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Abstract

How can we model influence between individuals in a social system? How can we use

influence to model and predict observations from social systems? In this article, we explain

the recent advances of the influence model, a Bayesian network approach for modeling social

influence from observations of individuals. We review the development of the influence model

in the literature. We also introduce the generalization of the influence model, the dynamical

influence model, and demonstrate three examples on how to usethese models.

1 Introduction

For decades, social scientists and psychologists have been interested inanalyzing and understanding

who influences whomin a social system, such as a group discussion process[1, 2, 3, 4]. Influence

is also particularly interesting in the context of leadership and group dynamics, where the influence

between one another has been recognized as a significant factor of group performance[5].

However, from a signal processing and modeling point of view, it remainsa difficult question

to formally defineinfluencein a mathematical way. It is also common that the influence between

individuals is not directly observable, and only individual-level behavioral signals are generally

available. For instance, many modern sensing systems such as the sociometricbadges [6] and cell

phones [7] now provide valuable social behavioral signals from eachindividuals. Therefore, the
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challenges are to not only defineinfluence, but also inferinfluencefrom individual observations and

individual signals.

A line of research works, known as the influence model, is focused on modeling social influence

mathematically. The influence model addresses two fundamental challenges:

• The influence model mathematically defines “influence” and how influence changes, and the

“influence” learned by the influence model is tightly connected with the sociological meaning

of influence.

• The influence model enables researchers to infers interactions and influence dynamics by only

using time series signals from individual observations.

This article is organized in the following way: We give an overview for the formulation of the

influence model in Section 2, and we discuss previous works in the review section (Section 3). We

continue to introduce the dynamical influence model, a generalization for the influence model for

changing influence and network structure described in Section 4. We will discuss the inference

algorithm for these model in Section 5. Finally, we explain a few examples in detail on artificial and

real data for the dynamical influence model in Section 6.

2 Overview for the Influence Model

2.1 Entities in a Social System

We describe the formulation of the influence model here, followed by a review on its history in

Section 3. The model starts with a system ofC entities. Each entity can be a person in a group

discussion, or a geographical district in modeling flu epidemics. We assume that each entityc is

associated with a finite set of possible states1, . . . , S. At different timet, each entityc is in one of

the states, denoted byh(c)t ∈ {1, . . . , S}. It is not necessary that each entity is associated with the

same set of possible state. Some entities can have more or less states. However, to simplify our de-

scription, we assume that each entity’s latent state space is the same without loss of generality. The

state of each entity is not directly observable. However, as in the Hidden Markov Model (HMM),

each entity emits a signalO(c)
t at time stampt based on the current latent stateh

(c)
t , following a con-

ditional emission probability Prob(O(c)
t |h

(c)
t ). The emission probability can either be multinomial
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or Gaussian for discrete and continuous cases respectively, exactly as in HMM literature [8].

2.2 Influence between Entities

The influence model is composed of entities interacting and influencing each other. “Influence”

is defined as the conditional dependence between each entity’s currentstateh(c)t at timet and the

previous states of all entitiesh(1)t−1, . . . , h
(C)
t−1 at timet − 1. Therefore, intuitively,h(c)t is influenced

by all other entities. We now discuss the conditional probability:

Prob(h(c
′)

t |h
(1)
t−1, . . . , h

(C)
t−1). (1)

Once we have Prob(h(c
′)

t |h
(1)
t−1, . . . , h

(C)
t−1), we naturally achieve a generative stochastic process.

As in the coupled Markov Model [9], we can take a general combinatorialapproach Eq. 1, and

convert this model to a equivalent Hidden Markov Model (HMM), in whicheach different latent

state combination of(h(1)t−1, . . . , h
(C)
t−1) is represented by a unique state. Therefore, for a system with

C interacting entities, the equivalent HMM will have a latent state space of sizeSC , exponential to

the number of entities in the system, which seems to be unacceptable in real applications.

