������

hi � h
ni
i � �i�i ������

��



�c� Set

vi � �i

�
�

�ihi
� �

�
������

mi � h
ni
i � �vi � �i��i � hi � vi�i ������

si � Zi

q
� � v��i �i exp�

�i�i
�hi

� ������

�d� Now that * is updated� �nish recomputing the new posterior


A � �C�� �*����� ������

For all i


hi �
X
j

Aij
mj

vj
�from ������� ����
�

�i �

�
�

Aii
� �

vi

���
�from ������� ������

�� Compute the normalizing constant


B �
X
ij

Aij
mimj

vivj
�
X
i

m�
i

vi
������

p�D� � j*j���
jC� *j���

exp�B���
nY
i��

si ������

The determinant expression in ������ follows from ������


jVnew
w j �

���I�X*��XT
����� � ���I�XTX*��

����� ������

�
���I�C*��

����� � j*j
jC� *j ������

In step ������� it would appear that we need to invert a matrix� taking O�n�� time� for each
data point� However� since only one vi changes each time� A can be updated incrementally
in O�n�� time� Initialize A � C and then update with

Anew �
�
C�� �*�� � +*��

���
������

� A� aia
T
i

� � aii
������

where � �

�
�

vnewi

� �

voldi

���
������

Assuming a constant number of iterations� the algorithm thus runs in O�n�� time� plus the
time to compute the inner product matrix C� This is a great improvement over O�nd�� if
the dimensionality is very large� e�g� if the feature set is arti�cially expanded�

To show the equivalence with Opper � Winther�s algorithm� we make the following
observations
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This is the equation Opper � Winther use instead of ����
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� The update ������ for �i can be written
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This is the update Opper � Winther use instead of �������

� EP computes a normalizing constant for the posterior� while Opper � Winther do
not�

� All other updates are identical to those in Opper � Winther �����c�� though carried
out in a di�erent order� Reordering the updates does not matter as long as both
algorithms converge�

The input to the algorithm is simply the matrix C� which can be computed using an
arbitrary inner product function C�xi�xj� instead of xTi xj � However� in that case we need
to keep yi and xi separate


Cij � yiyjC�xi�xj� ������

Using a nonlinear inner product function is an e�cient way to use an expanded feature space�
since we don�t have to represent each expanded data point� We only have to compute the
inner product between two expanded data points� which is a scalar function of the original
data�

The output of the algorithm is the �i� which implicitly represent mnew
w through �������

With these we classify a new data point according to

f�x� � sign�xTmnew
w � � sign�

X
i

�iyiC�x�xi�� ������

	�	 Results on synthetic data

Figure ����a� demonstrates the Bayes point classi�er vs� the SVM classi�er on 
 training
points� Besides the two dimensions shown here� each point had a third dimension set at
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�� This provides a �bias� coe�cient w� so that the decision boundary doesn�t have to pass
through ��� ��� Each classi�er is set to zero label noise �	 � � and zero slack�� The Bayes
point classi�er approximates a vote between all linear separators� ranging from an angle of
�� to �
��� The Bayes point chooses an angle in the middle of this range� SVM chooses the
decision boundary to maximize �margin�� the distance to the nearest data point� This makes
it ignore the topmost data point� In fact� the Bayes point and SVM would coincide if that
point were removed� Adding the point reduces the set of linear separators and Bayesian
inference must take this into account�

Figure ��
 plots the situation in parameter space� For viewing convenience� we restrictw
to the unit sphere� The exact Bayes point was computed by likelihood�weighted sampling�
i�e� sampling a random w on the sphere and discarding those which are not separators�
EP provides an accurate estimate of the posterior mean mw and posterior covariance Vw�
Compare


Exact Vw �

�

 ��
�� ������ ������
������ ���

 �����

������ �����
 �����

�
� EP Vw �

�

 ��
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������ ����� �������
������ ������� ����
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Figure ����b� plots cost vs� error for EP versus three other algorithms for estimating the
Bayes point
 the billiard algorithm of Herbrich et al� ������� the TAP algorithm of Opper
� Winther �����c�� and the mean��eld �MF� algorithm of Opper � Winther �����c�� The
error is measured by Euclidean distance to the exact solution found by importance sampling�
The error in using the SVM solution is also plotted for reference� Its unusually long running
time is due to Matlab�s quadprog solver� TAP and MF were slower to converge than EP�
even with a large initial step size of ���� As expected� EP and TAP converge to the same
solution�

