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Abstract

A central issue in principal component analysis (PCA) is choosing the number of principal components to
be retained. By interpreting PCA as density estimation, this paper shows how to use Bayesian model selection
to determine the true dimensionality of the data. The resulting estimate is simple to compute yet guaranteed
to pick the correct dimensionality, given enough data. The estimate involves an integral over the Steifel
manifold of k-frames, which is difficult to compute exactly. But after choosing an appropriate parameterization
and applying Laplace’s method, an accurate and practical estimator is obtained. In simulations, it is more
accurate than cross-validation and other proposed algorithms, plus it runs much faster.

1 Introduction

Principal component analysis (PCA) decomposes high-dimensional data into a low-dimensional subspace compo-
nent and a noise component. This decomposition is useful for data compression as well as de-noising, making it
a common first step for many data processing tasks. Tipping & Bishop (1997b) have shown that PCA can be in-
terpreted as maximum-likelihood density estimation. This paper extends their work by applying Bayesian model
selection to the probabilistic PCA model, providing a simple and fast criterion for choosing the dimensionality
of the subspace.

2 Probabilistic PCA

This section reviews the results of Tipping & Bishop (1997b). The model is that a high-dimensional random
vector x can be expressed as a linear combination of basis vectors plus noise:

x = Zhjwj 4+m-+te (1)
= Hw+m+te (2)
p(e) ~ N(O,V) (3)

where x has length d and w has smaller length k. The vector m defines the mean of x, while H and V define
its variance. For PCA | the noise variance V 1is spherical:

V =l (4)
And the density of w is spherical Gaussian:
p(w) ~ N(0, 1) (5)

This model for PCA was also discussed by Moghaddam & Pentland (1995) and Roweis (1997). It is directly
related to factor analysis: the only difference is that, in factor analysis, the noise variance V is a general diagonal
matrix.



The goal of PCA is to estimate the basis vectors H and the noise variance v from a data set D = {x1,...,xn5}.
Under the model, the probability of observing a vector x is

p(xlw,Hym,v) ~ N(Hw+m,vI) (6)
pfE ) = [ p(xw Hom, o)p(w) (7)
~ N(m,HH" 4 oI) (8)

The probability of the data set is therefore

p(D|H,m,v) = Hp(xﬂH,m,v) (9)
(2m)~N4/2 |HH" + vI|_N/2 exp(—%tr((HHT +0I)718)) (10)
S = ) (xi—m)(x; —m)" (11)

)

Regardless of H and V, the maximum-likelihood value of m is obviously the sample mean:
. 1
S (12)

As shown by Tipping & Bishop (1997b), the maximum of (10) over H occurs at the eigenvectors of the covariance
matrix S/N | weighted by the eigenvalues and subject to an arbitrary rotation within the subspace. Specifically,

H=U(A;, — o) °R (13)

where orthogonal matrix U contains the top k eigenvectors of /N, diagonal matrix Ay contains the corresponding
eigenvalues, and R is an arbitrary orthogonal matrix. The square root operation is safe because A; — v will turn
out to be positive when we estimate v. For this choice of H, the likelihood reduces to

—N/2
/ d

N N Nk
_ _ —Nd/2 ' —N(d—k)/2 _ , _
p(DH=H,m,v) = (27) | | A p~Nd=k) exp( 5 j_gk-l—l A;)exp( 5 ) (14)

where ); is the jth eigenvalue of S/N. From this formula the maximum-likelihood noise variance is seen to be
the average of the left-out eigenvalues:

~ Zc'l:k+1 A]
L (15)
so the maximized likelihood 1s simply
. _N/2
- Nd
p(DIH=H,m,v=1)=(2r)" N2 H o~ N(d=k)/2 exp(——-) (16)

At these parameter values, the covariance matrix of x is UdIAXU;lF where Uy contains all the eigenvectors of S/N
and

Y 0

A= [0 UId—k:| (17)

In other words, 1t is the maximum likelithood estimate of covariance, but with the smallest d — k eigenvalues set
to their average. The PCA model is equivalent to an equality constraint among the d — k& smallest eigenvalues.



