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Abstract

How can we model influence between individuals in a socialesg® How can we use
influence to model and predict observations from socialesys® In this article, we explain
the recent advances of the influence model, a Bayesian riedpproach for modeling social
influence from observations of individuals. We review theedlepment of the influence model
in the literature. We also introduce the generalizationhef influence model, the dynamical

influence model, and demonstrate three examples on how these models.

1 Introduction

For decades, social scientists and psychologists have been interesmtetzing and understanding
who influences whorm a social system, such as a group discussion process[1, 2, 3fldience
is also particularly interesting in the context of leadership and group dysawmiliere the influence
between one another has been recognized as a significant factoupfggrformance[5].

However, from a signal processing and modeling point of view, it remaidificult question
to formally defineinfluencein a mathematical way. It is also common that the influence between
individuals is not directly observable, and only individual-level behalisignals are generally
available. For instance, many modern sensing systems such as the socibagggs [6] and cell

phones [7] now provide valuable social behavioral signals from @aditiiduals. Therefore, the



challenges are to not only defimdluence but also infelinfluencefrom individual observations and
individual signals.
A line of research works, known as the influence model, is focused orlimgdocial influence

mathematically. The influence model addresses two fundamental challenges:

e The influence model mathematically defines “influence” and how influeneeges, and the
“influence” learned by the influence model is tightly connected with the sagitddbmeaning

of influence.

e The influence model enables researchers to infers interactions arhgldynamics by only

using time series signals from individual observations.

This article is organized in the following way: We give an overview for themfalation of the
influence model in Section 2, and we discuss previous works in the reeigos (Section 3). We
continue to introduce the dynamical influence model, a generalization forftbenne model for
changing influence and network structure described in Section 4. We igdlliss the inference
algorithm for these model in Section 5. Finally, we explain a few examples iil detartificial and

real data for the dynamical influence model in Section 6.

2 Overview for the Influence Model

2.1 Entities in a Social System

We describe the formulation of the influence model here, followed by awewieits history in
Section 3. The model starts with a system(dentities. Each entity can be a person in a group
discussion, or a geographical district in modeling flu epidemics. We asswanedbh entity is
associated with a finite set of possible stdtes ., S. At different timet, each entity is in one of

the states, denoted b}gic) € {1,...,S}. Itis not necessary that each entity is associated with the
same set of possible state. Some entities can have more or less states. riHoveevglify our de-
scription, we assume that each entity’s latent state space is the same witsmftdeserality. The
state of each entity is not directly observable. However, as in the HiddekoM&lodel (HMM),
each entity emits a signé]ﬁc) at time stamp based on the current latent staﬁé), following a con-

ditional emission probability Prg®.”|n!)). The emission probability can either be multinomial
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or Gaussian for discrete and continuous cases respectively, exaatlyHdM literature [8].

2.2 Influence between Entities

The influence model is composed of entities interacting and influencing eaeh dinfluence”
is defined as the conditional dependence between each entity’s mmﬂﬁd at timet and the
previous states of all entitidéi)l, . ,hfi attimet — 1. Therefore, intuitivelyhgc) is influenced

by all other entities. We now discuss the conditional probability:
Prob(n{ |1V, ... h{9)). 1)

Once we have Proibgcl) |h§91, ey hgﬂ), we naturally achieve a generative stochastic process.

As in the coupled Markov Model [9], we can take a general combinatappfoach Eg. 1, and
convert this model to a equivalent Hidden Markov Model (HMM), in whedch different latent
state combination qfh§£>1, ce hf%) is represented by a unique state. Therefore, for a system with
C interacting entities, the equivalent HMM will have a latent state space ofS$izexponential to
the number of entities in the system, which seems to be unacceptable in reahtqmuic

