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Abstract

A central issue in principal component analysis �PCA� is choosing the number of principal components to
be retained� By interpreting PCA as density estimation� this paper shows how to use Bayesian model selection
to determine the true dimensionality of the data� The resulting estimate is simple to compute yet guaranteed
to pick the correct dimensionality� given enough data� The estimate involves an integral over the Steifel
manifold of k�frames� which is di�cult to compute exactly� But after choosing an appropriate parameterization
and applying Laplace�s method� an accurate and practical estimator is obtained� In simulations� it is more
accurate than cross�validation and other proposed algorithms� plus it runs much faster�

� Introduction

Principal component analysis �PCA	 decomposes high
dimensional data into a low
dimensional subspace compo

nent and a noise component� This decomposition is useful for data compression as well as de
noising� making it
a common �rst step for many data processing tasks� Tipping 
 Bishop �����b	 have shown that PCA can be in

terpreted as maximum
likelihood density estimation� This paper extends their work by applying Bayesian model
selection to the probabilistic PCA model� providing a simple and fast criterion for choosing the dimensionality
of the subspace�

� Probabilistic PCA

This section reviews the results of Tipping 
 Bishop �����b	� The model is that a high
dimensional random
vector x can be expressed as a linear combination of basis vectors plus noise�

x �
kX

j��

hjwj �m� e ��	

� Hw �m� e ��	

p�e	 � N ���V	 ��	

where x has length d and w has smaller length k� The vector m de�nes the mean of x� while H and V de�ne
its variance� For PCA� the noise variance V is spherical�

V � vId ��	

And the density of w is spherical Gaussian�

p�w	 � N ��� Ik	 ��	

This model for PCA was also discussed by Moghaddam 
 Pentland �����	 and Roweis �����	� It is directly
related to factor analysis� the only di�erence is that� in factor analysis� the noise variance V is a general diagonal
matrix�
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The goal of PCA is to estimate the basis vectors H and the noise variance v from a data set D � fx�� ����xNg�
Under the model� the probability of observing a vector x is

p�xjw�H�m� v	 � N �Hw �m� vI	 ��	

p�xjH�m� v	 �

Z
w

p�xjw�H�m� v	p�w	 ��	

� N �m�HHT � vI	 ��	

The probability of the data set is therefore

p�DjH�m� v	 �
Y
i

p�xijH�m� v	 ��	

� ���	�Nd��
��HHT � vI

���N�� exp���

�
tr��HHT � vI	��S		 ���	

S �
X
i

�xi �m	�xi �m	T ���	

Regardless of H and V� the maximum
likelihood value of m is obviously the sample mean�

�m �
�

N

X
i

xi ���	

As shown by Tipping 
 Bishop �����b	� the maximumof ���	 overH occurs at the eigenvectors of the covariance
matrix S�N � weighted by the eigenvalues and subject to an arbitrary rotation within the subspace� Speci�cally�

�H � U��k � vIk	
���R ���	

where orthogonal matrixU contains the top k eigenvectors of S�N � diagonal matrix�k contains the corresponding
eigenvalues� and R is an arbitrary orthogonal matrix� The square root operation is safe because �j � v will turn
out to be positive when we estimate v� For this choice of H� the likelihood reduces to

p�DjH � �H�m� v	 � ���	�Nd��

�
� kY
j��

�j

�
A
�N��

v�N�d�k��� exp��N

�v

dX
j�k��

�j	 exp��Nk

�
	 ���	

where �j is the jth eigenvalue of S�N � From this formula the maximum
likelihood noise variance is seen to be
the average of the left
out eigenvalues�

�v �

Pd
j�k�� �j

d� k
���	

so the maximized likelihood is simply

p�DjH � �H�m� v � �v	 � ���	�Nd��

�
� kY
j��

�j

�
A
�N��

�v�N�d�k��� exp��Nd

�
	 ���	

At these parameter values� the covariance matrix of x is Ud
��UT

d where Ud contains all the eigenvectors of S�N
and

�� �

�
�k �
� vId�k

�
���	

In other words� it is the maximum likelihood estimate of covariance� but with the smallest d� k eigenvalues set
to their average� The PCA model is equivalent to an equality constraint among the d� k smallest eigenvalues�
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� Bayesian model selection