The billiard algorithm is a Monte Carlo method that bounces a ball inside the region
de�ned by hyperplane constraints� It must be initialized with a linear separator and the
SVM was used for that purpose� Since there are many other ways one could initialize
the billiard� which may be much cheaper� the initialization step was not counted against
the billiard�s FLOP count �otherwise the billiard curve would be right of the SVM point��
The error axis must also be interpreted carefully� While it is tempting to use the lower
envelope of the curve as the measure of error� it is actually more accurate to use the upper
envelope� since this is all that the algorithm can consistently achieve as samples accumulate�
Nevertheless it is clear that EP is much faster and more accurate�

Laplace�s method and variational Bayes do not work at all on this problem� Laplace
fails because the derivatives of the likelihood are not informative
 they are either zero or
in�nity� Variational Bayes fails for 	 � � because no Gaussian can lower bound the likelihood
�Gaussians never reach zero�� Even with 	 � �� a Gaussian bound must be quite narrow so
we can�t expect competitive performance�

Herbrich � Graepel ������ point out that the SVM is sensitive to scaling an input
vector� i�e� if we replace x� by �x� then the solution will change� They argue theoretically
and empirically that data vectors should therefore be normalized to unit length before SVM
training� This is quite a shock since no mention of this was made in the original SVM papers�
If the data in �gure ���� including the bias dimension� is normalized before training� then
the SVM solution tilts slightly toward the BPM solution� supporting Herbrich � Graepel�s
suggestion� The Bayes Point Machine� by contrast� does not require any normalization�
because the data likelihood ����� is correctly invariant to scaling an input vector� The
solution found by EP is also invariant�
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Figure ���
 �left� Bayes point machine vs� Support Vector Machine on a simple data set�
The Bayes point more closely approximates a vote between all linear separators of the data�
�right� Cost vs� error in estimating the posterior mean� ADF is the �rst �x� on the EP
curve�

Figure ��

 �left� The same problem viewed in parameter space �the unit sphere�� Each
data point imposes a linear constraint� giving an odd�shaped region on the sphere� The
Bayes point is the centroid of the region� The EP estimate is indistinguishable from the
exact Bayes point on this plot� �right� The Gaussian posterior approximation obtained by
EP� rendered as a one standard deviation isoprobability ellipsoid�
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Figure ���
 Cost vs� error for the 
�point problem with one point replicated �� times

The linear classi�cation problem is special in that some points can have large in uence
on the solution while adjacent points have zero in uence� This is because the constraints
imposed by the latter points may be redundant given the constraints already imposed by
other points� This property allows the support vector machine to focus on a small number
of points� the support vectors� when �nding its solution� Unfortunately� this property can
cause havoc with EP� EP uses Gaussians to smooth out the hard constraints and cannot
always recognize when a point is redundant and should be ignored� The result is that
clusters of points can degrade the EP estimate� Figure ��� shows what happens to �gure ��
��b� when the point at ��� �� is replicated �� times� As expected� the cluster of points counts
more than it should� making the EP boundary move slightly away from it� The accuracy of
EP� TAP� and MF degrades signi�cantly� while SVM and Billiard are unchanged� On the
bright side� the error cannot be made arbitrarily high�using more than �� replications� or
replicating the other points� does not degrade the accuracy any further� One work�around
for this behavior would be to reduce the dataset in advance� e�g� to just the support vectors�
This idea has not been tested yet�

Figure ��� compares the EP solution to the exact posterior mean when noisy labels
are allowed �	 � ����� Theoretically� this integral is harder since we have to consider the
entire parameter space� not just perfect separators� EP can handle it with no additional
cost� The solution comes out vertical because it is a compromise between the small set
of perfect separators at �
�� and the larger set of boundaries between �� and �
�� which
have one error� �There is also a set of boundaries past �
�� which also have one error�� On
this dataset� a similar result can be achieved with the SVM if we set the slack parameter
C � �� though this would not necessarily be true on another dataset� Winther ������ has
given extensive evaluations of EP with 	 � � and 	 � � on synthetic datasets� showing that
it achieves the theoretical performance of Bayesian averaging� Those experiments are not
repeated here�

Figure ��� demonstrates EP with a nonlinear kernel� contrasting it to the SVM solution
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Figure ���
 The EP solution has good agreement with the exact posterior mean when noisy
labels are allowed �	 � ����

with the same kernel� The kernel was Gaussian


C�xi�xj� � exp�� �

���
�xi � xj�

T�xi � xj�� ������

with width parameter � � ��� and � � ���� The feature expansion equivalent to this kernel
has an in�nite number of features� The SVM is quite sensitive to the choice of � as well
as the idiosyncrasies of the dataset� This is related to the sparsity of the SVM solution

when the boundary depends on only a few data points� i�e� a few Gaussian kernels� small
changes in those kernels have a larger e�ect on the boundary� Similar results obtain if we
use a polynomial kernel


C�xi�xj� � �xTi xj � ��p ������

For large p� the boundaries are almost identical to those for a wide Gaussian kernel�
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Figure ���
 Classi�cation boundaries resulting from Support Vector Machine training vs�
Bayes Point Machine training with EP� Both used a Gaussian kernel with the same width
parameter� �left� Narrow width� The SVM tends to put extra bumps and kinks in the
boundary� �right� Wider width� The SVM chooses an unusual solution in order to maximize
margin in the expanded space� The BPM boundary is non�sparse �all �i � �� but smoother�
It is hardly a�ected by changing the kernel width� Billiard gives results similar to EP�
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	�
 Results on real data

For higher dimensional problems� it is more di�cult to compute the exact Bayes point and
make cost vs� accuracy comparisons� So instead we�ll measure cost vs� test performance
on benchmark problems�

Figure ��� compares EP� Billiard� and SVM on discriminating handwritten digit �
�
from ���� Each data point xi is an � � � binary image ��� dimensions�� The dataset was
randomly split �� times into a �small� training set of �� points and a test set of �
� points�
All algorithms were linear and set for zero noise� Billiard was run for ���� iterations� which
is far more computation than EP or SVM used� Nevertheless� EP is best�

Figures ��� and ��� show the same type of comparison on four datasets from the UCI
repository �Blake � Merz� ������ Each dataset was randomly split �� times into a training
set and test set� in the ratio ��,
��,� In each trial� the features were normalized to have
zero mean and unit variance in the training set� The classi�ers used zero label noise and a
Gaussian kernel with � � 
� Billiard was run for ��� iterations� The thyroid dataset was
made into a binary classi�cation problem by merging the di�erent classes into normal vs�
abnormal� Except for sonar� EP and Billiard beat the SVM a majority of the time� and
in all cases EP performed similarly to Billiard� However� the running time for Billiard is
signi�cantly higher� since it must be initialized at the SVM solution� Figure ���� shows cost
vs� test error curves on some typical runs� The SVM using quadprog is particularly slow
on thyroid� The unusual success of the SVM on sonar was also reported by Herbrich et al�
������� and may be related to the di�erent assumptions made by the SVM �see section �����

To give an idea of the actual running time in Matlab� �gure ���� plots the training time
vs� training set size for �� trials� As expected� the time scales as n�� Extrapolating from
this� it would take an hour for ����� data points and � weeks for ������ data points� Finding
a way to speed up EP� similar to the way that quadratic programming can be sped up for
the SVM� will be essential for large data sets�
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Figure ���
 Test error of SVM vs� EP �left� and Billiard vs� EP �right� on digit classi�cation�
over �� random train'test splits� Each point is �test error for SVM'Billiard� test error for
EP�� Points under the line correspond to trials where EP had a lower test error� EP beat
SVM 
� times and beat Billiard �� times� despite being the fastest of all three algorithms
of this dataset�
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Figure ���
 Test error rates over �� train'test splits� Each point is �test error for
SVM'Billiard� test error for EP�� Points under the line correspond to trials where EP
had a lower test error� For running times� see �gure �����
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Figure ���
 Test error rates over �� train'test splits� Each point is �test error for
SVM'Billiard� test error for EP� for one trial� Points under the line correspond to tri�
als where EP had a lower test error� For running times� see �gure �����
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 Cost vs� test error on a typical trial� for each dataset
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Figure ����
 Actual training time in Matlab for EP with kernels� for �� di�erent dataset
sizes� It nearly perfectly follows n� growth� The time to compute the inner product matrix
is not included�
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	�� Model selection