The influence model approach, on the other hand, uses a much simpler mixture approach with

far fewer parameters. Entities1, . . . , C influence the state ofc′ in the following way:

Prob(h(c
′)

t |h
(1)
t−1, . . . , h

(C)
t−1) =

∑

c∈{1,...,C}

Rc′,c
︸︷︷︸

tie strength

×Prob(h(c
′)

t |h
(c)
t−1)

︸ ︷︷ ︸

cond. probability

, (2)

whereR is aC ×C matrix. (Rc1,c2 represents the element at thec1-th row and thec2-th column of

the matrixR) R is row stochastic, i.e., each row of this matrix sums up to one. Prob(h
(c′)
t |h

(c)
t−1) is

modeled using aS × S row stochastic matrixMc,c′ , so that Prob(h(c
′)

t |h
(c)
t−1) = M

c,c′

h
(c)
t−1,h

(c′)
t

. This

matrixMc,c′ is also known as the transition matrix in HMM literature [8]. Generally, for eachentity

c, there areC different transition matrices in the influence model to model the influence dynamics

betweenc andc′, c′ = 1, . . . , C. However, it can be simplified by replacing theC different matrices

with only twoS × S matricesEc andFc: Ec = M
c,c, which captures self state transition; We also

assume that the influence of entityc over other nodes are the same, so they can be replaced with on

single matrixF, i.e.Mc,c′ = F
c, ∀c′ 6= c.
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Eq. 2 can be viewed as follows: all entities’ states at timet− 1 will influence the state of entity

c′ at timet. However, the strength of influence is different for different entities:the strength ofc

overc′ is captured byRc′,c. As a result, the state distribution for entityc′ at timet is a combination

of influence from all other entities weighted by their strength overc′. BecauseR captures influence

strength between any two entities, we refer toR asInfluence Matrix.

2.3 Inference

Therefore, the influence model is a generative model defined by parametersR,E1:C ,F1:C and

the emission probabilities Prob(O(c)
t |h

(c)
t ), ∀c. As most generative machine learning models, these

parameters are not set by users, but the are automatically learned from observationsO1
1:T , . . . , O

C
1:T .

The inference algorithms for learning these parameters will be discussed inSection 4.

2.4 Remarks for the Influence Model

1. The number of parameters in our model grows quadratically with respectto the number of

entitiesC and the latent space sizeS. This largely relieves the requirement for large training

sets and reduces the chances of model overfitting. As a result, the influence model is more

scalable for larger social systems, and is resistant to overfitting when training data is limited

compared with other approaches [10].

2. This approach captures the tie strength between entities using aC × C matrixR. R can be

naturally treated as the adjacency matrix for a directed weighted graph in graph theory. The

influence strength between two nodes learned by our model can be then treated as tie weights

in social networks. This key contribution connects the conditional probabilistic dependence

to a weighted network topology. In fact, in previous works, the most common usage for the

influence model is to useR to understand social structure [11, 12] .

3 Review

The influence model has been developed and applied to model different aspects of social systems.

Many works on the influence model started with the development of sociometricbadges as shown
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in Fig. 1, a personal device collecting individual behavioral data such as audio, movements, etc.

The sociometric badges provide rich measurements for individuals, and thequestion of modeling

group interaction and influence from individual observation signals naturally rose.

Figure 1: Different versions of the sociometric badge is shown in the left and in the middle. The
sociometric badge is a wearable sensing device for collecting individual behavioral data. On the
right is a group brainstorming session, and all participants were wearing the sociometric badges.

The influence model is introduced in [13], in which the authors firstly developed this idea around

modeling influence, an inference scheme based on optimization, and a successful application of

studying the audio recording from a group discussion session with five individuals. The reseachers

used audio features as observationsO
(c)
t for the influence model, and modeled the latent state space

to be either “speaking” or “non-speaking”. The influence model bridges between the noisy signal

processing measured directly from each individual to the underlying inter-personal influence and

interaction on turn taking.

One key question for the influence model is that if the influence matrixR represents well the

concept of influence in human interactions. In other words, if the definition of influence in this

article has practical and sociological meanings. Using the conversation data from the wearable

sociometric badges on 23 individuals, it was discovered that the influencestrength between individ-

uals learned by influence model correlates extremely well with individual centrality in their social

networks(withR = 0.92, p < 0.0004)[12]. This evidence suggests that the influence matrix defined

as the weights in the conditional dependence on states of other entities is an important measure for

the influence of the individual in real social interactions.