Bayesian model selection uses the rules of probability theory to select among di�erent hypotheses� It is completely
analogous to Bayesian classi�cation� It automatically encodes a preference for simpler� more constrained models�
as illustrated in �gure �� Simple models� e�g� linear regression� only �t a small fraction of data sets� But they
assign correspondingly higher probability to those data sets� Flexible models spread themselves out more thinly�

model wins

p(D | M)

D

constrained model

flexible model

flexible
model wins
constrained

Figure �� Why Bayesian model selection prefers simpler models

The probability of the data given the model is computed by integrating over the unknown parameter values
in that model�

p�DjM 	 �

Z
�

p�Dj�	p��jM 	d� ���	

This quantity is called the evidence for model M � MacKay �����	 and Kass 
 Raftery �����	 discuss Bayesian
model selection in detail� A useful property of Bayesian model selection is that it is guaranteed to select the true
model� if it is among the candidates� as the size of the dataset grows to in�nity�

��� The evidence for probabilistic PCA

For the PCA model� we want to select the subspace dimensionality k� To do this� we compute the probability
of the data for each possible dimensionality� For a given dimensionality� this requires integrating over all PCA
parameters �m�H� v	� First we need to de�ne a prior density for these parameters� Assuming there is no
information other than the data D� the prior should be as noninformative as possible� A noninformative prior
for m is uniform�

p�m	 � �constant	 ���	

The constant depends on the prior range we choose for m� But since this constant has no in�uence on model
selection� we can let m range over the entire space and assume the constant is �� With this prior� m can be
integrated out analytically� leaving

p�DjH� v	 � N�d�����	��N���d��
��HHT � vI

����N����� exp���

�
tr��HHT � vI	��S		 ���	

where S �
X
i

�xi � �m	�xi � �m	T ���	
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Unlike m� H must have a proper prior since it varies in dimension for di�erent models� Let H be decomposed
just as in ���	�

H � U�L� vIk	
���R ���	

UTU � Ik ���	

RTR � Ik ���	

where L is diagonal with diagonal elements li� The orthogonal matrixU is the basis� L is the scaling �corrected
for noise	� and R is a rotation within the subspace �which will turn out to be irrelevant	�

A conjugate prior for �U�L�R� v	� parameterized by �� is

p�U�L�R� v	 � ��HHT � vI
���������� exp���

�
tr��HHT � vI	��		 ���	

� jLj�������� v�������d�k��� exp���

�
tr�L��		 exp����d � k	

�v
	 ���	

This distribution factors into separate terms for �U�L�R� v	� which means they are a
priori independent�

p�U�L�R� v	 � p�v	p�U	p�R	
kY
i��

p�li	 ���	

p�v	 � ������d� k	� ��� �	�d� k	 � �	 ���	

�
�

����� �	�d� k	��� �	v

�
��d� k	

�v

�������d�k�����
exp����d� k	

�v
	 ���	

p�U	p�R	 � �constant�de�ned in ���		 ���	

p�li	 � ������ �	 ���	

�
�

�����	li

�
�

�li

����
exp�� �

�li
	 ���	

The hyperparameter � controls the sharpness of the prior� For a noninformative prior� � should be small� making
the prior di�use� The prior ���	 does not enforce li 	 v� but the likelihood will rule out such situations�

Combining the likelihood with the prior gives

p�Djk	 � ck

Z
U�L�v

��HHT � vI
���n�� exp���

�
tr��HHT � vI	���S� �I			 dUdLdv ���	

n � N � � � � ���	

ck �
N�d�����	��N���d��p�U	

����� �	�d� k	��� �	

�
��d� k	

�

�������d�k����� �

�����	k

	�
�


�k��
���	

In this formulaR has already been integrated out� the likelihood does not involveR so we just get a multiplicative
factor of

R
R
p�R	 dR � ��

��� Laplace approximation

It is possible to integrate ���	 over L and v analytically� However� this leads to a complicated integral for U� A
simpler approach is to approximate the whole integral using Laplace�s method �see Kass 
 Raftery �����	 for a
description of Laplace�s method	� Z

f��	d� � f���	���	rows�A��� jAj���� ���	

�� � argmax
�

f��	 A � �
�
d� logf��	

d�id�j

�
����

���	
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For ���	� � � �U�L� v	 and

