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It is now commonplace to see the Web as a platform that can har-

ness the collective abilities of large numbers of people to accom-

plish tasks with unprecedented speed, accuracy and scale (1). To

push this idea to its limit, DARPA launched its Network Challenge,

which aimed to “explore the roles the Internet and social network-

ing play in the timely communication, wide-area team-building,

and urgent mobilization required to solve broad-scope, time-critical

problems” (2). The challenge required teams to provide coordinates

of ten red weather balloons placed at different locations in the con-

tinental United States. This large-scale mobilization required the

∗This work was performed under U.S. Air Force contract FA8721-05-C-0002. Opinions, interpretations,
conclusions, and recommendations are not necessarily endorsed by the U.S. Government.
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ability to spread information about the tasks widely and quickly,

and to incentivize individuals to act. We report on the winning

team’s strategy, which utilized a novel recursive incentive mech-

anism to find all balloons in under nine hours. We analyze the

theoretical properties of the mechanism, and present data about its

performance in the challenge.

1 Time-Critical Social Mobilization

With the advent of communication technologies, and the Web in particular, we can now

harness the collective abilities of large numbers of people to accomplish tasks with un-

precedented speed, accuracy and scale. In popular culture and the business literature,

this process has come to be known as crowdsourcing (3).

In crowdsourcing, an interested party provides incentives for large groups of people

to contribute to the completion of a task (or set of tasks). The nature of the tasks

and the incentives vary substantially, ranging from monetary rewards, to entertainment,

to social recognition. For example, a new breed of Web-based games with a purpose

provide hundreds of thousands of users with entertainment in exchange for completing

highly complex tasks such as labeling tens of millions of images (4) or predicting protein

structures (5). Crowdsourcing markets, like Amazon’s Mechanical Turk (6), allow anyone

to post so-called Human Intelligence Tasks (HITs) that can be completed by people in

exchange for payment. In prediction markets, highly accurate aggregate predictions are

accomplished by providing people with payments that depend on the accuracy of their

individual predictions (7). And in Web sites relying on user-contributed content, such as

YouTube, contributing users are motivated by the attention that their content receives

from the community (8).
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A particularly challenging class of crowdsourcing problems require not only the recruit-

ment of a very large number of participants, but also extremely fast execution. Tasks that

require this kind of time-critical social mobilization include search-and-rescue operations

in the aftermath of natural disasters, hunting down wanted outlaws on the run, reacting

to health threats that need instant attention, or rallying supporters to vote in a political

campaign.

In time-critical social mobilization problems, it is often not practical, or even impos-

sible, to create sufficient mobilization through mass media, due to the extremely high

cost of reaching everybody, or due to severe infrastructure damage. In such cases, one

has to resort to distributed modes of communication for information diffusion. For ex-

ample, in the aftermath of Hurricane Katrina, amateur radio volunteers helped relay 911

traffic for emergency dispatch services in areas that experienced severe communication

infrastructure damage (9).

Another common characteristic of these social mobilization problems is the presence

of some sort of search process. For example, search may be conducted by members of

the mobilized community for survivors after a natural disaster. Another kind of search

attempts to identify individuals within the social network itself, such as finding a medical

specialist to assist with a challenging injury in a natural disaster area.

There is growing literature on search in social networks. It has long been established

that social networks are very effective at finding target individuals through short paths

(10), and various explanations of this phenomenon have been given (11–14).

However, it is important to recognize that the success of search in social mobilization

requires individuals to be motivated to actually conduct the search, participate in the

information diffusion, and so on. In other words, a key challenge in social mobilization is

the incentive challenge. Indeed, in an empirical study of search in a global social network,
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Dodds et al conclude that “although global social networks are, in principle, searchable,

actual success depends sensitively on individual incentives” (15). It has also been observed

that the the success of crowdsourcing mechanisms, in general, can vary depending on the

details of the financial incentive scheme in place (16).

In summary, achieving time-critical, large-scale mobilization towards a problem re-

quires two key ingredients: (a) the ability to spread information about the tasks widely

and quickly, under constraints on the ability to broadcast such information; and (b) the

provision of incentives for individuals to act, both towards the task and towards the

diffusion of information about it.

Recognizing the difficulty of time-critical social mobilization, the Defense Advanced

Research Projects Agency (DARPA) announced the DARPA Network Challenge. The

announcement, which coincided with the 40th anniversary of the first remote log-in on

the ARPA Net (considered the ‘birthday’ of the Internet), was made at the University of

California in Los Angeles on October 29, 2009.