The influence model approach, on the other hand, uses a much simplerenggfanoach with

far fewer parameters. Entitids. . ., C influence the state af in the following way:

c 1 C c c
Prot(h |, i) = Y Ree x Probh{”|n)), )
~—~— —_——
c€{1,-:C} g strength cond. probability

whereR is aC x C' matrix. R, ., represents the element at theth row and the:,-th column of

the matrixR) R is row stochastic, i.e., each row of this matrix sums up to one. (ngﬂhgi)l) is
modeled using & x S row stochastic matrid““, so that Prom§0’>|h§0_>l) = M;fl) L) This
matrix M< is also known as the transition matrix in HMM literature [8]. Generatlliyl,vfé)r ettty

¢, there areC different transition matrices in the influence model to model the influence dysamic
betweercandd, ¢ = 1,...,C. However, it can be simplified by replacing thedifferent matrices
with only two S x S matricesE® andF¢: E¢ = M%¢, which captures self state transition; We also

assume that the influence of entitpver other nodes are the same, so they can be replaced with on

single matrixF, i.e. M® = F¢,V¢ # c.



Eg. 2 can be viewed as follows: all entities’ states at timel will influence the state of entity
¢ at timet. However, the strength of influence is different for different entitibg strength of:
overc is captured byR./ .. As a result, the state distribution for entityat timet¢ is a combination
of influence from all other entities weighted by their strength e¥eBecauseR captures influence

strength between any two entities, we refeRt@sInfluence Matrix

2.3 Inference

Therefore, the influence model is a generative model defined by paaie E1C, F1:¢ and
the emission probabilities Pr(;@t(c)|h§c)),w. As most generative machine learning models, these
parameters are not set by users, but the are automatically learneddsemvation®)} ., ..., O{ .

The inference algorithms for learning these parameters will be discusSettiion 4.

2.4 Remarks for the Influence Model

1. The number of parameters in our model grows quadratically with respéice number of
entitiesC' and the latent space si%e This largely relieves the requirement for large training
sets and reduces the chances of model overfitting. As a result, the a€luosrdel is more
scalable for larger social systems, and is resistant to overfitting wheimgalata is limited

compared with other approaches [10].

2. This approach captures the tie strength between entities uging & matrix R. R can be
naturally treated as the adjacency matrix for a directed weighted graphgh tiraory. The
influence strength between two nodes learned by our model can be tatutas tie weights
in social networks. This key contribution connects the conditional piitséd dependence
to a weighted network topology. In fact, in previous works, the most commageufor the

influence model is to usR. to understand social structure [11, 12] .

3 Review

The influence model has been developed and applied to model diffesgerita of social systems.

Many works on the influence model started with the development of sociorbetiiges as shown



in Fig. 1, a personal device collecting individual behavioral data ssciudio, movements, etc.
The sociometric badges provide rich measurements for individuals, argiéstion of modeling

group interaction and influence from individual observation signalgalijuose.

Figure 1: Different versions of the sociometric badge is shown in the teftim the middle. The
sociometric badge is a wearable sensing device for collecting individiravilmral data. On the
right is a group brainstorming session, and all participants were weagrgptfiometric badges.

The influence model is introduced in [13], in which the authors firstly dexezlahis idea around
modeling influence, an inference scheme based on optimization, and asfutegpplication of
studying the audio recording from a group discussion session with fikddodls. The reseachers
used audio features as observatié)ﬁ%) for the influence model, and modeled the latent state space
to be either “speaking” or “non-speaking”. The influence model bsdgetween the noisy signal
processing measured directly from each individual to the underlyingjretesonal influence and
interaction on turn taking.

One key question for the influence model is that if the influence m#&riepresents well the
concept of influence in human interactions. In other words, if the definittdnflmence in this
article has practical and sociological meanings. Using the conversatiarfrden the wearable
sociometric badges on 23 individuals, it was discovered that the inflstresggth between individ-
uals learned by influence model correlates extremely well with individugtakty in their social
networks(withR = 0.92, p < 0.0004)[12]. This evidence suggests that the influence matrix defined
as the weights in the conditional dependence on states of other entities is atamhpteasure for
the influence of the individual in real social interactions.