log f��	 � �n

�
log jLj � n�d� k	

�
log�v	 � �

�
tr��HHT � vI	���S� �I		 ���	

This expression can be simpli�ed using the identity

�HHT � vI	�� � v��I � ��HHT � vI	��HHTv�� � U�L�� � v��I	UT ���	

which gives

��

�
tr��HHT � vI	���S� �I		 � � �

�v
tr�S� �I	� �

�
tr��L�� � v��I	UT�S� �I	U	 ���	

� � tr�S	� tr�UTSU	

�v
� �

�
tr�L��UTSU	� �

�
tr�L��	 ���	

The key to getting a good approximation is choosing a good parameterization for U� L� and v� Since li and v
are positive scale parameters� it is best to use l�i � log�li	 and v� � log�v	� This transformation has Jacobian
Jl��l � li� The derivatives with respect to l�i at the maximum
likelihood value of U are

d logf��	

dl�i
� �n

�
�
N�i � �

�li
� � ���	

d� logf��	

�dl�i	
�

� �N�i � �

�li
���	

which determine

�li � �N�i � �	��N � � � �	 ���	

d� logf��	

�dl�i	
�

����
����

� �N � � � �

�
���	

The derivatives with respect to v� � log�v	 are �using ���		

d logf��	

dv�
� �n�d� k	

�
�

tr�S	� tr�UTSU	

�v
� � ���	

d� logf��	

�dv�	�
� � tr�S	� tr�UTSU	

�v
���	

which determine

�v �
tr�S	� tr�UTSU	

n�d� k	� �
�

N
Pd

j�k�� �j

n�d� k	� �
���	

d� log f��	

�dv�	�

����
����

� �n�d� k	 � �

�
���	

The matrix U is an orthogonal k
frame and therefore lives on the Stiefel manifold �James� ����	� which is
de�ned by condition ���	� The dimension of the manifold ism � dk�k�k��	��� since we are imposing k�k��	��
constraints on a d � k matrix� The prior density for U is therefore the reciprocal of the area of the manifold
�James� ����	�

p�U	 � ��k
kY
i��

���d� i � �	��	���d�i����� ���	
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The manifold can be parameterized by Euler vector coordinates�

U � Ud exp�Z	

�
Ik
�

�
���	

where Ud is a �xed orthogonal matrix and Z is a skew
symmetric matrix of parameters� e�g�

Z �

�
� � z�� z��
�z�� � z��
�z�� �z�� �



� ���	

The free parameters in this matrix are the top k rows of the upper triangle� i�e� the entries zij with i 
 j and
i � k� the others are constant� This gives d�d � �	��� �d � k	�d � k � �	�� � m parameters� as desired� For
example� in the case �d � �� k � �	 the free parameters are z�� and z��� which de�ne a coordinate system for the
sphere�

Using ���	 we �nd that as a function of U� the integrand is simply

p�UjD�L� v	 � exp���

�
tr��L�� � v��I	UTSU		 ���	

This distribution was studied by Bingham �����	 for the case �d � �� k � �	� where it is a distribution over
the sphere� Figure � plots a typical instance of this distribution� The generalization to the Stiefel manifold
was mentioned by Khatri 
 Mardia �����	 and is known as the matrix Bingham distribution� The density is
maximized when U contains the top k eigenvectors of S� However� the density is unchanged if we negate any
column of U� This means that there are actually �k di�erent maxima� and we need to apply Laplace�s method
to each� Fortunately� these maxima are identical so can simply multiply ���	 by �k to get the integral over the
whole manifold� If we set Ud to the eigenvectors of S�

UT
dSUd � N� ���	

then we just need to apply Laplace�s method at Z � ��

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

z12

z1
3

Figure �� The posterior distribution for the �rst principal component in three dimensions� contour
plotted on
the sphere and in Euler coordinates� It is equivalent to constraining a full
covariance Gaussian density to the
sphere� Euler coordinates unwrap the sphere so that both modes� on opposite sides of the sphere� are visible�

Since

exp�Z	 � I � Z �
�

�
Z� �

�

�
Z� � � � � ���	

the di�erential of U in Euler coordinates is

dU � Ud�dZ �
�

�
�ZdZ� dZZ	 � � � � 	

�
Ik
�

�
���	

dUj
Z�� � UddZ

�
Ik
�

�
���	

�



The second di�erential of U is

d�U � Ud�dZ
� � � � � 	

�
Ik
�

�
���	

d�U
��
Z��

� UddZ
�

�
Ik
�

�
���	

Therefore the di�erential of log f is

d logf��	 � �tr��L�� � v��I	UTSdU	 ���	

and the second di�erential is

d� log f��	 � �tr��L�� � v��I	dUTSdU	� tr��L�� � v��I	UTSd�U	 ���	

d� log f��	
��
Z��

� �N tr�

�
Ik
�

�
�L�� � v��I	

�
Ik
�

�T
dZT�dZ	

�N tr�dZ

�
Ik
�

�
�L�� � v��I	

�
Ik
�

�T
�dZ	 ���	

� �N tr��BdZT � �dZ	B	�dZ	 ���	

� �N tr�T�dZ	 ���	

where B �

�
Ik
�

�
�L�� � v��I	

�
Ik
�

�T
�a diagonal matrix	 ���	

T � BdZT � �dZ	B � �dZ	B �BdZ ���	

tij � bjdzij � bidzij ���	

If we de�ne the estimated eigenvalue matrix �analogous to ���		

�� �

�
�L �
� �vId�k

�
���	

then the �i� j	 element of T is

tij � �����j � ����i 	dzij ���	

Now exploit the fact that dzji � �dzij to get

d� log f��	
��
Z��

� �
kX
i��

dX
j�i��

�����j � ����i 	��i � �j	Ndz�ij ���	

Note that there are no cross derivatives� the Hessian matrix AZ is diagonal� So its determinant is the product
of these second derivatives�

jAZ j �
kY
i��

dY
j�i��

�����j � ����i 	��i � �j	N ���	

Laplace�s method requires this to be nonsingular� so we must have k 
 N �
The cross
derivatives between the parameters are all zero�

d� log f��	

dlidZ

����
����

�
d� log f��	

dvdZ

����
����

�
d� log f��	

dlidv

����
����

� � ���	

�



so A is block diagonal�

A �

�
�AZ

AL

Av



� ���	

jAj � jAZ j jALj jAvj ���	

We know AL from ���	� Av from ���	� and AZ from ���	� We now have all of the terms needed in ���	� and so
the evidence approximation is

p�Djk	 � �kck

����L����n�� �v�n�d�k��� exp��nd

�
	���	�m�k����� jAZj���� jALj���� jAvj���� ���	

For model selection� the only terms that matter are those that strongly depend on k� and since � is small and
N reasonably large we can simplify this to

p�Djk	 � p�U	

�
� kY
j��

�j

�
A
�N��

�v�N�d�k������	�m�k��� jAZ j����N�k�� ���	

�li � �i �v �

Pd
j�k�� �j

d� k
���	

which is the recommended formula� Given the eigenvalues� the cost of computing p�Djk	 is O�min�d�N 	k	� which
is less than one loop over the data matrix�

A simpli�cation of Laplace�s method is the BIC approximation �Kass 
 Raftery� ����	� This approximation
drops all terms which do not grow with N � which in this case leaves only

p�Djk	 �
�
� kY
j��

�j

�
A
�N��

�v�N�d�k���N��m�k��� ���	

This approximation is compared to Laplace in section ��

� Other approaches

Rajan 
 Rayner �����	 perform model selection on a slightly di�erent probabilistic PCA model� In fact they
have two di�erent models�one with a Gaussian density in the subspace and one with a uniform density�

x � Uw �m� e ���	

UTU � Ik ���	

p�wj�	 � N ��� I��	 ���	

or p�wij�	 � U���� �	 for all i ���	

They also included an assumption that U is smooth� which we omit� Under this model� the covariance of x is

E��x�m	�x�m	T� �

�
���� � v	Ik �

� vId�k

�
���	

or �

�
����� � v	Ik �

� vId�k

�
���	

�



This is di�erent since it implies all subspace components have the same variance� i�e� the true eigenvalues are
constant over ��� ���� �k as well as constant over �k��� ���� �d� For the �rst model� the probability of a data set is

p�DjU�m� v� �	 � ���	�Nd��
�����UUT � vI

���N�� exp���

�
tr�����UUT � vI	��S		 ���	

� ���	�Nd������ � v	�Nk��v�N�d�k��� exp�� tr�S	

�v
�

tr�UTSU	

�v�� � �v	
	 ���	

�because ����UUT � vI	�� � v��I �Uv���� � v��	��v��UT	� Rather than integrate over the parameters
�U�m� v� �	 to get the evidence� Rajan and Rayner suggest simply using the maximum of this likelihood for
model selection� The maximum
likelihood value of U and m are the same as before� Rajan and Rayner give an
approximate formula for �� and �v� the exact maximum
likelihood values are