The influence model is then applied to many different human interaction problems. For in-

stance, researchers have used the influence model in understanding the functional role (follower,
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orienteer, giver, seeker, etc) of each individual in the mission survival group discussion dataset[14].

Researchers discovered that using the influence matrix they were able to achieve better classifica-

tion accuracy compared with other approaches. By using the Reality Mining[7] cellphone sensor

data from 80 MIT members as observations, and constraining the latent space of each individual

to be binary “work” and “home”, researchers found that the influencematrix learned from this data

matches well with the organizational relationship between individuals[10]. This is intuitive as stu-

dents’ schedules are likely to be influenced by close colleagues’ workingschedule. Also, related

works[11] often use the influence model as a measurement tool for social systems. The influence

model has been extended to model other systems such as the traffic system[15] and the flu epidemics

among US states[16].

The influence model is extended to be suitable for dynamical situation, in whichthe influence

matrix itself changes[16]. This new approach, the Dynamical Influence Model, is a generalization

of the inference model, and is discussed in the following section.

3.1 Other Approaches

For other related approach, the Bayesian network is a tool often used in understanding and pro-

cessing social interaction time series data. Earlier projects have used coupled HMM [9], and more

recent projects have used dynamic system trees [13] and interacting Markov chains [17]. The key

contribution and difference of the influence model is that we use the influence matrixR to connect

the social network to state dependence.

Other relevant general multi-dimensional time series approaches such as LDS [18] and the

prototype model [19] are not able to recognize the network structure andweights on edges between

nodes in social systems.

Defining influence as the state dependence for an entity on states of other nodes is an idea that

has been extensively explored by the statistical physics society as well. Castellano et al[20] refer to

these statistical physics models as “opinion dynamics”.
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4 Introduction to Dynamical Influence Model

We have already introduced the influence model, where the influence strength matrixR remains the

same for allt. However, there is extensive evidence leading us to think that influence isindeed a

dynamical process[21, 22]. This can also be seen from many real-world experiences: Friendship

is not static, and the person who currently possesses the most influence over you may be different

after some time; In a tedious neogotiation with many parties involved, your most active opponent

may change due to topic shift and strategy shift over time... Therefore, we believe that, in a social

system such as a group discussion session, the influence between subjects fluctuates as well.

We now demonstrate how the influence model is extended to the dynamical case, and we call

this generalization theDynamical Influence Model. Instead of having one single influence strength

matrix,R, we here consider a finite set of different influence strength matrices,{R(1), . . . ,R(J)},

each represents a difference influence dynamical pattern between entities. J is a hyper parameter

set by users to define the number of different interaction patterns. Our approach is basically a

switching model, and we also introduce the switching latent statert ∈ {1, . . . , J}, t = 1, . . . , T ,

which indicates the current active influence matrix at timet. Therefore, Eq. 2 turns to the following:

Prob(h(c
′)

t |h
(1)
t−1, . . . , h

(C)
t−1) =

∑

c∈{1,...,C}

R(rt)c′,c × Prob(h(c
′)

t |h
(c)
t−1). (3)

As rt switches to different values between1 to J at different timet, the dynamics at different time

t is then determined by different influence matricesR(rt).

As shown in Section 6.1, we realize that it is very important to constrain the switching of rt

for two reasons: a) In many social systems, the change of influence patterns changes slowly and

gradually. b) A prior eliminates the probability of overfitting. Therefore we introduce the following

prior for rt:

rt+1|rt ∼ multi(Vrt,1, · · · , Vrt,J), (4)

whereV is a system parameter matrix constrained by another hyper-parameterpV , pV > 0. The
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prior is shown in Eq. 5.

(Vrt,1, . . . , Vrt,J) ∼ Dirichlet(100, 100, . . . , 10p
V

, . . . , 100). (5)

↑
1,

↑
2, . . . ,

↑
rt, . . . ,

↑

J

This prior provides a better control of the processr1, . . . , rT . If pV is extremely large, the prior will

forcert−1 andrt to be same; IfpV is very small, the prior will turns to a uniform distribution and

allow rt−1 to randomly switch to any value in{1, ..., J} with equal probability.

