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Abstract. Measuring and predicting the human mobility along the links of a
transportation network has always been of a great importance to researchers in
the field. Hitherto, producing such data relied heavily on expensive and time con-
suming surveying and on-field observational methods. In this work we propose an
efficient estimation method for the assessment of the flow through links in trans-
portation networks that is based on the Betweenness Centrality measure of the
network’s nodes. Furthermore, we show that the correlation between those two
features can be significantly increased when additional (pre-defined and known)
properties of the network are taken into account, generating an augmented Mo-
bility Oriented Betweenness Centrality measure. We validate the results using a
transportation dataset, constructed using cellular phones data, that contains a high
resolution network of the Israeli transportation system. We show that the flow that
was measured using this expensive and complicated method can be accurately es-
timated using our proposed Augmented Betweenness technique.

1 Introduction

The analysis of mobility trends and demands forecasting in transportation networks
relies heavily on household survey data that provides the required input for calibrating
the mathematical models that represent decisions people make related to travel [1].
However, a well known problem common to all interview-type surveys is non-response.
Complex methods to correct for non-response have been developed, however, these
alleviate the problem only partially [2].

As mentioned in [3], another limitation of household surveys is the need for active
cooperation from the respondents, relying on their memory and patience. The need for
active participation reduces the ability to capture complex travel and activity patterns,
and the ability to collect data over a long period of time. The problems mentioned
above, coupled with budget constraints, explain the fact that typical household surveys
collect data regarding a period of merely one or two days for each household.
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As a result, there exists a strong need for finding an alternative mechanism of as-
sessing mobility and traffic demand in transportation networks, one that could be used
without the necessary, tedious and inaccurate process of surveying.

Betweenness Centrality (BC) stands for the ability of an individual node to control
the communication flow in the networks [4, 5]. Formally, for a node v it denoted the total
portion of shortest-paths between every pair of nodes in the network that pass through v
(see more details in Section 3). In recent years Betweenness was extensively applied for
the analysis of various complex networks [6, 7] including among others social networks
[8, 9], computer communication networks [10, 11], and protein interaction networks
[12]. Holme [13] have shown that Betweenness is highly correlated with congestion in
particle hopping systems. Extensions of the original definition of BC are applicable for
directed and weighted networks [14, 15] as well as for multilayer networks where the
underlying infrastructure and the origin-destination overlay are explicitly defined [16].

In this paper we discuss the applicability of BC and certain augmented types of it
for the prediction of mobility patterns in transportation networks. Specifically, we show
that there is a strong positive correlation between a traffic that flows through a node
in a transportation network and its BC measures. In this study we use a comprehensive
transportation network of the Israeli roads and highways system, containing over 15,000
directed links.

The rest of the paper is organised as follows :Section 2 describes the transportation
data that was used in this study. Section 3 discusses the correlation between between-
ness centrality and traffic flow, whereas concluding remarks appear in Section 4.

2 Transportation Network Dataset

The widespread use of cellular phones in Israel enables the collection of accurate trans-
portation data. Given the small size of the country, all cellular companies provide na-
tional wide coverage. As shown in [3], the penetration of cellular phones to the Israeli
market is very high, even to lower income households, and specially among individuals
in the ages of 10 to 70 (the main focus of travel behavior studies). Such penetration
enables a comprehensive study of travel behavior that is based on the mobility patterns
of randomly selected mobile phones in the Israeli transportation system. This data was
shown in [3] and [17] to provide a high quality coverage of the network, tracking 94%
of the trips (defined as at least 2km in urban areas, and at least 10km in rural areas).
The resulting data contained a wealth of traffic properties for a network of over 6,000
nodes, and 15,000 directed links. In addition, the network was accompanied with an
Origin Destination (OD) matrix, specifying start and end points of trips.

The network was created for the National Israeli Transportation Planning Model.
In urban areas the network contains arterial streets that connect the interurban roads.
For each link of the network, there is information about the length (km), hierarchical
type, free-flow travel time (min), capacity (vehicles per hour), toll (min), hourly flow
(vehicles per hour), and congested travel time (min). The hourly flows and congested
travel times were obtained from a traffic assignment model that loads the OD matrix on
the network links.