�v �

Pd
j�k�� �j

d� k
���	

���� �

Pk
j�� �j

k
� �v ���	

which gives the maximized likelihood �cf ���		

p�Dj �U� �m� �v� ��	 � ���	�Nd��

�Pk
j�� �j

k

��Nk��

�v�N�d�k��� exp��Nd

�
	 ���	

We will call this the RR
N algorithm� with the caveat that it is not identical to what Rajan and Rayner proposed�
For the second model� the probability of a data set is

p�DjU�m� v� �	 � ���v	�Nd�����	�Nk
NY
i��

Z
w

exp�� �

�v
�xi �m�Uw	T�xi �m�Uw		dw ���	

� ���v	�Nd�����	�Nk exp�� tr�S	� tr�UTSU	

�v
	

NY
i��

Z
w

exp�� �

�v
�w �UT�xi �m		T�w �UT�xi �m			dw ���	

� ���v	�Nd�����	�Nk exp�� tr�S	� tr�UTSU	

�v
	

NY
i��

kY
j��

p
�v��

�
erf

�
� � uTj �xi �m	p

�v

�
� erf

�
�� � uTj �xi �m	p

�v

��
���	

�In this formula� an error of Rajan and Rayner has been corrected�	 Rajan and Rayner estimate v and � with

�v �

Pd
j�k�� �j

d� k
���	

�� � max
j�i

juTj �xi �m	j ���	

We will call this the RR
U algorithm�
Everson 
 Roberts �����	 also perform Bayesian model selection on a slightly di�erent probabilistic PCA

model� They use an approximate generative model for the observed eigenvalues� which decouples as a function
of the true eigenvalues�

p��jL� v	 �
dY

j��

kY
i��

fij���j � li	�v	
dY

i�k��

fij���j � �	�v	 ���	

�



The fij are d� di�erent functions relating each observed eigenvalue to each true eigenvalue� The evidence integral
simpli�es into k univariate integrals over li which are evaluated numerically� The noise variance v is not integrated
out but chosen to maximize the evidence for each dimensionality k� a choice which must be done numerically�
This technique will be called the ER algorithm�

Bishop�s �����	 algorithm is di�erent from the others in that it does not score each dimensionality but only
reports the best dimensionality� It is an iterative estimation algorithm for H which sets columns to zero unless
they are supported by the data� The number of nonzero columns at convergence is the estimate of dimensionality�
The algorithm is based on MacKay�s �����	 automatic relevance determination framework and so here it is called
the ARD algorithm�

� Results

To test the performance of these various algorithms for model selection� we can sample data from a known model
and see how often the correct dimensionality is recovered� The seven estimators implemented and tested in this
study are Laplace�s method ���	� BIC ���	� Rajan and Rayner�s RR
N ���	� RR
U ���	� Everson and Roberts�
ER algorithm� Bishop�s ARD algorithm� and �
fold cross
validation� In the latter method� the data set is divided
into � equal parts� and in turn we use one part to test the PCA model �tted to the remaining parts� The score
for each division is the log
probability assigned to the held
out data� The score for a given dimensionality is the
average score across the �ve divisions�

Most of these estimators work exclusively from the eigenvalues of the sample covariance matrix� The ex

ceptions are RR
U� cross
validation� and ARD� the latter two require diagonalizing a series of di�erent matrices
constructed from the data� In our implementation� the algorithms are ordered from fastest to slowest as RR

N� BIC� Laplace� cross
validation� RR
U� ARD� and ER �ER is slowest because of the numerical integrations
required	� All of the estimators are guaranteed to recover the true dimensionality for a large enough data set�
except for RR
N and RR
U because they use a restrictive model for the subspace�

The �rst experiment tests the data
rich case where N 		 d� The data is generated from a ��
dimensional
Gaussian distribution with variance in � directions given by ��� � � � �� and variance � in the remaining �
directions� Figure � plots the eigenvalues of the true covariance matrix and the observed covariance matrix
for one particular realization of ��� samples� For each choice of dimensionality� �gure � plots the maximized
likelihood and the scores given by the various estimators� Most of them� including ARD� report k � � for this
set of data� RR
N picks k � � and RR
U picks k � �� The results over �� replications are reported in �gure ��
The di�erences between ER� Laplace� and CV are not statistically signi�cant� Results below the dashed line are
worse than Laplace with a signi�cance level of ����
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The second experiment tests the case of sparse data and low noise� The dimensionality is d � ��� the variance
in the �rst � directions is the same but now the variance is ��� in the remaining �� directions� There are only ��
data points� The results over �� replications are reported in �gure ��
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Figure �� The number of times each estimator picked the correct dimensionality in �� replications� �d � ��� k �
�� N � ��	