Given the model description and hyper parametersJ andpV , we can then write the likelihood

function:

L(O1:C
1:T , h

1:C
1:T , r1:T |E

1:C ,F1:C ,R(1 : J),V) (6)

=
T∏

t=2

{

Prob(rt|rt−1)×
C∏

c=1

[

Prob(O(c)
t |h

(c)
t )× Prob(h(c)t |h

(1,...,C)
t−1 , rt)

]}

×
C∏

c=1

Prob(O(c)
1 |h

(c)
1 )Prob(h(c)1 )Prob(r1). (7)

To better understand how we extend the influence model into the dynamical influence model, we

illustrate the Bayesian graph for both models in Fig. 2.
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%$#+*',&-#'.(#.'$&
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/%0#1&3&
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Figure 2: A graphical representation of our model whenC = 2. The blue lines constitute the
dependence of the influence model described in Section 2. The red line is the additional layer which
brings additional switching capacity to the influence model, and together with blue lines constitute
the variable dependence for the dynamical influence model.
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4.1 Review in Dynamical Networks

There are quite a few related projects if we consider influence dynamics asthe dynamics in net-

work structure. Researchers have been studying the class of time-varying network models: from

EGRM [23] to TESLA [24], which model network rewiring from correlations in observations. Com-

pared with these models, the dynamical influence model serves as a unique generative approach for

modeling noisy signals from a dynamical network. One latest work tends to learn network topology

from node state dependence [25], with a binary and static underlying model.

5 Inference

In signal processing applications, we are given the observation time series signalsO(1)
1:T , ..., O

(C)
1:T ,

and based on observations we need to learn the distributions for underlying latent variables and the

system parameters for dynamical influence model. The inference process for our model is discussed

here. Since the dynamical influence model is a generalization of the influence model, the following

content suits both models.

In literature on the inference for the influence model class, researchers started with a standard

exact inference algorithm (Junction Tree) with exponential complexity, and then moved to an ap-

proach based on optimization[12]. Other scholars gradually moved to an approximation approach

based on the Forward-Backward algorithm and variational-EM [26, 16]. The influence model can

also be trained via other approximation such as the mean field method[27].

Here we show some key steps for the variational E-M approach, which has been developed

and applied successfully in many datasets. We refer to readers to Pan et al [16] for detail. Defini-

tion is denoted by≡, and∼ denotes the same distribution but the right side should be normalized

accordingly.
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5.1 E-Step

We adopt a procedure similar to the forward-backward procedure in HMM literature. First, we

define the following forward parameters fort = 1, ..., T .:

αrt
t,c ≡ Prob(h(c)t |rt, O1:t), (8)

κt ≡ Prob(rt|O1:t), (9)

whereO1:t denotes{O(c)
t′ }

c=1,...,C
t′=1,...,t . However, complexity for computingαrt

tc
givenαrt−1

t−1,c grows ex-

ponentially with respect toC, so we adopt the variational approach[28], and E-M is still guaranteed

to converge under variational approximation[28]. We proceed to decouple the chains by:

Prob(h(1)t , ..., h
(C)
t |O1:t, rt) ≈

∏

c

Q(h
(c)
t |O1:t, rt), (10)

and naturally:

αrt
t,c ≈ Q(h

(c)
t |O1:t, rt) (11)

The approximation adopted here enables us to run inference in polynomial time. Based on this

approximation, starting withαr1
1,c andκ1, we can computeαrt

t,c andκt, ∀t = 2, ..., T step by step in

a forward manner.

Using the same idea, we can compute the following backward parameters for all t in the back-

ward order (i.e. start witht = T , then computeβrt
t,c andνt for t = T − 1, T − 2, ..., 1):

βrt
t,c ≡ Prob(h(c)t |rt, Ot:T ), (12)

νt ≡ Prob(rt|Ot:T ). (13)
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5.2 M-step

With κt andνt, we can estimate:

ξti,j ≡ Prob(rt = i, rt+1 = j|O1:T ) =

Prob(rt = i|O1:t)Prob(rt+1 = j|Ot+1:T )Prob(rt+1|rt)/

∑

i,j

Prob(rt = i|O1:t)Prob(rt+1 = j|Ot+1:T )Prob(rt+1|rt), (14)

λt
i = Prob(rt = i|O1:T ) =

∑

j ξ
t
i,j

∑

i

∑

j ξ
t
i,j

, (15)

and updateV by:

Vi,j ←

∑

t ξ
t
i,j + k

∑

t

∑

j ξ
t
i,j + pV

, (16)

wherek = pV if i = j, 0 otherwise.