The influence model is then applied to many different human interaction pnsbld-or in-

stance, researchers have used the influence model in understaraiingdtional role (follower,



orienteer, giver, seeker, etc) of each individual in the mission sairgioup discussion dataset[14].
Researchers discovered that using the influence matrix they were aldei¢veabetter classifica-
tion accuracy compared with other approaches. By using the Reality Mifjing[l[phone sensor
data from 80 MIT members as observations, and constraining the latex@ spaach individual
to be binary “work” and “home”, researchers found that the influenagix learned from this data
matches well with the organizational relationship between individuals[1@iF i§ intuitive as stu-
dents’ schedules are likely to be influenced by close colleagues’ woskingdule. Also, related
works[11] often use the influence model as a measurement tool fol sgstams. The influence
model has been extended to model other systems such as the traffic sg$temd[the flu epidemics
among US states[16].

The influence model is extended to be suitable for dynamical situation, in whecimfluence
matrix itself changes[16]. This new approach, the Dynamical Influenocddl] is a generalization

of the inference model, and is discussed in the following section.

3.1 Other Approaches

For other related approach, the Bayesian network is a tool often usettersianding and pro-
cessing social interaction time series data. Earlier projects have usddadiM [9], and more
recent projects have used dynamic system trees [13] and interactik@Wrains [17]. The key
contribution and difference of the influence model is that we use the irfueratrixR. to connect
the social network to state dependence.

Other relevant general multi-dimensional time series approaches sudh&s[18] and the
prototype model [19] are not able to recognize the network structurevaigts on edges between
nodes in social systems.

Defining influence as the state dependence for an entity on states of otle=y is an idea that
has been extensively explored by the statistical physics society as wsiéli@ao et al[20] refer to

these statistical physics models as “opinion dynamics”.



4 Introduction to Dynamical Influence Model

We have already introduced the influence model, where the influencgtstraatrixR remains the
same for allt. However, there is extensive evidence leading us to think that influencdded a
dynamical process[21, 22]. This can also be seen from many re&d-exyperiences: Friendship
is not static, and the person who currently possesses the most influesrogoa may be different
after some time; In a tedious neogotiation with many parties involved, your mi& apponent
may change due to topic shift and strategy shift over time... Thereforeeli® that, in a social
system such as a group discussion session, the influence betweeanssilibjeuates as well.

We now demonstrate how the influence model is extended to the dynamicabhoadsee call
this generalization thBynamical Influence Modelnstead of having one single influence strength
matrix, R, we here consider a finite set of different influence strength matféeg,), ..., R(J)},
each represents a difference influence dynamical pattern betweensentiteea hyper parameter
set by users to define the number of different interaction patterns. @uoach is basically a
switching model, and we also introduce the switching latent state {1,...,J},t = 1,...,T,

which indicates the current active influence matrix at ttm€herefore, Eq. 2 turns to the following:

Prob(n{™ [h{Yy, .. b)) = ST R(ri)ee x Probh{)|n{)). 3)
ce{1,..,.C}
As r, switches to different values betweero J at different timet, the dynamics at different time
t is then determined by different influence matri®eg-,).
As shown in Section 6.1, we realize that it is very important to constrain thersngtof r;
for two reasons: a) In many social systems, the change of influencensatteanges slowly and
gradually. b) A prior eliminates the probability of overfitting. Therefore wedaduce the following

prior for ry:
'f’t+1|7"t ~ mUIti(‘/Tt,l) tee 7‘/:!‘t,J)7 (4)

whereV is a system parameter matrix constrained by another hyper-paramieter > 0. The



prior is shown in Eq. 5.

(V;”t,17 ceey ‘/n,.]) ~ DiriChIet(loo, 1007 ce 1OPV7 el 100) (5)
1 1
1, 2 ooty

This prior provides a better control of the process . ., rr. If pV is extremely large, the prior will
forcer;_; andr; to be same; Ip¥ is very small, the prior will turns to a uniform distribution and
allow r;_; to randomly switch to any value ifi, ..., J} with equal probability.