The third experiment tests the case of high noise dimensionality� The data is generated from a ���
dimensional
Gaussian distribution with variance in � directions given by ��� � � � �� and variance ��� in the remaining ��
directions� Figure � plots the eigenvalues of the true covariance matrix and the observed covariance matrix for
one particular realization of �� samples� For each choice of dimensionality� �gure � plots the maximized likelihood
and the scores given by the various estimators� Notice that BIC� which was derived as a large N approximation�
is unreliable when the dimensionality is comparable to N � Fortunately� we can reject such solutions out of hand
if there is a clear peak elsewhere� The results over �� replications are reported in �gure �� The ER algorithm
was not run in this case because of its excessive computation time for large d�
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Laplace CV ARD RRU BIC RRN
0

10

20

30

40

50

60

Figure �� The number of times each estimator picked the correct dimensionality in �� replications� �d � ���� k �
�� N � ��	

��



Since the data in these experiments really does follow the generative model� we should expect Bayesian model
selection to be optimal� The Laplace approximation turns out to be excellent� it is a consistent top performer�
Cross
validation is also a good performer� but it is expensive to compute� The algorithms RR
N� RR
U� and ER
are e�ective only under certain conditions� The ARD algorithm does not give performance commensurate with
its expense� Furthermore� the algorithms based on scoring can employ a smart search algorithm for the best k�
but ARD cannot be accelerated in a simple way�

The next experiment tests the robustness to having a non
Gaussian data distribution within the subspace�
We start with four sound fragments of N � ��� samples each� To make things especially non
Gaussian� the values
in third fragment are squared and the values in the fourth fragment are cubed� All fragments are standardized
to zero mean and unit variance� Figure �� plots a kernel estimate of the distribution of values in each fragment�
They are clearly non
Gaussian�
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Figure ��� The distribution of samples in the sound fragments used in the second experiment� They are clearly
non
Gaussian�

To this �
dimensional data is added d � �� dimensional Gaussian noise with variance v � ��� in all directions�
Figure �� plots the eigenvalues of the true covariance matrix and the observed covariance matrix for one particular
realization of the noise� Figure �� reports the results over �� replications of the noise �the signals were constant	�
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Figure ��� True �left	 and observed �right	 covariance matrix eigenvalues for � sounds embedded in ��
dimensional
noise�

In an experiment where the true eigenvalues do not level o�� but continue downward� all of the estimators
pick the largest possible dimensionality� given a large enough dataset �except RR
N and RR
U because of their
restrictive model	� This underscores the fact that these estimators are for density estimation� i�e� accurate
representation of the data� and are not necessarily appropriate for other purposes like reducing computation
or extracting salient features� For example� on a database of ��� face images the Laplace evidence picked
��� dimensions� which is far more than one would use for feature extraction� �This result also suggests that
probabilistic PCA is not a good generative model for face images�	 A more appropriate use of these estimators

��
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is �tting di�erent PCA models to di�erent classes� for use in Bayesian classi�cation �Moghaddam 
 Pentland�
����� Moghaddam et al�� ����	�

� Future directions

Bayesian model selection has been shown to provide excellent performance when the assumed model is correct
or partially correct� The evaluation criterion was the number of times the correct dimensionality was chosen� It
would also be useful to evaluate the trained model with respect to its performance on new data� It is conceivable
that a method like ARD� which encompasses a soft blend between di�erent dimensionalities� might perform
better by this criterion than selecting one dimensionality�

The probabilistic PCA model can be incorporated into a larger probabilistic model� such as a mixture model
�Tipping 
 Bishop� ����a	� Indeed� the ARD algorithm was designed for this purpose� A brute force approach
to Bayesian model selection would be impractical� since we would need to try every combination of mixture
component models� A more reasonable approach is to optimize each component model in turn� holding the
others �xed� For a given mixture component� the Laplace formula ���	 can be applied to the eigenvalues of the
local responsibility
weighted covariance matrix �de�ned by Tipping 
 Bishop �����a		�
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