2.1 Network Structure

Based on the dataset described above we have created a network structure, assigning
running indices from 1 to 6716 to the nodes (junctions). We have examined the directed
variant of the network where each road segment between two junctions was represented
as either one or two directed links between the respective nodes.

In order to get a basic understanding of the network we first extracted and studied
several of its structural properties (see Table 1). We have partitioned the network into
structural equivalence classes of the nodes and bi-connected components and computed
the betweenness centrality indices of the nodes [18, 19, 4]. Structurally equivalent ver-
tices have exactly the same neighbors and the set of these vertices is called a structural
equivalence class. As can be seen from Table 1 the number of structural equivalence
classes is roughly the number of vertices in the network and the size of the largest class
is three. This means that there are no “star-like” structures in the network and alterna-
tive paths between any two vertices are either longer than two hops or have other links
emanating from the intermediate vertices. On the other hand the number of biconnected
components in the network is low compared to the number of nodes, meaning that there
are significant regions of the network that can be cut out by merely disconnecting a
single node.

Table 1. Structural properties (Israeli transportation network).

Nodes 6716
Edges (undirected representation) 8374
Edges (directed representation) 15823
Number of structural equivalence classes 6655
Largest equivalence class 3
Number of bi-connected components (BCC) 931
Avg BCC size 8.2
Largest BCC 5778

2.2 Congestions

In this paper we define the impact of congestion as the difference between the time to
travel through a congested link and the free-flow time to travel. Congestion of a junction
can be either inbound or outbound. Inbound congestion is the sum of all congestions
on inbound links of some junction. Figure 1 presents the distribution of congestion
on network nodes (junctions). Power law nature of this distribution means that vast
majority of nodes are not congested but there are a few nodes whose congestion can
be arbitrarily large. Based on the Wardrop‘s User Equilibrium [20] this also implies a
low number of yet significant deviations between the routes chosen by travelers during
free-flow and during congestions. In Section 3.3 we use this fact to merge between two
routing strategies.



Fig. 1. Power law distribution of congestion.

2.3 Flow

The analyzed dataset contains traffic flow through links provided as the number of ve-
hicles per hour. In the next section we will compare the flow through nodes estimated
using Betweenness Centrality to the measured flow. We compute the total inbound flow
through a node by summing flows on all of its inbound links, where outbound flow is
computed symmetrically. Unless a specific junction is a source or a destination of traffic
we expect the inbound flow to be equal to the outbound flow. Figure 2 demonstrates the
correlation between inbound and outbound flow. We see that vast majority of the nodes
are located on the main diagonal, however, there are some deviations, caused by the fact
that the data represents average measurements that were carried out along a substantial
period of time.

Figure 3 presents the distribution of inbound flow on network nodes. This distribu-
tion is exponential, meaning that a vast majority of nodes have little flow through them.
However, in contrast to network congestion, there are no “unbounded fluctuations”, i.e.
the flow through the most “busy” junctions is not as high as can be expected from the
power law distribution of betweenness and congestions (Figures 1 and 4). In fact, con-
gestions significantly limit the flow through the busiest junctions, which subsequently
is the reason we do not see the long tail in flow distribution.

3 Betweenness Centrality vs. Traffic Flow

Betweenness centrality is defined as the total fraction of shortest paths between each
pair of vertices that pass through a given vertex [4]. Let G = (V,E) be a directed
transportation network where V is the set of junctions and E is the set of directed links



Fig. 2. Incoming vs. outgoing flow for each node.

as described in Section 2. Let σs,t be the number of shortest paths between the origin
vertex s ∈ V and the destination vertex t ∈ V (in some applications the shortest path
constraint can be relieved to allow some deviations from the minimal distance between
the two vertices). In the rest of this paper we will refer to the shortest or “almost”
shortest paths between two vertices as routes. Let σs,t(v) be the number of routes from
s to t that pass through the vertex v. The Betweenness centrality can hence be expressed
by the following equation:

BC(v) =
∑
s,t∈V

σs,t(v)

σs,t
. (1)

Note that in this definition we include the end vertices (s and t) in the computation of
Betweenness since we assume that vehicles can be inspected also at their origin and at
the point of their destination.