Given the model description and hyper parameteesidp'’, we can then write the likelihood

function:

L(OFES hEG rip|BEC, FlC JR(1:J),V) (6)

ﬁ{ Prob(r|ry—1 xH [ProdO 1) x Prob(n{|n{" ) )]}
c=1

~+

=2
c
H Prob(0\” |n{)Prot(n{))Prokir ). 7)

To better understand how we extend the influence model into the dynamicedriofl model, we

illustrate the Bayesian graph for both models in Fig. 2.
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Figure 2: A graphical representation of our model whign= 2. The blue lines constitute the
dependence of the influence model described in Section 2. The red limeadditional layer which
brings additional switching capacity to the influence model, and together wighlinkes constitute
the variable dependence for the dynamical influence model.



4.1 Review in Dynamical Networks

There are quite a few related projects if we consider influence dynamitte alyynamics in net-
work structure. Researchers have been studying the class of timeg/amstwork models: from
EGRM [23] to TESLA [24], which model network rewiring from correlat®im observations. Com-
pared with these models, the dynamical influence model serves as a uaitprative approach for
modeling noisy signals from a dynamical network. One latest work tendsrtonesawork topology

from node state dependence [25], with a binary and static underlying model.

5 Inference

In signal processing applications, we are given the observation times shy'rmlsog%, cey Of),

and based on observations we need to learn the distributions for undddyemt variables and the
system parameters for dynamical influence model. The inference primcesir model is discussed
here. Since the dynamical influence model is a generalization of the influreodel, the following
content suits both models.

In literature on the inference for the influence model class, researstated with a standard
exact inference algorithm (Junction Tree) with exponential complexity,then moved to an ap-
proach based on optimization[12]. Other scholars gradually moved toanxamation approach
based on the Forward-Backward algorithm and variational-EM [26, TB¢ influence model can
also be trained via other approximation such as the mean field method[27].

Here we show some key steps for the variational E-M approach, whietbéan developed
and applied successfully in many datasets. We refer to readers to Adt@tfar detail. Defini-
tion is denoted by=, and~ denotes the same distribution but the right side should be normalized

accordingly.



5.1 E-Step

We adopt a procedure similar to the forward-backward procedure iMHikérature. First, we

define the following forward parameters fioe= 1, ..., T.:

ol = Prodhic)\rt, O1.4), (8)

k¢ = Prol(r;|O1.), )

whereO1.; denotes{Ot(f)}f,ill’;:jjf. However, complexity for computing;’ givena]’;t_‘ﬁc grows ex-
ponentially with respect t¢’, so we adopt the variational approach[28], and E-M is still guaranteed

to converge under variational approximation[28]. We proceed to geedle chains by:
Prob(n{”, ..., h{”|Ove,7e) = [ Q1Y O, 1), (10)

and naturally:

', = QMY |0, e) (11)

The approximation adopted here enables us to run inference in polynomial Based on this
approximation, starting with/l“jc andr1, we can compute;’. ands, V¢ = 2,..., T step by step in
a forward manner.

Using the same idea, we can compute the following backward parameteftis#an the back-
ward order (i.e. start with = 7', then computes;*. andv, fort =7 — 1,7 — 2,..., 1)

"t = Prol(h\?|ry, Opr), (12)

t,c —

vy = PrOt(TﬂOt:T). (13)
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5.2 M-step

With k; andv;, we can estimate:

gf’j = Prob(r; = i,741 = j|O1.7) =

Prok‘(rt = ’i|01;t)PrOth+1 = j|0t+1;T)Pl’Oth+1|Tt)/

Z Prol:(rt = i|01:t)PrOli7't+1 = j‘Ot+1;T)PrOK7’t+1‘Tt), (14)

.J

Tt
Mo = Prol(r; = i|Oy1) = =2 15
=il =35, (o)
and updaté’ by:
Ptk

Vv Zt 1,7 (16)

. . <_ s
" Dot Ej gf,j +pY
wherek = p" if i = j, 0 otherwise.
(0)
We then compute the joint distribution Pl((htﬁ‘“, hgﬂl,ml\ow), and update parameters

such as influence matric&s(1), ..., R(J), E¢ andF¢ by marginalizing this joint distribution.