We then compute the joint distribution Prob(h
q
(c)
t+1

t , h
(c)
t+1, rt+1|O1:T ), and update parameters

such as influence matricesR(1), ...,R(J), Ec andFc by marginalizing this joint distribution.

6 Application

We now explain how we can use our model in signal processing.

6.1 Toy Example: Two Interacting Agents

In this toy example, we demonstrate how the dynamical influence model can be applied to find

structural changes in network dynamics. As a tutorial, we also explain how readers should adjust

two hyper parametersJ andpV in using this model.

From a dynamical influence process composed of two interacting entities, wesample two binary

time series of 600 steps. Each chain has two hidden states with a random transition biased to re-

maining in the current state. We sample binary observations from a random generated multinomial

distribution. To simulate a switch in influence dynamics, we sample with influence matrix R(1)

(shown in Table 1) in the first 200 frames, and later on we sample with influence matrixR(2). We
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purposely make the two configuration matrices different from each other.Partial data are shown in

Table 1 (left). We use the algorithm in Section 5 to infer the dynamical influencemodel’s param-

etersV,R(1 : J),E1:C ,F1:C . All parameters (including the emission distribution) are initialized

randomly, and they are estimated automatically during the E-M process.

Table 1: Left: Part of the two input toy sequences for a two-chain dynamical influence process.
Right: The original two influence matrices of the toy model and the same matrices learned by our
algorithm withJ = 3 andpV = 101.

SEQ. NO. DATA(PARTIALLY)

1 221111121212212...
2 112111212121122...

R(1) R(2)

True

(
0.90 0.10
0.10 0.90

) (
0.05 0.95
0.95 0.05

)

Learned

(
0.93 0.07
0.10 0.89

) (
0.08 0.92
0.94 0.06

)

Choosing Hyper-Parameters: We now discuss the selection of hyper-parametersJ andpV

for the dynamical influence model. For the number of active influence matricesJ , we illustrate its

characteristics by running the same example withJ = 3. We show the poster distribution ofrt

(calculated in Eq. 15) in Fig. 3(a). The dynamical influence model discovers the sudden change

of influence weights accurately att = 200. Since the toy process only has two true configuration

matrices, the posterior probability of the3rd configuration being active is almost zero for anyt. The

system properties are fully captured by the other two configuration matricesduring the training. The

learned configuration matrices (shown in Table 1) are correctly recovered. Based on Fig. 3(a) and

experiments with other values forJ (which we can not show here due to the space limitation), we

suggest that readers should gradually increaseJ until the newly added configuration matrices are

no longer useful in capturing additional dynamical information from the data, by ensuring there is

no constant zero posterior probability as in the right plot in Fig. 3(a).

We also demonstrate convergence of the K-L Divergence between the true distributions of the

transition probability and the learned distributions in Fig. 3(b) with different values ofpV . As can

be seen in Fig. 3(b), the algorithm converges quickly within 50 iterations. However, whenpV is

small, we may encounter over-fitting where the learned model rapidly switchesbetween different

configurations to best suit the data. Therefore, in Fig. 3(b), the divergence forpV = 0 remains

higher than otherpV values at convergence. In conclusion, we advise users to increasepV gradually
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Figure 3: (a): The posterior ofrt is shown withJ = 3 after convergence. The middle black vertical
line on the left indicates the true switch inrt. The probability ofR(1) being active andR(2) being
active are shown in the left plot;R(3) is shown in the right, which remains inactive. (b): The
K-L divergence between learned parameters and the true distributions withrespect to number of
iterations.

until the posterior ofrt does not fluctuate.

