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Abstract. Developing the ability to comprehensively study infections in small 

populations enables us to improve epidemic models and better advise individu-

als about potential risks to their health. We currently have a limited understand-

ing of how infections spread within a small population because it has been dif-

ficult to closely track an infection within a complete community. The paper 

presents data closely tracking the spread of an infection centered on a student 

dormitory, collected by leveraging the residents’ use of cellular phones. The da-

ta are based on daily symptom surveys taken over a period of four months and 

proximity tracking through cellular phones. We demonstrate that using a Baye-

sian, discrete-time multi-agent model of infection to model real-world symptom 

reports and proximity tracking records gives us important insights about infec-

tions in small populations. 

Keywords: human dynamics; living lab; stochastic process; multi-agent model-

ing. 

1  Introduction 

Modeling contagions in social networks can help us facilitate the spread of valuable 
ideas and prevent disease. However, because closely tracking proximity and contagion 
in an entire community over a substantial period of time was previously impossible, 
modeling efforts have focused on large populations. As a result, little could be said 
about how an individual can gain exposure to good contagion and avoid bad contagion 
through his or her immediate social network. This paper describes how a ―common‖ 
cold spread through a student residence hall community, with information based on 
daily surveys of symptoms for four months and tracking the locations and proximities 
of the students every six minutes through their cell phones. This paper also reports how 
infection occurred – and how infection could have been avoided – based on fitting the 
susceptible-infectious-susceptible (SIS) epidemic model to symptoms and proximity 
observations. It combines epidemic models and pervasive sensor data to give indivi-
dually-tailored suggestions about local contagion, and also demonstrates the necessity 
of extending the epidemic model to individual-level interactions. 
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Epidemiologists agree on a framework for describing epidemic dynamics – people 
in a population can express different epidemic states, and change their states according 
to certain events. Computing event rates requires only knowledge about the overall-
population at the present time. The susceptible-infectious-recovered (SIR) model, for 
example, divides the population into susceptible, infectious, and recovered sub-
populations (or "compartments"). A susceptible person will be infected at a rate pro-
portional to how likely the susceptible person is to make contact with an infected dis-
ease carrier, and an infected person will recover and gain lifetime immunity at a con-
stant rate. Other compartmental models include the susceptible-infectious-susceptible 
(SIS) model for the common cold, in which infectious people become susceptible 
again once recovered, and the susceptible-exposed-infectious-recovered (SEIR) model, 
in which infected carriers experience an ―exposed‖ period before they become infec-
tious.  

However, the availability of new data and computational power has driven model 
improvements, refining compartmental models that assume homogeneous compart-
ments and temporal dynamics, leading to the development of the Epidemiological 
Simulation System (EpiSimS) that takes land use into account [1], and more recently 
simulations based on the tracking of face-to-face interactions in different communities 
[2345]. 

These simulations all show evidence in favor of an epidemic dynamics framework, 
and against the assumption of homogeneous relationships and homogeneous temporal 
dynamics. Using these kinds of algorithms with real-world symptom reports and prox-
imity data could offer a much better understanding of how infection actually transfers 
from individual to individual, allowing for personalized contagion recommendations. 

To understand the infection dynamics in a community at the individual level, we 
use the data collected in the Social Evolution experiment [6], part of which tracked 
―common cold‖ symptoms in a student residence hall from January 2009 to April 
2009. The study monitored more than 80% of the residents of the undergraduate resi-
dence hall used in the Social Evolution experiment, through their cell phones from 
October 2008 to May 2009, taking daily surveys and tracking their locations, proximi-
ties and phone calls. This residence hall housed approximately 30 freshmen, 20 so-
phomores, 10 juniors, 10 seniors and 10 graduate student tutors. Researchers con-
ducted monthly surveys on various social relationships, health-related issues, and sta-
tus and political issues. They captured the locations and proximities of the students by 
instructing the cell phones to scan nearby Wi-Fi access points and Bluetooth devices 
every 6 minutes. They then collected the latitudes and longitudes of the Wi-Fi access 
points and the demographic data of the students. The data are protected by MIT 
COUIS and related laws. 