After computing the Betweenness centrality for the given transportation network,
we can easily see that the distribution of Betweenness centrality follows a power law
(Figure 4). Long tail distributions such as the power law suggest that there is a non
negligible probability for existence of vertices whose Betweenness centrality can be
arbitrarily high. This is in contrast to the exponential flow distribution depicted in Figure
3. The different nature of these two distributions suggests that BC as defined above
will overestimate the actual traffic flow through nodes especially for the most central
vertices.

Next we would like to check the correlation between BC and traffic flow. Although
the correlation is significant the square error is very low (R2 = 0.2021) as shown in
Figure 5 (a). Every point in this Figure represents a vertex with the x-axis corresponding
to the measured traffic flow and y-axis corresponding to the computed BC.



Fig. 3. Exponential distribution of traffic flow through nodes.

We now discuss augmented variants of the Betweenness centrality measure that
significantly improve the correlation with the traffic flow.

3.1 Origin-Destination based Betweenness Centrality

BC definition according to Equation 1 BC assumes equal weights of routes between
every pair of vertices in the network. In other words every vertex acts as an origin and
as a destination of traffic. We would like to utilise the measured origin-destination (OD)
flow matrix in order to prioritize network regions by their actual use. For this, we shall
use the following altered definition for betweenness, as suggested in [16]:

BC(v) =
∑
s,t∈V

σs,t(v)

σs,t
·ODs,t (2)

where OD is the actual measured origin-destination matrix. This method produces a
better correlation (R2 = 0.4916) between the theoretic (BC) and the measured traffic
flow (see Figure 5 (b)).

3.2 Shortest Routes based on Time to Travel

In order to further improve our ability to estimate the predicted network flow using
the network’s topology, we note that both BC calculation methods (Equations 1 and
2 above) assume that routes are chosen according to shortest path strategy based on
hop counting. In this section, we retain the shortest path assumption but use weighted
links for calculating the Betweenness score. One option is to use the length of the road



Fig. 4. Power law distribution of Betweenness centrality

segments as their weights for the shortest path calculations (based on the well justified
assumption that people prefer short routes over the long ones). However, the road capac-
ity, congestions, and the number of segments also play significant roles when choosing
the route to destination. People would prefer highways over sideways when the distance
difference is not high.

Shortest path algorithms (such as Dijkstra’s or Bellman-Ford’s) are able to consider
only one distance weight on links when computing the shortest path to a destination. We
shall therefore assume that the primary heuristic guiding people when they chose a route
is the time required to reach their destination. Using this assumption, we recompute the
BC on the directed transportation, weighting links by their free-flow travel time.

Let BCft(v) denote the Betweenness of a node v computed w.r.t. the free-flow
travel time. Figure 5 (c) shows significant improvements in the correlation between the
measured traffic flow and the theoretical BCft values computed w.r.t the OD matrix and
free-flow travel time link weights (R2 = 0.6123). We can see that there are few nodes
whose flow was significantly underestimated by the BC measure. Notice that there are
also several nodes whose flow was actually overestimated. This can be explained by the
fact that people do not travel strictly via shortest paths, but may have various deviations.
In particular the deviations form shortest paths are affected by the day time and the day
of week.

3.3 Peak-Hours Aware Betweenness Centrality

It is a reasonable assumption that during peak hours travelers will choose to avoid the
congested roads and choose their routes based on the congested travel time rather than
on the free-flow travel times. Let BCct(v) denote the Betweenness of a node v com-



Fig. 5. Correlation of flow through nodes and Betweeness Centrality

puted w.r.t. the congested time. Computing Betweenness using only the congested travel
time weights results in R2 = 0.7096. Although peak hours are relatively small fraction
of the day, most vehicles travel at these hours. This is the reason for higher correlation
of BCct with the measured traffic flow.

We shall now combine both the Betweenness centrality computed w.r.t. the free-
flow travel time and the congested time by taking a weighted average, namely :

BC(v) = α ·BCft(v) + (1− α) ·BCct(v)

where α denotes the relative fraction of vehicles traveling during the free-flow periods.
The resulting centrality index can achieve higher correlation with the measured average
traffic flow. The maximal correlation of R2 = 0.7285 is obtained for α = 0.25 as shown
in the Figure 6.