6.2 Modeling Dynamical Influence in Group Discussions

6.2.1 Dataset Description and Preprocessing

Researchers in [29] recruited 40 groups with four subjects in each group for this experiment. During

the experiment, each subject was required to wear the sociometric badge ontheir necks for audio

recording(see the right picture in Fig. 1), and each group was required to perform two different

group discussion tasks: a brainstorming task and a problem solving task. Each task usually lasted

for 3 to 10 minutes. We kindly refer readers to the original paper[29] fordetails on data collection

and experiment preparations.

The groups were asked to perform these tasks in two different settings: (a) beingco-locatedin

the same room around a table and (b) beingtwo pairsin two rooms with only audio communication

available between the pairs. (The badge is deployed in both cases for audio collecting.) Later in the

paper we refer to these two settings as CO and DS respectively. We separate all samples into four

categories according to their original context and content as explained inTable 2. Since discussions
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are held in four-person groups, each sample for a discussion sessionis composed of four sequences

collected by the four badges on participants’ chests. The audio sequence picked up by each badge

is split into one-second blocks. Variances of speech energy are calculated for each block. We then

applied a hard threshold to convert them into binary sequences. In all experiments, we only use

binary sequences as data input.

6.2.2 Predicting Turn Taking in Discussion

One important aspect of modeling interaction dynamics is the ability to predict turntaking–who will

speak next in the interaction process. We here explain an application of our dynamical influence

process to predict turn taking, and we show that it is possible to achieve good accuracy in prediction

given only the audio volume variance observations, with no information fromthe audio content. We

consider in this application that influence is the effect of someone speakingon other participants’

turn taking behavior.

Ten occurrences of turn taking behavior from each sample are selectedfor prediction purposes.

“Turn taking” here is defined as incidences in which the current speaker ceases speaking, and an-

other speaker starts to speak.

For the dynamical influence model, we model each person as an entityc, and the observed

audio variances at timet asO(c)
t . Each person also two hidden states, representing if the person is

speaking or not speaking. The hidden layer eliminates error due to noise and non-voicing speaking

in audio signals[30]. Therefore, influence here is set to capture how each person’s speaking/non-

speaking hidden states dynamically changes other person’s speaking/non-speaking states,i.e., how

people influence each others’ turn taking.

All parameters are initialized randomly and learned by the E-M inference algorithm in this

example. Since our algorithm is a generative process, we sample timet from our model, and

mark the chain that changes the most toward the high-variance observations as the turn taker. The

emission probability Prob(O(c)
t |h

(c)
t ) is modeled using a multinomial distribution, and is estimated

automatically during the E-M process.

To compare, we also show results using TESLA and nearest neighbors. For TESLA, we use

the official implementation[31] to obtain the changing weights between pairs of nodes, and we pick

the node which has the strongest correlation weight to other nodes att − 1 as the turn taker att.
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Table 2: The description for four different categories of all the samples.

CATEGORY TASK DESCRIPTION
CO+PS Four people perform a problem solving task in the same room.
CO+BS Four people perform a brainstorming session in the same room.
DS+PS Four people perform the same problem solving task in two rooms with Skype.
DS+BS Four people perform the same brainstorming session in two rooms with Skype.

To predict the turn taking at timet using the nearest neighbor method, we look over all previous

instances of turn taking behaviors that have the same speaker as the one int − 1, and predict by

using the most frequent outcomes.

Table 3: Accuracy for different turn taking prediction methods on both thefull dataset and the half
of the dataset with more complex interactions. The random guess accuracyis33%. Human accuracy
is typically around50% for similar tasks[32].

ACCURACY ACCURACY
ALL SAMPLES COMPLEX INTERACTION SAMPLES

METHODS DS+BS DS+PS CO+BS CO+PS DS+BS DS+PS CO+BS CO+PS
TESLA 0.41 0.42 0.32 0.25 0.44 0.37 0.37 0.17
NN 0.58 0.60 0.48 0.50 0.47 0.47 0.38 0.26
Ours(J=1) 0.45 0.67 0.75 0.63 0.45 0.56 0.77 0.62
Ours(J=2) 0.46 0.58 0.65 0.34 0.47 0.58 0.67 0.46
Ours(J=3) 0.50 0.60 0.55 0.48 0.47 0.73 0.65 0.65

The accuracy for each algorithm is listed in Table 3. We also show the prediction accuracy for

the half of all samples that have more complex interactions, i.e., higher entropy. For our dynamical

influence based approach, we list error rates forJ = 1, 2 and3. Except DS+BS, We notice that the

dynamical influence model outperforms others in all categories with different J . This performance

is quite good considering that we are using only volume and that a human can only predict at around

50% accuracy for similar tasks[32].