Through this challenge, DARPA aimed to “explore the roles the Internet and social

networking play in the timely communication, wide-area team-building, and urgent mo-

bilization required to solve broad-scope, time-critical problems” (2). The challenge is to

provide coordinates of ten red weather balloons placed at different locations in the conti-

nental United States. According to DARPA, “a senior analyst at the National Geospatial

Intelligence Agency characterized the problem as impossible” by conventional intelligence

gathering methods (17).

2 The Recursive Incentive Mechanism

According to the DARPA report, between 50 and 100 serious teams participated in the

DARPA Network Challenge, from a total of 4, 000 teams (17). Moreover, approximately
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350, 000 people participated in the DARPA Network Challenge in various ways, ranging

from searching for balloons, to simply being aware of the challenge and willing to report

a balloon if spotted.

The MIT Team, which won the challenge (18), completed the challenge in 8 hours

and 52 minutes. In approximately 36 hours prior to the beginning of the challenge, the

MIT Team was able to recruit almost 4, 400 individuals through a recursive incentive

mechanism.

The MIT Team’s approach was based on the idea that achieving large-scale mobiliza-

tion towards a task requires (a) diffusion of information about the tasks through social

networks; and (b) provision of incentives for individuals to act, both towards the task and

towards the recruitment of other individuals.

We consider the MIT Team’s approach to the DARPA Network Challenge to be an

instance of a more general class of mechanisms for distributed task execution. We now

define this class of mechanisms. But we first need to define the setting in which such

mechanisms operate. We define a diffusion-based task environment which consists of the

following: N = {α1, . . . , αn} is a set of agents ; E ⊆ N ×N is a set of edges characterizing

social relationships between agents; Ψ = {ψ1, . . . , ψm} is a set of tasks ; P : N×Ψ→ [0, 1]

returns the success probability of a given agent in executing a given task; B ∈ R be the

budget that can be spent by the mechanism.

In a diffusion-based task environment, unlike in traditional task allocation mechanisms

(e.g. based on auctions), agents are not aware of the tasks a priori. Instead, they become

aware of tasks as a result of either (1) being directly informed by the mechanism through

advertising; or (2) being informed through recruitment by an acquaintance agent (19).

Another characteristic of diffusion-based task environments is that, when a task is

completed, the mechanism is able to identify not only the agent who executed it, but also
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the information pathway that led to that agent learning about the task. The pathway

leading to the successful completion of task ψi is captured by the sequence S(ψi) =

〈a1, . . . , ar〉 of unique agents, where ar is the agent who completed the task, ar was

informed of the task by ar−1 and so on up to agent a1 who was initially informed of the

task by the mechanism. By slightly overloading notation, let |S(ψi)| denote the length

of the sequence (i.e. the number of agents in the chain), and let αj ∈ S(ψi) denote that

agent αj appears in sequence S(ψi).

We can now define a class of mechanisms that operate in the above settings. A

diffusion-based task execution mechanism specifies the following: I ⊆ N is a set of initial

nodes to target (e.g. via advertising); ρi is the payment made to agent αi; such that the

following constraint is satisfied: c|I|+
∑

αi∈N ρi ≤ B.

In words, the mechanism makes two decisions. First, it decides which nodes to target

initially via advertising. Second, it decides on the payment (if any) to be made each

agent. The mechanism must do this within its budget B.

In the DARPA Network Challenge, each ψi represents finding a balloon, and v(ψi) =

4, 000 for all ψi ∈ Ψ. Moreover, since the ten tasks are all identical (namely finding

a balloon), ∀αi ∈ N, ∀ψk, ψl ∈ Ψ we have P (αi, ψk) = P (αi, ψl). That is, the success

probability of a particular agent is the same for all balloons.

We are now ready to define the MIT Team mechanism, referred to as a recursive

incentive mechanism. Given I initial targets, and assuming v(ψi) = B/|Ψ|, divide the

budget B such that each task ψi ∈ Ψ has budget Bi = B/|Ψ|. If agent j ∈ N appears in

position k in sequence S(ψi), then j receives the following payment:

v(ψi)

2(|S(ψi)|−k+1)
(1)

Hence, the total payment received by agent j is the sum of payments for all sequences in
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which j appears:

ρj =
∑

ψi|j∈S(ψi)

v(ψi)

2(|S(ψi)|−k+1)
(2)

The surplus is therefore: S = B −
∑

αj∈N ρj. Figure 1 illustrates how this mechanism

works.
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(a) Example social network.
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$1,000
$500

$250 Charity gets $250

(b) Recruitment tree with two paths (shown in thick lines) initi-
ated by α1 led to finding balloons.