3 Bayesian model selection

Bayesian model selection uses the rules of probability theory to select among different hypotheses. It is completely
analogous to Bayesian classification. It automatically encodes a preference for simpler, more constrained models,
as illustrated in figure 1. Simple models, e.g. linear regression, only fit a small fraction of data sets. But they
assign correspondingly higher probability to those data sets. Flexible models spread themselves out more thinly.
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Figure 1: Why Bayesian model selection prefers simpler models

The probability of the data given the model 1s computed by integrating over the unknown parameter values
in that model:

p(DIM) = / p(DI0)p(6]M)d0 (18)

This quantity is called the evidence for model M. MacKay (1995) and Kass & Raftery (1993) discuss Bayesian
model selection in detail. A useful property of Bayesian model selection is that it is guaranteed to select the true
model, if it is among the candidates, as the size of the dataset grows to infinity.

3.1 The evidence for probabilistic PCA

For the PCA model, we want to select the subspace dimensionality k. To do this, we compute the probability
of the data for each possible dimensionality. For a given dimensionality, this requires integrating over all PCA
parameters (m,H, v). First we need to define a prior density for these parameters. Assuming there is no
information other than the data D, the prior should be as noninformative as possible. A noninformative prior
for m is uniform:

p(m) = (constant) (19)

The constant depends on the prior range we choose for m. But since this constant has no influence on model
selection, we can let m range over the entire space and assume the constant is 1. With this prior, m can be
integrated out analytically, leaving

p(DIH,v) = N~Y?(2r)~W-Dd/2 |gHT 4 o1| "V exp(—%tr((HHT +oI)7's)) (20)

where § = Z(XZ —m)(x; — rh)T (21)

)



Unlike m, H must have a proper prior since it varies in dimension for different models. Let H be decomposed
just as in (13):

H = U(L-—I;)'’R (22)
v'u = 14 (23)
R'R = I, (24)

where L is diagonal with diagonal elements /;. The orthogonal matrix U is the basis, L is the scaling (corrected
for noise), and R is a rotation within the subspace (which will turn out to be irrelevant).
A conjugate prior for (U, L, R, v), parameterized by «, is

p(U,L,R,v) |HHT + 1}I|_(Oz+2)/2 exp(—%tr((HHT +0I)7hY) (25)

N |L|_(a+2)/2 p—(a+2)(d=k)/2 exp(—%tr(L_l)) eXp(—M
v

) (26)

This distribution factors into separate terms for (U, L, R, v), which means they are a-priori independent:

p(U,LR,v) = p(o)p(U)p(R) ] o) (27)
p(v) ~ x7*(a(d—k),(a+2)(d—k) —2) (28)

B 1 al(d — k) eTDa-R/2=1 al(d — k)
T((o+ 2)(d—k)/2— L) ( 2 ) exp(=—5,—) (29)
p(U)p(R) = (constant—defined in (50)) (30)
plli) ~ x7*(a,q) (31)

1 o /2 o

= o () oot 2

The hyperparameter « controls the sharpness of the prior. For a noninformative prior, o should be small, making
the prior diffuse. The prior (27) does not enforce {; > v, but the likelihood will rule out such situations.
Combining the likelihood with the prior gives

—n 1
p(Dlk) = / [HH" + vI] /2 exp(—§tr((HHT +vI)"!(S + al))) dUdLdv (33)
U,Lw

n

N+1l+a (34)
N—d/Z(QT)—(N—l)d/zp(U) (a(d _ k))(a+2)(d—k)/2—1 1 (g)ak/Z
T(e+2)(d—k)/2-1) 2 2

[(a/2)*
In this formula R has already been integrated out; the likelihood does not involve R so we just get a multiplicative
factor of [; p(R) dR = 1.