This paper makes the following contributions to the field of human behavior mod-
eling: It is among the first to discuss the spread of flu symptoms, tracked daily with 
cellphone-conducted surveys over an entire community. It is also among the first to 
model the spread of flu symptoms by looking at proximity tracked by cell phones, 
paired with a repository of other cellphone-conducted surveys about activity, status, 
and demographics. Lastly, this paper introduces a multi-agent model that is compatible 
with compartmental epidemic models and can infer who infected whom and how to 
avoid catching the flu. The large quantity of behavioral data generated from pervasive 
computing technology provides the details necessary to shift social sciences research 



from the level of large populations to individuals, and to enable social scientists to give 
more personalized advice.  

The rest of the paper is organized as follows: In section 2 we describe the structure 
of face-to-face contact in the residence hall community, and the sensor data that cap-
tures this structure. In section 3 we introduce a Bayesian, multi-agent model, related to 
the Markov jump process, that not only simulates contagion but also makes inferences 
from observations. In section 4 we demonstrate that we can effectively predict new 
cases of symptoms, identify cases of symptoms even if students do not report them, 
and determine the students and contacts that are most critical for symptom-spreading. 
Hence, we show that the multi-agent model captures how symptoms of the common 
cold and the flu spread in a student dormitory community. 

2 Contagion in Social Evolution Experiment 

In the Social Evolution experiment, we offered students $1 per day from 
01/08/2009 through 04/25/2009 to answer surveys about contracting the flu, regarding 
the following specific symptoms: (1) runny nose, nasal congestion, and sneezing; (2) 
nausea, vomiting, and diarrhea; (3) frequent stress; (4) sadness and depression; and (5) 
fever. Altogether, 65 residents out of 84 answered the flu surveys, each of whom ans-
wered for half of the surveyed period. The correlation between stress and sadness is 
0.39, while the correlations between other pairs are about 0.10. 

The symptom self-reporting in the Social Evolution data seems to be compatible 
with what the epidemic model would indicate: symptoms other than runny nose are 
probabilistically dependent on that student’s friendship network. The durations of 
symptoms were about two days, and fit the exponential distribution well (      in 
Kolmogorov hypothesis testing). The chance of reporting a symptom is about 0.01, and 
each individual had a 0.006~0.035 increased chance of reporting a symptom for each 
additional friend with the same symptom (Table 1). These parameters are useful for 
epidemic simulation in the residence hall network, and for setting the initial values of 
fitting an epidemic model to real-world symptom observations and sensor data. The 
symptom surveys show some repeated infections, several clustered infections, the per-
sistence of infections in larger clusters, and the persistence of infections caused by 
individuals who took longer to recover. 

In this data, a student with a symptom had 3-10 times higher odds of seeing his 
friends with the same symptom (again, except for runny nose). As such, it makes sense 

Table 1.   Probability of catching symptom = 1-  (   number of contacts with 

symptom),    and  . 

Symptom          

Runny nose 1.013 0.024 0.52 0.04 

Sadness 0.991 0.016 0.63 0.13 

Stress 1.001 0.035 0.85 0.005 

Nausea 0.993 0.006 0.94 0.11 

 



to fit the time-tested infection model with real-world data of symptom reports and 
proximity observations, and infer how friends infect one another through their contacts. 
In order to determine whether the higher odds could somehow be due to chance, we 
conducted the following permutation test to reject the null hypothesis that "the friend-
ship network is unrelated to symptoms," and we can reject that null hypothesis with 
      . The permutation test shuffles the mapping between the students and the 
nodes in the friendship network and estimates the probability distribution of the num-
ber of friends with the same symptom among all possible shuffling. If friendship net-
works were not related to the timing of when a student exhibits a symptom, then all 
mappings between the students and the nodes would be equally likely, and the number 
of friends with the same symptom would take the more likely values. 

3 Modeling Infection Dynamics 

In this section, we propose a discrete-time stochastic multi-agent SIS model, along 
with a corresponding inference algorithm to fit this multi-agent model to real-world 
data on proximity and symptom reporting. The inference algorithm does three things. 
First, it learns the parameters of the multi-agent model, such as rate of infection and 
rate of recovery. Second, it estimates the likelihood that an individual was infectious 
from the contact he had with other students, and from whether those others reported 
symptoms when the individual’s symptom report is not available. Finally, it enables us 
to make useful predictions about contracting infections within the community in gener-
al.   

Discrete-time stochastic multi-agent SIS model to fit real-world infection dy-
namics: 

 Input:  

─ A dynamic network,              , where nodes representing people, bi-

directional edges                                      representing ―near-

by‖ relation , and 

─ Hyperparameters which provide prior information about:   — the probability 

that infectious persons outside of the network makes a susceptible person within 

the network infectious,   — the probability that an infectious person within the 

network makes a susceptible nearby person infectious, and   — the probability 

that an infectious person becomes susceptible. The above variables are all as-

sumed to be distributed according to beta distributions defined by these given 

hyperparameters.  