3.4 Separating Stubs Nodes from Transit Nodes

Carefully looking at the various nodes we can see that they can be divided into two
groups : stub nodes and transit nodes.

A Stub node is a node that is an origin or a destination of the traffic (as seen in
the Origin-Destination matrix). These nodes account for approximately 10% of the net-
work’s nodes. All other nodes (namely, nodes that generate insignificant or no outgoing
or incoming routes) are called Transit nodes, as they only forward traffic and do not
generate or consume it.



Fig. 6. Squared error (R2) as the function of the free flow traffic fraction (α).

Figure 5 (d) presents the correlation that is received when the two groups of nodes
are being processed separately. Specifically, the results show a R2 = 0.7068 for the
Transit nodes and a R2 = 0.7429 for the Stub nodes.

3.5 Mobility Oriented Betweenness Centrality

As previously mentioned, the transportation network dataset we use contains a “type”
attribute for each link, representing the domain-specific “role” of the link in the overall
network. For example, links of types 13 and 14 correspond to internal neighborhood
roads, whereas links of type 12 correspond to “collectors” — roads that are in charge
of aggregating the traffic from neighborhood roads and channeling it to metropolitan
roads, and so on. As each type of roads have therefore a different role, we now try
to further improve our flow prediction by examining the Betweenness values achieved
when calculating it for every group separately.

The results of the correlation that is achieved using this method are presented in
Figure 7. We can clearly see that for the more important roads (namely, those with lower
type number, representing a more infrastructurial role in the transportation network) this
technique yields R2 values that are consistently above 0.74, reaching 0.83(!) for road
of types 2 and 9 (note that roads of type 90 are fictive roads with infinite capacity that
were artificially added in order to connect distinct regions in the network).

It should be noted that each node may have incoming roads of different types. Each
plot corresponds to a set of nodes whose max incoming road type is as specified. In
addition, the BC calculations were not made for each set of nodes separately — BC was



computed for the complete network, while the correlations were computed separately
for each type.

Fig. 7. Correlation of flow through nodes and Betweenness (computed separately for different
types of links.

4 Conclusions

In this paper we have discussed the correlation between the Betweenness centrality of
a node and its expected traffic flow, in transportation networks. Using a comprehensive
dataset that covers the Israeli transportation network we have first performed a simple
analysis of the network and its properties, showing that there exists a correlation be-
tween the traffic flow of nodes and their Betweenness centrality. We then revised the
basic definition of Betweenness centrality, showing that when analyzing the network in
a way which takes into account additional known properties of the links (specifically,
time to travel through links), a much stronger correlation can be achieved. Taking into
account that a large portion of the traffic is being generated during rush hours, and that
different roads may have different ‘roles’ in the transportation network, we show that a
significantly higher correlation can be achieved when clustering the roads into groups
based on their types (a known property of each road), while also giving increased weight
to data that is associated with certain hours. Using this method that we call “Mobility



Oriented Betweenness Centrality” we demonstrate correlation values of approximately
Z2 = 0.8.

This method can now be used in order to generate highly accurate approximations
of the traffic flow in the network, based on its topology, the OD matrix, and time to
travel without costly simulations. Furthermore, we can also use this method in order
to estimate the dynamic changes in traffic flow due to changes in the Betweenness of
nodes, caused by events such as car accidents, road detours, etc. This technique can be
useful for traffic prediction systems, such as DynaMIT [21].

In addition, based on the correlation between individual flow and Betweenness flow,
a similar correlation between Group Betweenness and group flow can be implied. Sub-
sequently, various problems dealing with flow that are relatively hard to solve can now
be tackled using their dual Betweenness problems. For example, a knap-sack style prob-
lem of finding the best group of nodes to put speed cameras at (in order to capture as
many speeding drivers as possible) can be translated to a dual problem of finding a
group of nodes with the largest group Betweenness. For the latter, however, there exist
various efficient approximation heuristics, that can be used in order to derive a solution
for the first. Similar approach was taken in [22, 23] for optimizing deployment of traffic
inspection systems in communication networks.
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