(35)

Cr =

3.2 Laplace approximation

It is possible to integrate (33) over L and v analytically. However, this leads to a complicated integral for U. A
simpler approach is to approximate the whole integral using Laplace’s method (see Kass & Raftery (1993) for a
description of Laplace’s method):

/f(ﬁ)dﬁ ~  f(6)(2m)rewsi/? |A|_1/2 (39)
A & log f(6
0 = argmax f(0) Ao [%f;)] B (37)



For (33), 6 = (U,L,v) and

log f(6) = —g log |L| — M log(v) — %tr((HHT + vI)~H(S 4 al)) (38)

This expression can be simplified using the identity
(HH" + o)™ =07 ' T = —(HH" +o)"'HH"v! = U(L~! — v 'D)U" (39)

which gives

—%tr((HHT +0I)"H (S +al)) = —%tr(s + al) — %tr((L_l — o ') U (S + aI)U) (40)

o u(S)—t(UTSU) 1, ¢ o
= - > - t(L7UTSU) - Str(L7) (41)

The key to getting a good approximation is choosing a good parameterization for U, L, and v. Since /; and v
are positive scale parameters, it is best to use I} = log({;) and v' = log(v). This transformation has Jacobian
Jy_1 = l;. The derivatives with respect to !} at the maximum-likelihood value of U are

dlog f(0) n NlM+a
dl! = —3t 21, +1 (42)
d*log f(0) Nait+a (43)
(dl})? N 21;
which determine
i = (NX\i+a)/(N—-14a) (44)
d*log f(0) _ N-1+4«a (45)
GOSN 2
The derivatives with respect to ' = log(v) are (using (41))
dlog f(9) n(d—k) tr(S)— tr(UTSU)
-2 = 1 4
dv’ 2 + 2v + (46)
d*log f(0) tr(S) — tr(UTSU) (47)
(dv")? N 2v
which determine
d
. tr(S) — tr(UTSU) N3 i1 A (18)
nd—k)y—2  n(d—k)—2
d*log f(0 n(d— k) —2
(dv ) 0==0 2

The matrix U is an orthogonal k-frame and therefore lives on the Stiefel manifold (James, 1954), which is
defined by condition (23). The dimension of the manifold is m = dk—k(k+1)/2, since we are imposing k(k+1)/2
constraints on a d x k matrix. The prior density for U is therefore the reciprocal of the area of the manifold

(James, 1954):

p(U) =27 F ] I((d — i+ 1)/2)7= 4=+ (50)

i=1



The manifold can be parameterized by FEuler vector coordinates:

U = Ugexp(Z) m (51)
where Uy is a fixed orthogonal matrix and Z is a skew-symmetric matrix of parameters, e.g.
0 z12 213
Z=|-z2 0 293 (52)
—z13 —%23 0

The free parameters in this matrix are the top & rows of the upper triangle, i.e. the entries z;; with ¢ < j and
i < k; the others are constant. This gives d(d — 1)/2 — (d — k)(d — k — 1)/2 = m parameters, as desired. For
example, in the case (d = 3,k = 1) the free parameters are 215 and z;3, which define a coordinate system for the
sphere.

Using (39) we find that as a function of U, the integrand is simply

p(U|D,L,v) exp(—%tr((L_1 — 07T UTsU)) (53)

This distribution was studied by Bingham (1974) for the case (d = 3,k = 1), where it is a distribution over
the sphere. Figure 2 plots a typical instance of this distribution. The generalization to the Stiefel manifold
was mentioned by Khatri & Mardia (1977) and is known as the matriz Bingham distribution. The density is
maximized when U contains the top k eigenvectors of S. However, the density is unchanged if we negate any
column of U. This means that there are actually 2% different maxima, and we need to apply Laplace’s method
to each. Fortunately, these maxima are identical so can simply multiply (36) by 2* to get the integral over the
whole manifold. If we set Uy to the eigenvectors of S:

UJSU; = NA (54)
then we just need to apply Laplace’s method at Z = 0.
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Figure 2: The posterior distribution for the first principal component in three dimensions, contour-plotted on
the sphere and in Euler coordinates. It is equivalent to constraining a full-covariance Gaussian density to the
sphere. Euler coordinates unwrap the sphere so that both modes, on opposite sides of the sphere, are visible.

