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I. EXTENDED ABSTRACT

We live in the age of social computing. Social networks are
everywhere, exponentially increasing in volume, and chang-
ing everything about our lives, the way we do business, and
how we understand ourselves and the world around us. The
challenges and opportunities residing in the social oriented
ecosystem have overtaken the scientific, financial, and pop-
ular discourse. With the growing emphasis on personaliza-
tion, personal recommendation systems, and social network-
ing, there is a growing interest in understanding personal and
social behavior patterns. This trend is manifested in the grow-
ing demand for “data scientists” and data-mining experts in
the commercial ecosystem, which in turn is derived from the
increasing number of social data-driven start-up companies as
well the social inference related research sponsored by other
commercial entities and various NGOs.

This work is somewhat of a ‘what if’ exploration: History
has shown that whenever something has a tangible value asso-
ciated with it, there will always be those who will try to steal it
for profit. Along this line of thought — based on these current
trends of the data ecosystem coupled with the emergence of
advanced tools for social and behavioral pattern detection and
inference — we ask the following : What will happen when
the criminals become data scientists?

We conjecture that the world will increasingly see mal-
ware integrating tools and mechanisms from network science
into its arsenal, as well as attacks that directly target human-
network information as a goal rather than a means. Para-
phrasing Marshall McLuhan’s “the medium is the message”
we have reached the stage where “the network is the message”.

Specifically, we point out a new type of information secu-
rity threat — a class of malware, the goal of which is not to
corrupt the machines it infects, take control of them, or steal
explicit information stored on them (e.g. credit card informa-
tion and personal records). Rather, the goal of this type of
attack is to steal social network and behavioral information
through data collection and network science inference tech-
niques. We call this type of attack a “Stealing Reality” attack.

After characterizing the properties of this new kind of at-
tack, we analyze the ways it could be carried out — we show
the optimal strategy for attackers interested in learning a social
network and its hidden underlying social principles. Remark-
ably, our analysis shows that such an optimal strategy should
follow in many cases an extremely slow spreading pattern.
Counterintuitively, such attacks generate far greater damage
in the long term compared to more aggressively spreading at-
tacks. In addition, such attacks are likely to avoid detection
by many of today’s network security mechanisms, which tend

to focus on detecting network traffic anomalies such as traffic
volume increase. We demonstrate this surprising new discov-
ery using several real world social networks datasets.

A preliminary version of this paper was presented in last
year’s WIN event. In the past year we have revalidated our
model using extended mobile networks datasets, as well as de-
veloped a novel network measure for the assessment of social
information that is encapsulated in a (social) network. The pa-
per was accepted to publication in IEEE Intelligent Systems.

We shall model the social network as an undirected graph
G(V,E). A Stealing Reality attacker’s first goal is to inject a
single malware agent into one of the network’s nodes. Upon
such injection, the agent starts to ‘learn’ this node (and its
interactions with its neighbors). Periodically, the agent tries
to copy itself into one of the original node’s neighbors. The
probability that an agent tries to copy itself to a neighboring
node at any given time step is called the “aggressiveness” of
the attack, and is denoted as ρ. Namely, aggressive agents
have higher value of ρ (and hence take shorter periods of time
between each two spreading attempts), whereas less aggres-
sive agents are less likely to try and spread at any given time,
and will then wait on average longer between trying to copy
themselves to one of the neighbors of their current host.

As the information about the network itself has become
worthy cause for an attack, the attacker’s motivation is steal-
ing as much properties related to the network’s social topology
as possible. We shall denote the percentage of vertices-related
information acquired at time t by ΛV (t) and the percentage of
edges-related information acquired at time t is by ΛE(t).

The duration of the learning process of the Stealing Reality
attack refers to the time it takes the attacking agent to iden-
tify with high probability the properties of a node’s behaviors,
or of some of its social interactions. We model this process
using a standard Gompertz function in the parametric form of
y(t) = aebe

ct

(for some parameters a, b and c). This model
is flexible enough to fit various social learning mechanisms,
while providing the following important features : (a) Sig-
moidal advancement, namely — the longer such an gent oper-
ates, the more precise its conclusions will be. (b) The rate at
which information is gathered is smallest at the start and end
of the learning process. (c) Asymmetry of the asymptotes,
implied from the fact that for any value of T , the amount of
information gathered in the first T time steps is greater than
the amount of information gathered at the last T time steps.