─ Hyperparameters which define the prior probability of observing vari-

ous symptoms depending on whether or not a person currently has a cold.  

 Output: a matrix structure                 indexed  y time   and node  . The state 

     of node   at time   is either 0 (susceptible) or 1 (infected). The symptom      

of node   at time   is probabilistically dependent on the state of node   at time  . 
 Procedure: 

─ Initialize all parameters using their prior distributions, and assume that all 

people are susceptible at time    . 



─ For each subsequent time           we assume the following generative  

model: 

o An infectious person becomes susceptible with probability  , according to a 

Bernoulli distribution. If the Bernoulli trial is a success (the infectious person 

is now susceptible),        is set, deterministically, accordingly, and the re-

sulting symptoms         are set stochastically, from their probability distri-

bution, conditioned on       . 

o Infectious persons within and outside of the network contribute to turning a 

susceptible person infectious, and the contributions happen independently:  

 Person   becomes infectious via contact with another infectious person in 

their network at time  . Each infectious contact, as specified by   , infects 

  with probability  , according to a Bernoulli distribution.  

 Person   is infected by someone outside the network, with probability  , 

according to a Bernoulli distribution. 

Set        accordingly if any of the above Bernoulli trials is a success (a 

susceptible person is now infectious). Also set        stochastically, from its 

probability distribution, conditioned on       . 

The probability of seeing a state sequence/matrix            is therefore 

                    

                     

 

                        

   

 

               
                       

                 

   

            
          

 

                 

              
          

 

                 

 

We employ a Gibbs sampler to iteratively sample infectious/susceptible state se-

quences, sample events conditioned on state sequences, and sample parameters. This 

provides an algorithm for performing inference in the above generative model. We 

can infer values of states           , and even missing values in symptoms           , 

conditioned on the values of                   which we observe, and the interac-

tion network       . An in depth description of our model and inference algorithm, 

and further discussion can be found in [7]. 

The SIS model describes infection dynamics in which the infection doesn't confer 
long-lasting immunity, and so an individual becomes susceptible again once recovered. 
The common cold has this infection characteristic.  



4 Experimental Result 

In this section we model the contagion which existed in the residence hall commu-
nity. We estimate, at the community level, the parameters of susceptible-infectious-
susceptible (SIS) infection dynamics. At the individual level, we describe the results of 
using the Gibbs sampling algorithm to fit the discrete-time multi-agent SIS infection 
dynamics to symptom observations. 

We took several steps to calibrate the performances of the multi-agent model and 
support vector classifier on synthetic data. First, we synthesized 50 time series – each 
128 days long – from the Bluetooth proximity pattern in the Social Evolution data and 
different parameterizations. Then, we randomly removed the infectious/susceptible 
data from 10% of the population, added noise to the remaining data in each time series, 
and averaged the performances on inferring the held-out data corresponding to each 
method and parameterization.  

We ran Gibbs samplers for 10,000 iterations, got rid of the initial 1000 burn-in ite-
rations, and treated the remaining 9000 iterations as samples from the posterior distri-
bution. We trained the support vector classifier from another 1000-day time series 
synthesized using the right parameterization, and used the number of infectious con-
tacts yesterday, today, and tomorrow as a feature. We assigned different weights to the 
―infected‖ class and the ―susceptible‖ class to balance the true prediction rate and the 
false prediction rate. 

All methods can easily identify 20% of infectious cases in the missing data with lit-
tle error, but the model-based method using our dynamic multi-agent system consis-
tently performs better than the support vector classifier. Less noise in symptom obser-
vation and in the individuals’ contact networks significantly improves the performance 
of inferring missing data, as shown through the ROC (receiver operating characteristic) 
curves in the left panel of Fig. 1.   An ROC curve indicates better performance if it 
correctly predicts more positive cases and incorrectly predicts fewer negative cases, or 
equivalently if it is closer to the top-left corner, or it has the larger area below.  

The support vector classifier performs worse – especially in identifying the isolated 
infectious cases in the missing data – because it assumes that its cases are i.i.d (identic-
al and independently distributed) and because including the temporal structure of epi-
demic dynamics into the features is not an easy task. The support vector classifier also 
assumes that we either already have enough training data or can synthesize training 
data. This assumption generally cannot be satisfied for the kinds of problems we are 
interested in here.  