Since
1o 1.3
eXp(Z):I—I—Z+§Z +6Z +o-- (55)
the differential of U in Euler coordinates is
1
dU = Uy(dZ+ §(ZdZ +dZZ)+ ) [Ig] (56)
I,
dU|,_q = UgxdZ [0] (57)



The second differential of U 1s

d’U = Uy(dz*+---) [Ig] (58)
2 _ 2 [Ie
d’U|,_, = UadZ [0] (59)
Therefore the differential of log f is
dlog f(0) = —tr((L™! — v~ 'T)UTSdU) (60)
and the second differential is
dlog f(0) = —tr((L™! — v '1)dUTSdU) — tr((L™' — v~ TI)UTSJ*U) (61)
T
1 _ _ 1
d*log f(0)| ,_, = —Ntr([é“] (L™t —v7'1) [6“] dZ" AdZ)
I, 1 i |k *
—Ntr(dZ 0 (L™ —o71) 0 AdZ) (62)
= —Ntr((BdZ" + (dZ)B)AdZ) (63)
= —Ntr(TAdZ) (64)
Ik -1 -1 Ik T . .
where B = 0 (L™ —=o7'1) 0 (a diagonal matrix) (65)
T = BdZ" +(dZ)B = (dZ)B — BdZ (66)
ti]' = b]'dzl']' - bZdZ” (67)
If we define the estimated eigenvalue matrix (analogous to (17))
Lo
[0 vl k] (68)
then the (4, j) element of T is
tiy = (A=A hde; (69)
Now exploit the fact that dz;; = —dz;; to get
ko4 R
Plog f(0)| g = =D > A7 =A7H(\ = X)Ndz; (70)
i=1 j=i41

Note that there are no cross derivatives; the Hessian matrix Az 1s diagonal. So its determinant is the product
of these second derivatives:

|AZ|—H H D = 3N (71)

i=1j=i+1

Laplace’s method requires this to be nonsingular, so we must have k < N.
The cross-derivatives between the parameters are all zero:

dlog f(O)|  _ d’log f(0)|  _ d’log f(0)

= - TASCA R 2
dl,dZ  |,_; dvdZ  |,_g dlidv J4_g ! "



so A is block diagonal:

Ay
A

Ap (73)
A,

|Az||AL||A] (74)

A

We know A from (45), A, from (49), and Az from (71). We now have all of the terms needed in (36), and so
the evidence approximation is

L |—n/2 d _ _ -
p(DVC) ~ 2k‘ck L {}—n(d—k‘)/Z eXp(—%)(QT)(m-I—k-I—l)/Z |AZ| 1/2 |AL| 1/2 |Av| 1/2 (75)

For model selection, the only terms that matter are those that strongly depend on k, and since « 1s small and
N reasonably large we can simplify this to

—N/2
k
p(DIk) ~ p(O) [TIA ] oM@z o, |72 N =t (76)
j=1
3 ~ Z;l:k{—l A]

which is the recommended formula. Given the eigenvalues, the cost of computing p(D|k) is O(min(d, N)k), which
is less than one loop over the data matrix.

A simplification of Laplace’s method is the BIC approximation (IKass & Raftery, 1993). This approximation
drops all terms which do not grow with N, which in this case leaves only

~N/2

k
p(Dlk) ~ | T o~ N(d=k)/2 = (m+k)/2 (78)
ji=1
This approximation is compared to Laplace in section 5.

4 Other approaches

Rajan & Rayner (1997) perform model selection on a slightly different probabilistic PCA model. In fact they
have two different models—one with a Gaussian density in the subspace and one with a uniform density:

x = Uw+m+te (79)

v'u = 1, (80)
pwla) ~ A0, T/a) (51)
or p(wi|B) ~ U(=8,75) for all ¢ (82)

They also included an assumption that U is smooth, which we omit. Under this model, the covariance of x is

L B L (5
o = [(62/60+v)1k Isk] (84)



This is different since it implies all subspace components have the same variance, i.e. the true eigenvalues are
constant over Ay, ..., Ay as well as constant over Agpy1,..., Ag. For the first model, the probability of a data set is

- 1
p(D|U,m,v,0) = (2m)~ N2 |0f1UUT + vI| Ny2 exp(—§tr((a_1UUT +0I)718)) (85)

tr(S)  tr(UTSU)
v 2v0(1 + ow))