More importantly, the dynamical influence model seems to perform much better than the com-

peting methods for more complex interactions. For simple interactions, it seems that J = 1 or

even NN perform the best due to the fact that there is little shift in influence structure during the

discussion. However, when handling complex interaction processes, theintroduction of a switch-

ing influence dynamics dramatically improves the performance as shown in Table 3. This results

suggest that the dynamical influence assumption is reasonable and necessary in modeling complex
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group dynamics, and it can improve prediction accuracy significantly. However, in simple cases, the

model achieves the highest performance only whenJ = 1, i.e. the influence is static, and a higher

J will only lead to overfitting.

7 Modeling Flu Epidemics as Influence Dynamics

The last example we want to demonstrate is the flu spreading dynamics. We apply our algorithm to

the weekly US flu activity data from Google Flu Trend [33]. All 50 states in USare divided into

ten regions by their geo-location, as shown in Fig. 4, and we model each region as an entity in the

dynamical influence model.

Figure 4: Ten regions of the United States defined by US Health and Human Services.

As the data is continuous, six hidden states are used for each chain, andp(O
(c)
t |h

(c)
t ) is modeled

with six different Gaussian distributions with different means and the same variance for each hidden

state. We set by hand the six mean values so that they represent the six different severe levels for

the flu epidemics, from the least severe to the most severe. We train the modelusing the first

290 weeks (from 2003 to early 2009), and we show the posterior forrt, the switching parameter,

in Fig.5 together with the three learned influence matrices. While there are many small peaks

suggesting changes in influence, the probability changes dramatically around Christmas, which

suggests that the influence patterns among these ten regions are very different during the holiday

season.The dynamical influence model actually reveals Christmas traveling by discovering the

change in epidemic dynamics.

Influence matrix1 captures the dynamics during holiday seasons, while influence matrix2 cap-

tures the dynamics during normal seasons. Rowi corresponds to the regioni in Fig. 4. Let’s take

an example of Row 1, the New England region. During normal time as shown in the 1st row of

influence matrix2, New England is more likely to be influenced by close regions such as3 and
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4; during holiday seasons, New England is more likely to be influenced by all regions especially

distant regions such as region9. The same phenomena exist for other regions as well.
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Figure 5: The inferred posterior forrt given all observations after convergence is shown here. While
there are many small peaks indicating changes in influence, the largest peaks occur at Christmas
holiday seasons, which implies that influence between states are very different in Christmas holidays
comparing with other dates. This matches the common sense that traveling patterns are different
around holiday seasons. In our experiment, we find that three configuration matrices are good
enough to capture the flu dynamics.

8 Discussions

We introduce the influence model and its generalization, the dynamical influence model in this

article. We explain the model definition, model training, and different applications in processing

social signals.

The most interesting aspect of research on the influence model is that the influence matrixR

connects the social network and the stochastic process of state transition. The switching matrices

R(1), ...,R(J) are even able to bridge state transition to time-varying networks. In addition, the

weighted conditional probability in Eq. 2 is very similar to the social norm transmission on social

networks[4]. All the above properties make the influence model a unique tool for social computing.

However, the influence model shares the same issue with other machine learning models: the

inference requires sufficient training data, and tuning is necessary for best results. Also, the influ-

ence model learns the influence network topology from data, and many existing social relationship
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information is not properly utilized by this model. Immediate future works are to leverage existing

network data in the influence model, and to study its performance with limited data series.

Influenceremains an intriguing research focus in computational social science. In many sce-

narios for social data processing, the definition of “influence” in the influence model may not be

adequate. Researchers are encouraged to carefully consider their data and choose the right ap-
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