6 Application

We now explain how we can use our model in signal processing.

6.1 Toy Example: Two Interacting Agents

In this toy example, we demonstrate how the dynamical influence model carpbedap find
structural changes in network dynamics. As a tutorial, we also explain @aders should adjust
two hyper parameter$ andp"” in using this model.

From a dynamical influence process composed of two interacting entitiesme two binary
time series of 600 steps. Each chain has two hidden states with a randoitioinadnased to re-
maining in the current state. We sample binary observations from a raneloenaged multinomial
distribution. To simulate a switch in influence dynamics, we sample with influencéxniati )

(shown in Table 1) in the first 200 frames, and later on we sample with ingueratrixR(2). We
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purposely make the two configuration matrices different from each déaetial data are shown in
Table 1 (left). We use the algorithm in Section 5 to infer the dynamical influerael’s param-
etersV,R(1 : J),EEC F1C, Al parameters (including the emission distribution) are initialized
randomly, and they are estimated automatically during the E-M process.

Table 1: Left: Part of the two input toy sequences for a two-chain dyrarmfluence process.

Right: The original two influence matrices of the toy model and the same matrareeteby our
algorithm withJ = 3 andp" = 10!,

R(1) R(2)
SEQ. NO. DATA(PARTIALLY)
True < 0.90 0.10 > ( 0.05 0.95 >
1 221111121212212... 0.10 0.90 0.95 0.05
2 112111212121122... Learned < 0.93 0.07 > ( 0.08 0.92 >
0.10 0.89 0.94 0.06

Choosing Hyper-Parameters: We now discuss the selection of hyper-parametesnd p¥’
for the dynamical influence model. For the number of active influence maitficee illustrate its
characteristics by running the same example with= 3. We show the poster distribution of
(calculated in Eqg. 15) in Fig. 3(a). The dynamical influence model dissahe sudden change
of influence weights accurately at= 200. Since the toy process only has two true configuration
matrices, the posterior probability of tBed configuration being active is almost zero for anyrhe
system properties are fully captured by the other two configuration mathicésy the training. The
learned configuration matrices (shown in Table 1) are correctly reedv@&ased on Fig. 3(a) and
experiments with other values for (which we can not show here due to the space limitation), we
suggest that readers should gradually increasmtil the newly added configuration matrices are
no longer useful in capturing additional dynamical information from the,datansuring there is
no constant zero posterior probability as in the right plot in Fig. 3(a).

We also demonstrate convergence of the K-L Divergence between thdistuibutions of the
transition probability and the learned distributions in Fig. 3(b) with differetes ofp". As can
be seen in Fig. 3(b), the algorithm converges quickly within 50 iterationsveder, wherp" is
small, we may encounter over-fitting where the learned model rapidly switdtesen different
configurations to best suit the data. Therefore, in Fig. 3(b), the givere forp” = 0 remains

higher than othep"” values at convergence. In conclusion, we advise users to ingréagadually
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Figure 3: (a): The posterior af is shown withJ = 3 after convergence. The middle black vertical
line on the left indicates the true switchsiipn The probability ofR(1) being active and.(2) being
active are shown in the left ploR(3) is shown in the right, which remains inactive. (b): The
K-L divergence between learned parameters and the true distributionsesjilct to number of
iterations.

until the posterior of; does not fluctuate.

6.2 Modeling Dynamical Influence in Group Discussions
6.2.1 Dataset Description and Preprocessing

Researchers in [29] recruited 40 groups with four subjects in eactpdoo this experiment. During
the experiment, each subject was required to wear the sociometric badigeironecks for audio
recording(see the right picture in Fig. 1), and each group was reftarperform two different
group discussion tasks: a brainstorming task and a problem solving tash.t&sk usually lasted
for 3 to 10 minutes. We kindly refer readers to the original paper[29{i&tails on data collection
and experiment preparations.