— (271')_Nd/2(0z_1 + U)—Nk/ZU—N(d—k)/Z eXp(— (86)
(because (o 1UUT +vI)7! = v7'I — Uv~!(a + v~ 1)~ tv~1UT). Rather than integrate over the parameters
(U,m, v, a) to get the evidence, Rajan and Rayner suggest simply using the maximum of this likelihood for
model selection. The maximum-likelithood value of U and m are the same as before. Rajan and Rayner give an
approximate formula for & and v; the exact maximum-likelihood values are

~ Zd:k 1 A]
o = T @
k
N
a~! = L; L% (88)
which gives the maximized likelihood (cf (16))
i —Nk/2
. A Nd
p(D|U,m, v,6) = (2m)~ N/ (%) oM exp(——-) (89)

We will call this the RR-N algorithm, with the caveat that it is not identical to what Rajan and Rayner proposed.
For the second model, the probability of a data set 1s

p(D|U,m,v,5) = (27Tv)_Nd/2(26)_Nk H/ exp(—i(xi —m — Uw)T(x; — m — Uw))dw (90)

i=1YW 2v

= (2mo)~NU2(28)~ Nk eXp(_tr(S) — tr(UTSU)

N

H/ eXp(—%(w —UT(x; —m))T(w — UT(x; — m)))dw (91)

tr(S) — tr(UTSU)

= (2mv) N2 (28)7NF exp(— > )

T

HH\/ﬂ'v/Q (erf (—ﬁ—uj\/(%—m)) —erf(_ﬁ_u\j/é_):i_m))) (92)

(In this formula, an error of Rajan and Rayner has been corrected.) Rajan and Rayner estimate v and £ with

A DHENPY

e A (93)

f = max|uf(x; —m)| (94)
J,t

We will call this the RR-U algorithm.

Everson & Roberts (2000) also perform Bayesian model selection on a slightly different probabilistic PCA
model. They use an approximate generative model for the observed eigenvalues, which decouples as a function
of the true eigenvalues:

d k

p(ALv) = [T T £ = )/v) T £4(Oy = 0)/v) (95)

j=1li=1 i=k+1



The f;; are d* different functions relating each observed eigenvalue to each true eigenvalue. The evidence integral
simplifies into & univariate integrals over [; which are evaluated numerically. The noise variance v is not integrated
out but chosen to maximize the evidence for each dimensionality k; a choice which must be done numerically.
This technique will be called the ER algorithm.

Bishop’s (1998) algorithm is different from the others in that it does not score each dimensionality but only
reports the best dimensionality. It is an iterative estimation algorithm for H which sets columns to zero unless
they are supported by the data. The number of nonzero columns at convergence is the estimate of dimensionality.
The algorithm is based on MacKay’s (1995) automatic relevance determination framework and so here it is called

the ARD algorithm.

5 Results

To test the performance of these various algorithms for model selection, we can sample data from a known model
and see how often the correct dimensionality is recovered. The seven estimators implemented and tested in this
study are Laplace’s method (76), BIC (78), Rajan and Rayner’s RR-N (89), RR-U (92), Everson and Roberts’
ER algorithm, Bishop’s ARD algorithm, and 5-fold cross-validation. In the latter method, the data set is divided
into 5 equal parts, and in turn we use one part to test the PCA model fitted to the remaining parts. The score
for each division is the log-probability assigned to the held-out data. The score for a given dimensionality is the
average score across the five divisions.

Most of these estimators work exclusively from the eigenvalues of the sample covariance matrix. The ex-
ceptions are RR-U, cross-validation, and ARD; the latter two require diagonalizing a series of different matrices
constructed from the data. In our implementation, the algorithms are ordered from fastest to slowest as RR-
N, BIC, Laplace, cross-validation, RR-U, ARD, and ER (ER is slowest because of the numerical integrations
required). All of the estimators are guaranteed to recover the true dimensionality for a large enough data set,
except for RR-N and RR-U because they use a restrictive model for the subspace.