Figure 1: Recursive incentive mechanism: (a) Suppose that in this network, agent α1 recruits

all of his neighbors, namely α2, α5 and α8. Suppose that α8 recruits α6, who finds balloon ψ1.

(b) We have a winning sequence S(ψ1) = 〈α1, α8, α6〉 with |S(ψ1)| = 3. The finder receives

ρ8 = 4,000
2(3−3+1) = 2, 000. Since α8 recruited α6, then ρ8 = 4,000

2(3−2+1) = 1, 000. From this sequence,

α1 receives 4,000
2(3−1+1) = 500. Likewise, looking at the left recruitment path, we have a winning

sequence S(ψ2) = 〈α1, α2, α3, α4〉 with |S(ψ2)| = 4. The finder receives ρ4 = 4,000
2(4−4+1) = 2, 000.

As above, we have ρ3 = 4,000
2(4−3+1) = 1, 000 and ρ2 = 4,000

2(4−2+1) = 500. From this sequence, α1

receives 4,000
2(4−1+1) = 250. Adding up its payments from the two sequences it initiated, α1 receives

a total payment of ρ1 = 750. Assuming there are only two tasks, the surplus in this case is

S = (4, 000− 3, 500) + (4, 000− 3, 750) = 750.

3 Analysis

The recursive incentive mechanism has a number of desirable properties. First, it is

straight forward to show that the recursive incentive mechanism is never in deficit (i.e.

never exceeds its budget).1

1See supplementary material for formal proof of this and other properties.
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The mechanism is also resistant to certain kinds of manipulation. In particular, after

being recruited by a friend, an individual has no incentive to create his own root node

by visiting the Balloon Challenge Web page directly (without using the link provided by

the recruiter). This follows from the fact that payment to the person finding the balloon

does not depend on the length of the chain of recruiters leading to him.

On the other hand, the mechanism is not resistant to false name attacks, which were

originally identified in the context of Web-based auctions (20). In this attack, which has

been shown to plague powerful economic mechanisms such as Vickrey-Clarke-Groves (20),

an individual creates multiple false identities in order to gain an unfair advantage. In our

recursive incentive mechanism, if an individual finds a balloon, and is able to create false

identities, he has an incentive to recruit such identities over a chain, then declare the

balloon under the last identity. This way, using m false identities and recruiting them

over a chain, the manipulator can obtain rewards of
∑m

l=0
v(ψi)
2l+1 . If m can be arbitrarily

large, the manipulator can extract the entire reward in the limit. Having said that, our

data does not reveal any successful incidents of false-name attacks, which may be due

to the fact that the mechanism did not operate for long enough for people to identify

this potential. In practice, other measures could be put in place to prevent, minimize or

detect this kind of attack, such as using certified addresses, user rating of reputation, or

even criminal prosecution (21).

We now ask why the mechanism succeeded in mobilizing such a large number of

people in a relatively short period of time. The mechanism’s success can be attributed to

its ability to provide incentives for individuals to both report on found balloon locations,

while simultaneously participating in the dissemination of information about the cause.

Assuming that people are self-interested, when agent αi becomes aware of a task ψ ∈ Ψ,

it needs to select a (possibly empty) set of neighbors T (αi) ⊆ {αj ∈ N : (αi, αj) ∈ E} to
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recruit (i.e. to inform them about ψ). The diffusion of information about the task relies

crucially on such recruitment choices among agents.

One can perform this incentive analysis under two different assumptions. Under one

assumption, the probability of each person finding a balloon is an independent (and very

small) constant, ∀i, k, P (αi, ψk) = ε, such that n.ε ≤ 1, i.e. the sum of these probabilities

over the entire population (including those not recruited) is bounded by 1. In this case, it

is trivial to show that recruiting all of one’s peers is the best strategy. Without recruiting,

one achieves an expected reward of εv(ψi)
2

. With recruiting, on the other hand, one’s

expected rewards is εv(ψi)
2

+
∑

j εxj
v(ψi)
2j

, where xj is the number of individuals at depth

j of the recruiter’s tree. Clearly, this expected reward increases monotonically in the

number of directly recruited nodes.