The groups were asked to perform these tasks in two different settagseifigco-locatedin
the same room around a table and (b) bawng pairsin two rooms with only audio communication
available between the pairs. (The badge is deployed in both cases forcalldcting.) Later in the
paper we refer to these two settings as CO and DS respectively. Watseplisamples into four

categories according to their original context and content as explairiatla 2. Since discussions
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are held in four-person groups, each sample for a discussion sess@mnposed of four sequences
collected by the four badges on participants’ chests. The audio sexjpmked up by each badge
is split into one-second blocks. Variances of speech energy ardataktdior each block. We then
applied a hard threshold to convert them into binary sequences. Inmdtiments, we only use

binary sequences as data input.

6.2.2 Predicting Turn Taking in Discussion

One important aspect of modeling interaction dynamics is the ability to predidiatking—who will
speak next in the interaction process. We here explain an applicatiorr dfynamical influence
process to predict turn taking, and we show that it is possible to achiegeagzuracy in prediction
given only the audio volume variance observations, with no information fhenaudio content. We
consider in this application that influence is the effect of someone speakinther participants’
turn taking behavior.

Ten occurrences of turn taking behavior from each sample are sefecg@diction purposes.
“Turn taking” here is defined as incidences in which the current spaaases speaking, and an-
other speaker starts to speak.

For the dynamical influence model, we model each person as an entiyd the observed
audio variances at timBasOt(c). Each person also two hidden states, representing if the person is
speaking or not speaking. The hidden layer eliminates error due to nasgoa-voicing speaking
in audio signals[30]. Therefore, influence here is set to capture koW person’s speaking/non-
speaking hidden states dynamically changes other person’s speakisp@aking states,i.e., how
people influence each others’ turn taking.

All parameters are initialized randomly and learned by the E-M inferenceitdgoin this
example. Since our algorithm is a generative process, we samplef tiroen our model, and
mark the chain that changes the most toward the high-variance obsesvasitine turn taker. The
emission probability Prc(lo?t(c)\hic)) is modeled using a multinomial distribution, and is estimated
automatically during the E-M process.

To compare, we also show results using TESLA and nearest neighbarS ESLA, we use
the official implementation[31] to obtain the changing weights between pairsd#fs) and we pick

the node which has the strongest correlation weight to other nodes atas the turn taker at
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Table 2: The description for four different categories of all the samples

CATEGORY TASK DESCRIPTION

CO+PS Four people perform a problem solving task in the same room.

CO+BS Four people perform a brainstorming session in the same room.

DS+PS Four people perform the same problem solving task in two rooms wiffeSk
DS+BS Four people perform the same brainstorming session in two roomskyje.S

To predict the turn taking at timeusing the nearest neighbor method, we look over all previous
instances of turn taking behaviors that have the same speaker as thetond jrand predict by
using the most frequent outcomes.

Table 3: Accuracy for different turn taking prediction methods on botHuhelataset and the half

of the dataset with more complex interactions. The random guess ac&Bagy. Human accuracy
is typically around>0% for similar tasks[32].

ACCURACY ACCURACY

ALL SAMPLES COMPLEX INTERACTION SAMPLES
METHODS | DS+BS DS+PS CO+BS CO+P$DS+BS DS+PS CO+BS CO+PS
TESLA 0.41 0.42 0.32 0.25 | 044 0.37 0.37 0.17
NN 0.58 0.60 0.48 0.50 0.47 0.47 0.38 0.26

Ours(J=1) | 0.45 0.67 0.75 0.63 0.45 0.56 0.77 0.62
Ours(J=2) | 0.46 0.58 0.65 0.34 | 0.47 0.58 0.67 0.46
Ours(J=3) | 0.50 0.60 0.55 0.48 | 0.47 0.73 0.65 0.65

The accuracy for each algorithm is listed in Table 3. We also show the fioedaccuracy for
the half of all samples that have more complex interactions, i.e., higher enkopgur dynamical
influence based approach, we list error ratesffer 1,2 and3. Except DS+BS, We notice that the
dynamical influence model outperforms others in all categories with differeThis performance
is quite good considering that we are using only volume and that a humamlygpredict at around
50% accuracy for similar tasks[32].