This section reports results on Bayesian model selection using the estimated evidence p�D��
This is a unique feature of EP because the billiard algorithm cannot provide an estimate
of p�D�� By maximizing the evidence� we can select the appropriate feature set� feature
kernel� or noise parameter 	� For background on Bayesian model selection� see MacKay
������� Kass � Raftery ����
�� Minka �����a�� A popular approach to model selection for

the SVM is to minimize R�

M� � where R is the radius of the smallest ball containing the training
set �measured in the mapped feature space� and M is the margin �Cristianini et al�� ������
Another approach is to minimize the span bound given by thresholding the ��s �Chapelle
� Vapnik� ����� Chapelle et al�� �����


S �
X

support vectors i

)��i �
h
C��

sv

i
ii
� ����
�

These three criteria� evidence� margin� and span� can lead to quite di�erent results�
Figure ���� shows a synthetic training set classi�ed according to distance from the origin�
i�e� the true decision boundary is a circle� Three di�erent decision boundaries result from
training an SVM with three di�erent kernels �the decision boundaries from EP are nearly
identical�� All of these boundaries achieve zero error so we need to invoke some other rule
besides training error to select among them� Over all Gaussian kernels� the margin criterion
is minimized by taking � � ���� This produces a decision boundary with spurious kinks
and bumps� The span bound is minimized by an even narrower kernel
 � � ������ where
the bound is �� By contrast� the best Gaussian kernel according to evidence has � � ����
providing a much smoother and more realistic boundary� The quadratic kernel� which is
the closest to the true boundary� has even greater evidence yet less margin�

In the noise�free case� the Bayesian evidence p�D� has a natural interpretation� It is
the fraction of perfect separators out of all representable classi�ers� If a particular set of
features has a large percentage of perfect separators� then we intuitively should have more
faith in that feature set� This is what Bayesian model selection does� and in choosing the
Bayes point we follow the same basic argument� Maximizing the margin does not necessarily
behave this way�

The next example repeats the feature selection experiment of Weston et al� �������
Chapelle et al� ������� Synthetic data with six features was created by �rst sampling
y � �� with equal probability and then setting

x� � N �y� �� ������

x� � N ��y� �� ������

x� � N �
y� �� ������

x� � N ��� �� ������

x	 � N ��� �� ������

x� � N ��� �� ������

With probability ��
� features x�-x� were swapped with features x�-x�� Thus all six features
are relevant to some degree� To these six relevant features are appended �� irrelevant
features with distribution N ��� ���� The test is to see whether we can reject the �� irrelevant
features� In Chapelle et al� ������� the algorithm was forced to keep only two features� Here
we use a more rigorous test
 features are added one by one� starting with the relevant ones�
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Figure ����
 A dataset classi�ed with three di�erent kernels� The margin criterion R��M�

prefers the � � ��� solution� while the Bayesian evidence p�D� prefers the quadratic solution�
The span bound prefers a Gaussian with tiny � � ����� �not shown�� The true boundary
is a circle�

�




0 5 10 15 20
10

15

20

25

30

35
M

ar
gi

n 
bo

un
d

Number of features
0 5 10 15 20

0

1

2

3

4

5

6

7

S
pa

n 
bo

un
d

Number of features

0 5 10 15 20
−15

−14

−13

−12

−11

−10

−9

−8

−7

E
P

 e
vi

de
nc

e

Number of features

Figure ���

 Feature selection curves for the margin bound� span bound� and Bayesian
evidence� The Bayesian evidence has a clear peak at six� the correct answer� The other
criteria� which are to be minimized� do not perform as well� The margin bound has only a
local minimum at six� and the span bound only a local minimum at �ve�

and the algorithm must decide when to stop� Figure ���
 shows the curves for the margin
bound� span bound� and Bayesian evidence� Both the SVM and BPM used a linear kernel
with zero slack� The Bayesian evidence is clearly a better measure of relevance�
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Figure ����
 �a� Conventional billiard algorithms allow the ball to escape� They project
the collision point onto the surface of the sphere� but preserve the rebound velocity �dashed
line�� �b� The new algorithm works inside the sphere� using the sphere�s surface as an
additional wall�

	�� A better billiard algorithm

A major drawback of current billiard algorithms is that they do not really operate on
the sphere� The billiard ball always follows a straight line trajectory until it hits a wall�
at which point it is projected back onto the sphere ��gure �����a��� Unfortunately� this
means the ball can sometimes leave the sphere without ever hitting a wall� On the 
�point
problem in �gure ��
� this happens on ��, of the bounces� Rujan ������ recovers from this
by restarting the billiard at its initial point� with a random velocity� Unfortunately� this
introduces severe bias in the estimate� by overcounting the initial point� Herbrich et al�
������ have a better solution
 leave the ball where it is� but choose a new random velocity�
This has less bias� but doesn�t resemble a billiard anymore�

The problem of escaping billiard balls can be avoided entirely if we simply rede�ne
the pool� Remember that the unit sphere was an arbitrary choice� we can use any prior
distribution that assigns equal probability to all w vectors of a given length� So let�s use the
inside of the unit sphere� as shown in �gure �����b�� The sphere�s surface is an additional
wall that prevents escape� The new algorithm is


�� Determine the next collision� From position w and velocity v� compute the  ight time
to each wall and take the minimum� The distance from wall xi is

di �
wTxiq
xTi xi

�������

and the velocity normal to xi is

vi �
vTxiq
xTi xi

�������

so the  ight time is


i �

�
�di

vi
if vi � �

� otherwise
�������

The  ight time to the surface of the sphere satis�es

�w� v
�T�w� v
� � � �����
�

��




 �

q
�wTv�� � vTv���wTw��wTv

vTv
�������

which is always positive and �nite�

�� Update the position of the ball� the total distance traveled �s�� and the center of mass
estimate �m��

wnew � w � v
min �������

z � kwnew �wk �������

mnew �
s

s� z
m�

z

s� z

wnew �w

�
�������

snew � s� z �������


� Update the velocity� If xi was hit�

vnew � v� �vi
xiq
xTi xi

�������

If the surface of the sphere was hit�

vnew � v� �wnew�wnew�Tv �������

The length of v is unchanged by these updates� so if we initialize vTv � �� it will stay
that way throughout the algorithm�

The algorithm can also be made use a kernel inner product� as in Herbrich et al� �������
With this algorithm� we can run one billiard trajectory� without ever restarting� However�
that is not a good idea� because the pool is not perfectly ergodic� By periodically randomiz�
ing the velocity of the ball� we can achieve a more ergodic sampling� Periodic randomization
is important in all Markov chain Monte Carlo schemes� including Gibbs sampling� For the
billiard� randomization at every ��� bounces seems to work well�

Figure ���� compares the three algorithms on the 
�point problem of section ���� Each
was run for ������� iterations� using a comparable number of  ops� Because of its bias�
Rujan�s algorithm is never more accurate than ���� in Euclidean distance to the true value�
Herbrich�s algorithm does better but also seems to level o� at ����� The new algorithm�
with randomization every ��� bounces� converges nicely� These characteristics are typical
and hold across many di�erent runs on this dataset�
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Figure ����
 Cost vs� error of conventional billiard algorithms vs� the new algorithm�
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Chapter �

Summary and future work

This thesis has developed a family of algorithms for approximate inference� based on ex�
tending assumed�density �ltering �ADF� to use iterative re�nement� This extension removes
all order dependence from ADF and increases its accuracy� The family includes loopy be�
lief propagation in Bayesian networks� and extends it to allow approximate messages �for
reduced computation� as well as more elaborate messages �for increased accuracy�� For in�
ference in the Bayes Point Machine� it includes the algorithm of Opper � Winther �����c�
and provides an alternative to the costly billiard algorithm�

The accuracy of the Expectation Propagation family was demonstrated on a variety of
examples� with most emphasis on the Bayes Point Machine


Section �
�
� For the clutter problem in one dimension� EP was �in well�behaved cases� ��
times more accurate than its nearest competitor� Laplace�s method� both in estimating
the posterior mean and the normalizing constant p�D�� In other cases� when the true
posterior was strongly multimodal� EP did not converge at all� while Restricted EP
and other deterministic methods lagged behind Monte Carlo� The computational cost
of EP is slightly higher than Laplace�s method but much less than Monte Carlo�

Section �
�
� For marginalizing the mixing weight in a mixture density of two Gaussians�
EP was again �� times more accurate than Laplace�s method� its nearest competitor�
With modi�cations inspired by Cowell et al� ������� EP is also faster than Laplace�s
method� In this problem� the posterior is always unimodal �in fact log�convex�� which
may explain why EP always converged�

Section �
� On a toy dataset where the Bayes Point Machine is very di�erent from the
Support Vector Machine� EP delivers high accuracy at a fraction of the cost of its
competitor� the billiard algorithm� The accuracy of EP degrades when points are
clustered together� but even then it still beats the billiard algorithm with respect
to cost� On separable problems� the posterior is unimodal and EP seems to always
converge�

Section �
� EP is also accurate in situations that the billiard algorithm cannot handle�
namely when there is label noise� This was demonstrated on a toy dataset� more de�
tailed experiments� showing that EP achieves theoretical bounds� are given by Winther
������� since his algorithm is equivalent to EP�

Section �
� On benchmark datasets with around ��� points and �-�� features� EP achieves
test set error rates consistent with the billiard algorithm� Beating the SVM on � out

��



of � datasets� EP realizes in practice the theoretical gains expected with a Bayesian
approach�

Many opportunities for future work are available� both within the framework of EP as
well as beyond it� First� how e�ective is EP for other statistical models& For example� is it
useful for inference in coupled hidden Markov models� sigmoid belief networks �Barber �
Sollich� ������ and dynamic trees �Storkey� �����& Is EP e�ective for Bayesian parameter
estimation of classi�cation models beyond linear classi�ers� e�g� hidden Markov models&
Is any deterministic method e�ective for nonparametric models such as Dirichlet processes
�Rasmussen� �����&

Second� can we anticipate how EP will perform& Can EP provide an estimate of its
error& �The experiments in this paper always used the ADF initialization� Are the �xed
points of EP unique� or does initialization matter& What causes EP to diverge& Can
it be made to always converge& Can EP be made to give reasonable approximations to
multimodal posteriors&

Can EP be made to run faster� especially for the Bayes Point Machine& This thesis
compared EP to the original quadratic programming implementation of the Support Vector
Machine� But much faster� specialized algorithms for the SVM are now available due to
intense research� Can we exploit special properties of the Bayes Point Machine to speed up
EP& For example� can we represent the A matrix in a sparse fashion& Can we identify the
terms that need to be re�ned& Having an error estimate for EP could facilitate this�

Is it optimal to minimize KL�divergence at each step� or should we use some other
criterion& The modi�ed update inspired by Cowell et al� ������ shows that we may obtain
computational speedups with other criteria� But improvements in accuracy may also be
possible� if we replace the greedy KL criterion with something that incorporates lookahead�
For example� if we know the posterior has heavy tails and we are approximating it with a
Gaussian� then we may choose to use a Gaussian with in ated variance� to better account
for the tails�

The entire di�erence between EP and ADF is that EP makes better choices for the
approximate terms !ti� But both algorithms base their choices on the �old� posterior q�x��
which is assumed to be accurate� If the true posterior is multimodal� then q�x� cannot
possibly be accurate� Could we propagate additional information about q�x� to use in
choosing !ti&

Can iterative re�nement be applied to other �ltering algorithms& For example� some
variants of ADF do not use the exponential family� Cowell et al� ������ approximate a
mixture posterior with a smaller mixture after processing each data point� see also the
�generalized pseudo�Bayes	 algorithms in Murphy ������� Frey et al� ������ approximate
the discrete posterior with an arbitrary tree�structured distribution� Conventional EP is
not practical with these kinds of approximations because the equivalent terms !ti�x� �
qnew�x��q�x� do not simplify�

Yedidia et al� ������ give a generalization of belief propagation that is di�erent from
the generalization a�orded by EP� Their algorithm propagates exact marginals and pairwise
marginals� which gives it high accuracy but also limits its practicality� Can it be extended
to allow approximate messages as in EP& Is there a common parent of their algorithm and
EP&

Bayesian inference is a fertile area for developing numerical integration algorithms� espe�
cially deterministic ones� because of the rich problem structure and prior knowledge about
the functions being integrated� There is also relatively little research on it� compared to

��



optimization for example� Many researchers are swayed enough by this imbalance to use
inferior techniques� such as maximum likelihood estimation� because they only involve op�
timization� As argued in this thesis� it doesn�t have to be that way� And I anticipate
that there are even better integration algorithms out there� waiting for someone to discover
them�

��
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