An aggressive spreading pattern is more likely to be de-
tected by users or administrators, resulting in the subsequent
blocking of the attack. On the other hand, attacks that spread
slowly may evade detection for a longer period of time, how-
ever, the amount of data they gather would be limited. In order
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to predict the detection probability of the attack at time t we
shall use Richard’s Curve — a generalized logistic function
often used for modeling the detection of security attacks [1] :

pdetect(t) =
1(

1 + e−ρ(t−M)
) 1

ρσ
(1)

where ρ — the attack aggressiveness, σ is a normalizing con-
stant for the detection mechanism, and M denotes the normal-
izing constant for the system’s initial state.

We shall now define a mathematical measure that predicts
the ability of an attacker to “steal”, or acquire, a given so-
cial network, we call the “sociallearnability” of a network.
The measure reflects both the information contained in the
network itself, as well as the broader context from which the
network was derived. Once presenting the mathematical for-
mulation of this measure, we demonstrate its importance by
showing how it can sort several real world social networks ac-
cording to their complexity (which is known), and even group
two very different social networks that were generated by the
same group of people. We conclude by showing that the op-
timal learning process with respect to this new measure in-
volves in many cases extremely non-aggressive attacks.

Let us denote by KE the Kolmogorov Complexity [2] of
the network, namely — the minimal number of bits required
in order to “code” the network in such a way that it could
later be completely restored. The Kolmogorov Complexity
of a network represents in fact the basic amount of informa-
tion contained in a social network. For example, a military
organization’s network has very homogeneous links and hier-
archical structures repeated many times over. We would ex-
pect it to require a much shorter minimal description than, say,
the social network of the residents of a metropolitan suburb.
In the latter, we would expect to see a highly heterogenous
network, composed of many types of relationships (such as
work-relationships, physical proximity, family ties, and other
intricate types of social relationships and group affiliations).

At this point, let us recall that every social reality net-
work belongs to (one or more) “social family”, each of which
having its own consistency (or versatility). Some families
may contain a great variety of possible networks, each hav-
ing roughly a similar probability to occur, while another may
consist of a very limited number of possible networks.

Notice that the complexity of each network does not neces-
sarily correlates with its entropy. There may exist families of
low variety of highly complicated networks, while other fami-
lies may contain a great variety of relatively simple networks.

Let us define Gn to contain n random instances of net-
works of |V | nodes that belong to the same social family as
G. Let Xn be a discrete random variable with possibility val-
ues {x1, x2, . . . , x

2
1
2
|V |(|V |−1)} (corresponding to all possible

graphs over |V | nodes), taken according to the distribution of
Gn. The normalized social entropy of the network G would
therefore be calculated by dividing the entropy of the variable
Xn by the maximal entropy for graphs of |V | nodes :

λn(G) , H(Xn)

log2 ζ|V |
(2)

where ζ|V | denotes the number of distinct non-isomorphic
simple graphs of |V | nodes.

λ(G) is then defined as : limn→∞ λn(G).
At this point let us recall Reed’s Law which asserts that the

utility of large networks (and particularly social networks),
can scale exponentially with the size of the network. This ob-
servation is derived from the fact that the number of possible
sub-groups of network participants is exponential in N (where
N is the number of participants), stretching far beyond the N2

utilization of Metcalfe’s Law (that was used to represent the
value of telecommunication networks).

Extending this notion we assert that a strong value emerges
from learning the 2I “social principles” behind a network, de-
noting by I the information that is encapsulated in a network.

Assuming that at time t an attacker has stolen |E|ΛE(t)
edges, then taking KE as the maximal amount of information
that can be coded in the network G, we normalize it by the
fraction of edges acquired thus far. As KE is measured in
bits, the appropriate normalization should maintain this scale.
Multiplies by λ(G), the normalized social entropy of the net-
work G, the network information can be written as follows :

I = λ(G) ·KE · log2 (|E|ΛE(t))

log2 |E|

After normalizing by the overall “social essence” of the net-
work (received for ΛE = 1) the following measurement for
the social essence of the sub-networked acquired is achieved :

ΛS(t) =
2
λ(G)·KE · log2(|E|ΛE(t))

log2 |E|

2λ(G)·KE
= 2

λ(G)·KE · log2 ΛE(t)

log2 |E|

which after some arithmetics yields :

ΛS(t) = ΛE(t)
λ(G)·KE
log2 |E| (3)

Note that KE represents the network complexity, whereas
λ(G) represents the complexity of its social family.