More importantly, the dynamical influence model seems to perform much bedtetith com-
peting methods for more complex interactions. For simple interactions, it seemg$ thal or
even NN perform the best due to the fact that there is little shift in influetroetare during the
discussion. However, when handling complex interaction processemittbeuction of a switch-
ing influence dynamics dramatically improves the performance as shown i@ Jaf his results

suggest that the dynamical influence assumption is reasonable andargéesnodeling complex

15



group dynamics, and it can improve prediction accuracy significantly.edewin simple cases, the
model achieves the highest performance only wiiesa 1, i.e. the influence is static, and a higher

J will only lead to overfitting.

7 Modeling Flu Epidemics as Influence Dynamics

The last example we want to demonstrate is the flu spreading dynamics. Weapplgorithm to
the weekly US flu activity data from Google Flu Trend [33]. All 50 states indaJ& divided into
ten regions by their geo-location, as shown in Fig. 4, and we model egitinras an entity in the

dynamical influence model.

Figure 4: Ten regions of the United States defined by US Health and Humanese

As the data is continuous, six hidden states are used for each chap{@,ﬁﬁ)qhgc)) is modeled
with six different Gaussian distributions with different means and the saranee for each hidden
state. We set by hand the six mean values so that they represent theesigndiffevere levels for
the flu epidemics, from the least severe to the most severe. We train the osiaglthe first
290 weeks (from 2003 to early 2009), and we show the posterior, fahe switching parameter,
in Fig.5 together with the three learned influence matrices. While there are maally peaks
suggesting changes in influence, the probability changes dramaticallgdaf@uristmas, which
suggests that the influence patterns among these ten regions are vemgndli€furing the holiday
season. The dynamical influence model actually reveals Christmas traveling lopwising the
change in epidemic dynamics

Influence matrixi captures the dynamics during holiday seasons, while influence reatapg-
tures the dynamics during normal seasons. Roarresponds to the regiann Fig. 4. Let’s take
an example of Row 1, the New England region. During normal time as showr ihsthrow of

influence matrix2, New England is more likely to be influenced by close regions suchawd
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4; during holiday seasons, New England is more likely to be influenced bggilbms especially

distant regions such as regidnThe same phenomena exist for other regions as well.

0.2
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0.1
0.05
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2 4 6 8 10
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Figure 5: The inferred posterior foy given all observations after convergence is shown here. While
there are many small peaks indicating changes in influence, the largé&stgeaur at Christmas
holiday seasons, which implies that influence between states are verguliffe Christmas holidays
comparing with other dates. This matches the common sense that travelingpatteifferent
around holiday seasons. In our experiment, we find that three coaffiguirmatrices are good
enough to capture the flu dynamics.

8 Discussions

We introduce the influence model and its generalization, the dynamical indumodel in this
article. We explain the model definition, model training, and different apjdics in processing
social signals.

The most interesting aspect of research on the influence model is thaflttenae matrixR
connects the social network and the stochastic process of state transhieswitching matrices
R(1),...,R(J) are even able to bridge state transition to time-varying networks. In additien, th
weighted conditional probability in Eq. 2 is very similar to the social norm trarsomnson social
networks[4]. All the above properties make the influence model a uniguiéatiosocial computing.

However, the influence model shares the same issue with other machinedeandels: the

inference requires sufficient training data, and tuning is necessabe#b results. Also, the influ-

ence model learns the influence network topology from data, and maningxéscial relationship
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information is not properly utilized by this model. Immediate future works are terége existing
network data in the influence model, and to study its performance with limited déga.se

Influenceremains an intriguing research focus in computational social science. riy sca-
narios for social data processing, the definition of “influence” in the eémite¢ model may not be
adequate. Researchers are encouraged to carefully considerdteiardi choose the right ap-
proach.  Wei Pan(panwei@media.mit.edu) Wei Pan is a Ph.D student in the Human Dynamics
Group at MIT Media Lab. He obtained his B.Eng. degree in Computer Seiffom Tsinghua
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