The first experiment tests the data-rich case where N >> d. The data is generated from a 10-dimensional
Gaussian distribution with variance in 5 directions given by [10 8 6 4 2] and variance 1 in the remaining 5
directions. Figure 3 plots the eigenvalues of the true covariance matrix and the observed covariance matrix
for one particular realization of 100 samples. For each choice of dimensionality, figure 4 plots the maximized
likelihood and the scores given by the various estimators. Most of them, including ARD, report & = 5 for this
set of data. RR-N picks ¥ = 4 and RR-U picks &k = 1. The results over 60 replications are reported in figure 5.
The differences between ER, Laplace, and CV are not statistically significant. Results below the dashed line are
worse than Laplace with a significance level of 95%.
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Figure 3: True vs. observed covariance matrix eigenvalues for 100 points in 10 dimensions. The latent dimen-
sionality is b.
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The second experiment tests the case of sparse data and low noise. The dimensionality is d = 15; the variance
in the first 5 directions is the same but now the variance is 0.1 in the remaining 10 directions. There are only 10
data points. The results over 60 replications are reported in figure 6.

60

501

401

301

20

Laplace RRU ARD RRN CV ER BIC

Figure 6: The number of times each estimator picked the correct dimensionality in 60 replications. (d = 15,k =

5, N = 10)

The third experiment tests the case of high noise dimensionality. The data is generated from a 100-dimensional
Gaussian distribution with variance in 5 directions given by [10 8 6 4 2] and variance 1/4 in the remaining 95
directions. Figure 7 plots the eigenvalues of the true covariance matrix and the observed covariance matrix for
one particular realization of 60 samples. For each choice of dimensionality, figure 8 plots the maximized likelihood
and the scores given by the various estimators. Notice that BIC, which was derived as a large N approximation,
is unreliable when the dimensionality is comparable to N. Fortunately, we can reject such solutions out of hand
if there is a clear peak elsewhere. The results over 60 replications are reported in figure 9. The ER algorithm
was not run in this case because of its excessive computation time for large d.
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Figure 7: True (left) and observed (right) covariance matrix eigenvalues for 60 points in 100 dimensions.
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Figure 8: The score for each dimensionality, evaluated in four different ways. The cross-validation curve drops
off quickly after k = 15. All except the likelihood peak at the true value in this case.

Laplace CV ARD  RRU BIC RRN

Figure 9: The number of times each estimator picked the correct dimensionality in 60 replications. (d = 100,k =

5,N = 60)
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Since the data in these experiments really does follow the generative model, we should expect Bayesian model
selection to be optimal. The Laplace approximation turns out to be excellent; 1t is a consistent top performer.
Cross-validation is also a good performer, but it is expensive to compute. The algorithms RR-N, RR-U, and ER
are effective only under certain conditions. The ARD algorithm does not give performance commensurate with
its expense. Furthermore, the algorithms based on scoring can employ a smart search algorithm for the best k,
but ARD cannot be accelerated in a simple way.

The next experiment tests the robustness to having a non-Gaussian data distribution within the subspace.
We start with four sound fragments of N = 100 samples each. To make things especially non-Gaussian, the values
in third fragment are squared and the values in the fourth fragment are cubed. All fragments are standardized
to zero mean and unit variance. Figure 10 plots a kernel estimate of the distribution of values in each fragment.
They are clearly non-Gaussian.

0.3 0.5 05 0.6
0.4 0.4
0.2 ' 0.4
S 03 0.3
o
0.1 02 0.2 0.2
0.1 0.1
-5 0 5 -5 0 5 -5 0 5 -5 0 5

Figure 10: The distribution of samples in the sound fragments used in the second experiment. They are clearly
non-Gaussian.

To this 4-dimensional data is added d = 20 dimensional Gaussian noise with variance v = 1/2 in all directions.
Figure 11 plots the eigenvalues of the true covariance matrix and the observed covariance matrix for one particular
realization of the noise. Figure 12 reports the results over 60 replications of the noise (the signals were constant).

True eigenvalues Observed eigenvalues

Figure 11: True (left) and observed (right) covariance matrix eigenvalues for 4 sounds embedded in 20-dimensional
noise.

In an experiment where the true eigenvalues do not level off, but continue downward, all of the estimators
pick the largest possible dimensionality, given a large enough dataset (except RR-N and RR-U because of their
restrictive model). This underscores the fact that these estimators are for density estimation, i.e. accurate
representation of the data, and are not necessarily appropriate for other purposes like reducing computation
or extracting salient features. For example, on a database of 301 face images the Laplace evidence picked
120 dimensions, which is far more than one would use for feature extraction. (This result also suggests that
probabilistic PCA is not a good generative model for face images.) A more appropriate use of these estimators
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Figure 12: The number of times each estimator picked the correct dimensionality in 60 replications. (d = 20,k =

4, N = 100)

is fitting different PCA models to different classes, for use in Bayesian classification (Moghaddam & Pentland,
1997; Moghaddam et al.; 1998).