At this point we assert that our socialearnability measure
presented above is indeed a valuable property for measuring
network attacks. For this, we demonstrate the values of this
measure for several different real world networks. Figure 1
presents an analysis of the networks derived from the Social
Evolution experiment [3], the Reality Mining network [4], and
the Friends and Family [5] experiment. One can easily see the
logic behind the predictions received using the socialearnabil-
ity measure concerning the difficulty of learning each of the
networks. Specifically, the Social Evolution network is pre-
dicted to be harder to steal compared to the Reality Mining
network, however easier to steal compared to the networks
of Friends and Family. This can be explained when look-
ing closely at the details of the three experiments. Whereas
the Reality Mining experiment tracked people within a rela-
tively static work environment, the Social Evolution experi-
ment took place at an MIT Undergraduate dorms, involving
students with (apparently) much more complicated mobility
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and interactions patterns. The Friends and Family dataset in-
volved even more complicated interactions as it includes a het-
erogeneous community of couples, increasing the amount of
information encapsulated within the network.

In addition, notice how the socialearnability measure
places the two Friends and Family networks directly on top
of each other, despite the fact that the two networks contain
significantly different information (of volume, meaning and
network information). Still, as the two networks essentially
represent the same social group of people, their socialearn-
ability measure has a very similar value.
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FIG. 1. An illustration of the reality stealing process for three differ-
ent values of social entropy λ(G) (0.02, 0.1, and 1), for four different
networks — the Random Hall network [3], Reality Mining networks
[4], Friends and Family [5] self-reporting network and Friends and
Family Blue-Tooth network [5]. Using this example we can see that
the Reality Mining network is easier to steal than the Random Hall
network, which in turn is easier to steal compared to the Friends and
Family networks.
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FIG. 2. A demonstration of the importance of a network’s social
entropy λ(G), illustrated for the Reality Mining network [4]. It can
be seen that if we assume that the network is derived from a family
of the maximal entropy (namely, having a uniform distribution of all
possible networks) the evolution of the Stealing Reality attack differs
significantly than for networks that were derived from a family of
a lower social entropy. In fact, even for λ(G) = 0.1 stealing the
network would be materially easier, having additional information
out of any edge acquired.

The importance of the social entropy of a network is
demonstrated in Figure 2, analyzing the Reality Mining net-
work [4] for various possible values of social entropy. The
value for the Kolmogorov Complexity of the network was ap-
proximated using an LZW compression of the network.

We evaluate our model on data derived from a real-world
cluster of mobile phone users drawn from the call records of a
major city within a developed western country, comprised of
approximately 200, 000 nodes and 800, 000 edges.

Figure 3 demonstrates the attack efficiency (namely, the
maximal amount of network information acquired) as a func-
tion of its “aggressiveness” (i.e. the attack’s infection rate).
The two curves represent the overall amount of information
(edges related and vertices related) that can be obtained as a
function of the aggressiveness value ρ. It can be seen that al-
though a local optimum exists for an aggressiveness value of
little less than ρ = 0.5 (namely, a relatively aggressive attack),
it is preceded by a global optimum achieved by a much more
“subtle” attack, for an aggressiveness value of ρ = 0.04.
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FIG. 3. An analytic study of the overall amount of data that can be
captured by a Stealing Reality attack, illustrating the phenomenon
where the most successful attack possible (namely, an attack that is
capable of stealing the maximal amount of information) is produced
by a very low value of the attack aggressiveness ρ. The upper curve
represents ΛE(ρ), the overall percentage of edges related informa-
tion stolen. The lower curve represents ΛV (ρ), the overall percent-
age of vertices related information stolen. Notice the local maxi-
mum around ρ = 0.5 that is outperformed by the global maximum
at ρ = 0.04.
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