In order to infer the latent common cold time series that best fits the multi-agent 
SIS model from dynamical Bluetooth proximity information and symptom self-report 
in the Social Evolution data using our Gibbs sampler, we extracted the hour-by-hour 
proximity snapshot over the 107 days we were monitoring symptoms and interpolated 
the hourly symptom report as the submitted daily symptom report. We assumed that 
the symptoms are probabilistically independent given the common cold state. We ran 
the Gibbs sampler for 10,000 iterations, removed the first 1000 burn-in iterations, and 
took the rest as samples of the posterior probability distribution of common cold states 
conditioned on symptom self-reports. 



The right panel of Fig. 1 shows the (marginal) likelihood of the daily common-cold 
states of individuals. Rows in this heat map are indexed by subjects, arranged so that 
friends go together, and are placed side by side with a dendrogram that organizes 
friends hierarchically into groups according to the distance between the individuals and 
groups. Different colors on the leaves of the dendrogram represent different living 
sectors in the student dorm. Columns in this heat map are indexed by date in 2009. 
Brightness of a heat-map entry indicates the likelihood of being infectious. The brigh-
ter a cell is, the more likely it is that the corresponding subject is infectious on the cor-
responding day. Sizes of black dots represent the number of reported symptoms, rang-
ing from zero symptoms to all symptoms. When a black dot doesn’t exist on the cor-
responding table entry, the corresponding person didn’t answer the survey on the cor-
responding day.  

This heat map shows clusters of common cold happenings. When interpersonal 
proximities happened in larger social clusters, symptom clusters lasted longer and in-
volved more people. A study of the heat map also tells us what the Gibbs sampler does 
in fitting the multi-agent SIS model to the symptom report: a subject often submitted 
flu-symptom surveys daily when he was in a ―susceptible‖ state, but would forget to 
submit surveys when he was in the ―infectious‖ state. The Gibbs sampler will nonethe-
less say that he was infectious for these days, because he was in the infectious state 
before and after, an infectious state normally lasts four days, and many of his contacts 
were in the infectious state as well. A subject sometimes reported symptoms when 
none of his friends did in the time frame. The Gibbs sampler will say the he was in the 
susceptible state, because the duration of the symptom reports didn’t agree with the 
typical duration of a common cold, and because his symptom report was isolated in his 
contact network. 

The inferred infectious state from symptom reports and hourly proximity networks 
normally lasts four days, but could be as long as two weeks. A student often caught a 
cold 2 ~ 3 times from the beginning of January to the end of April. The bi-weekly 

 

Fig. 1.   (Left) Less observation error (obs.err.=0.001) and better knowledge about network 

(       ) lead to better trade-off between true positive rate (TPR) and false positive 

rate (FPR). The support vector classifier has worse trade-off between TPR and FPR than 

the multi-agent Markov model. (Right) An agent-based model can infer common cold 

states, and captures infection from symptom self-reports and proximity network. Sizes of 

black dots represent the number of symptoms reported, ranging from zero symptoms to all 

symptoms, and no black dot means no self-report.  



searches of the keyword ―flu‖ from January 2009 to April 2009 in Boston – as reported 
by Google Trends –  explains 30%  of variance in the number of (aggregated) bi-
weekly common cold cases inferred by the Gibbs sampler, and network size explains 
another 10%.   

The timing of different symptoms with regard to the inferred common cold cases 
follows interesting patterns. Stress and sadness normally began three days before the 
onset of a stretch of infectious state, and lasted two weeks. Runny nose and coughing 
began zero to two days before the onset of a symptom report and ended in about seven 
days, and they have similar density distributions. Fever normally occurred on the 
second day after the onset of a stretch of infectious state, and lasted for about two days. 
Nausea often happened four days before the onset of reaching an infectious state, then 
disappeared and reappeared again at the onset.  

5 Conclusions 

The study of infection in a small population has important implications both for re-
fining epidemic models and for advising individuals about their health. The spread of 
infection in this context is poorly understood because of the difficulty in closely track-
ing infection in a complete community. This paper showcases the spread of an infec-
tion centered on a student dormitory, based on daily symptom surveys over a period of 
four months and on proximity tracking through resident cellular phones. It also demon-
strates that fitting a discrete-time multi-agent model of infection with real-world symp-
tom self-reports and proximity observations give us useful insight in infection paths 
and infection prevention. 
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