6 Future directions

Bayesian model selection has been shown to provide excellent performance when the assumed model is correct
or partially correct. The evaluation criterion was the number of times the correct dimensionality was chosen. It
would also be useful to evaluate the trained model with respect to its performance on new data. It is conceivable
that a method like ARD, which encompasses a soft blend between different dimensionalities, might perform
better by this criterion than selecting one dimensionality.

The probabilistic PCA model can be incorporated into a larger probabilistic model, such as a mixture model
(Tipping & Bishop, 1997a). Indeed, the ARD algorithm was designed for this purpose. A brute force approach
to Bayesian model selection would be impractical, since we would need to try every combination of mixture
component models. A more reasonable approach is to optimize each component model in turn, holding the
others fixed. For a given mixture component, the Laplace formula (76) can be applied to the eigenvalues of the
local responsibility-weighted covariance matrix (defined by Tipping & Bishop (1997a)).

Acknowledgment

This work was supported by the MIT Media Lab Digital Life Consortium.

References

Bingham, C. (1974). An antipodally symmetric distribution on the sphere. Annals of Statistics, 2, 1201-1225.
Bishop, C. (1998). Bayesian PCA. Neural Information Processing Systems 11 (pp. 382-388).

Everson, R., & Roberts, S. (2000). Inferring the eigenvalues of covariance matrices from limited, noisy data.
IEFEE Trans Signal Processing, 48, 2083-2091.
http://www.robots.ox.ac.uk/ " sjrob/Pubs/spectrum.ps.gz.

James, A. (1954). Normal multivariate analysis and the orthogonal group. Annals of Mathematical Statistics,
25, 40-75.

Kass, R. E., & Raftery, A. E. (1993). Bayes factors and model uncertainty (Technical Report 254). University
of Washington. http://www.stat.washington.edu/tech.reports/tr254.ps.

15



Khatri, C. G., & Mardia, K. V. (1977). The von Mises-Fisher matrix distribution in orientation statistics. J
Royal Statistical Society B, 39, 95-106.

MacKay, D. J. C. (1995). Probable networks and plausible predictions — a review of practical Bayesian
methods for supervised neural networks. Network: Computation in Neural Systems, 6, 469-505.
http://wol.ra.phy.cam.ac.uk/mackay/abstracts/network.html.

Moghaddam, B., Jebara, T., & Pentland, A. (1998). Bayesian modeling of facial similarity. Neural Information
Processing Systems 11 (pp. 910-916).

Moghaddam, B., & Pentland, A. (1995). Probabilistic visual learning for object detection. Int Conf on Comp
Vision (pp. 786-793). ftp://whitechapel.media.mit.edu/pub/tech-reports/TR-326.ps.Z.

Moghaddam, B., & Pentland, A. (1997). Probabilistic visual learning for object representation. IEEE Trans
Pattern Analysis and Machine Intelligence, 19, 696-710.

Rajan, J. J., & Rayner, P. J. W. (1997). Model order selection for the singular value decomposition and the
discrete Karhunen-Loéve transform using a Bayesian approach. IEFE Vision, Image and Signal Processing,

144, 166-123.

Roweis, S. (1997). EM algorithms for PCA and SPCA. Newral Information Processing Systems 10 (pp.
626-632).

Tipping, M. E., & Bishop, C. M. (1997a). Mixztures of probabilistic principal component analysers (Technical
Report NCRG/97/003). Neural Computing Research Group, Aston University.
http://neural-server.aston.ac.uk/Papers/postscript/NCRG 97 _003.ps.Z.

Tipping, M. E., & Bishop, C. M. (1997b). Probabilistic principal component analysis (Technical Report
NCRG/97/010). Neural Computing Research Group, Aston University.
http://neural-server.aston.ac.uk/Papers/postscript/NCRG 97 010.ps.Z.

16