We can also analyze incentives under the assumption that the probability of an indi-

vidual finding a balloon is uniformly distributed across the recruited individuals, that is,

given R recruited individuals, ∀i ∈ R, k ∈ Ψ, P (αi, ψk) = 1
|R| . Intuitively, it means that a

fixed-size group of recruited individuals is guaranteed to find the balloon eventually, even

if no other individuals are recruited. This assumption is realistic if the set of recruited

individuals is sufficiently large (e.g. thousands). We show that, under fairly broad as-

sumptions on the structure of the society, it is also in the best interest of each individual

to recruit all their friends. In particular, we show that if no individual controls n/2 of the

population (i.e. is able to prevent them from learning about the task), then the strategy

profile in which all individuals recruit all their friends is a Nash equilibrium.2

The two assumptions above differ in their treatment of how the addition of a new

member to the network affects the probability that each other member succeeds in finding

a balloon. The first assumption is that new members have no effect on existing members,

2See appendix for proofs.
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perhaps because they are searching mutually exclusive areas, and if the new member

were to find a balloon, that implies that no-one would have found that balloon in his

absence. The second assumption is that each member’s probability decreases from 1
n

to

1
n+1

, perhaps because all members share the same search space. Unless “network effects”

are present (e.g. working with a new member makes us both more likely to succeed than

working along), these two assumptions represent best- and worst-case assumptions. There

are certainly intermediate assumptions that could be made, and the strategies that we

show to be optimal at both extremes will be optimal for these intermediate assumptions

as well.

4 Empirical Data

We have just shown that the mechanism can lead to diffusion cascades under fairly broad

assumptions. The crucial question is whether this theoretical property translates to em-

pirical success. We explore how our mechanism’s performance compares with previous

studies on search and recruitment in social networks.

One measure of success is the size of the cascades, both in terms of number of nodes,

as well as depth. Results vary in existing literature. In a study of the spread of on-

line newsletter subscriptions, in which individuals were rewarded for recommending the

newsletter to their friends, the 7, 188 cascades varied in size between 2 and 146 nodes,

with a maximum depth of 8 steps (22), over a time span of three months.3 In our data, if

we ignore the MIT root node, there are 845 trees recruited within only three days. The

largest tree contained 602 nodes, and the deepest tree was 14 levels deep. Figure 2 shows

three actual trees, with Figure 2(a) highlighting a successful path. Figure 3(a) shows the

distribution of tree/cascade depth, which follows a power law. Furthermore, Figure 3(b)

3Esteban Moro, personal communication.
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(a) Large successful recruitment tree

(b) (c)

Figure 2: (a) A tree with the root is shown in green, and the successful path highlighted in red.

(b) and (c) Two additional networks that did not lead to balloons.
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shows a power-law distribution of tree/cascade size with exponent −1.96, as predicted by

models of information avalanches on sparse networks (23).

Previous empirical studies reported significant attrition rates (aka discard rate), which

measures the percentage of nodes that terminate the diffusion process. For example, in

a study of email-based global search for 18 target persons, attrition rate varied between

60− 68% in 17 out of the 18 searches performed (15). It has been argued that the “lack

of interest or incentive, not difficulty, was the main reason for chain termination” (15).

In another study of the diffusion of online recommendations, an attrition rate of 91.21%

was repoted despite providing incentives to participants by offering them a chance in a

lottery (22). In the DARPA Network Challenge, if we ignore isolated single nodes, our

mechanism achieves a significantly lower attrition rate of 56%.
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Figure 3: (a) Distribution of tree depth on a log-log scale with a power law fit. (b) Distribution

of tree size on a log-log scale with a power law fit. (c) Distribution of the branching factor on a

log-log scale with a power law fit.

Another measure of performance for social mobilization processes is the branching fac-

tor (also known as the reproductive number), which is the number of people recruited by

each individual. Previous empirical studies reported diverse, though mostly low, obser-

vations. In a study of the spread of support for online petitions, dissemination was very

narrow, with more than 90% of nodes having exactly one child (24), which others have at-
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tributed to a selection bias, observing only large diffusions (25). In our data, the average

branching factor was 0.93 if we exclude single-node trees (0.80 if we include single-node

trees). As shown in 3(c) shows, the branching factor follows a power-law distribution,

suggesting that certain individuals played an important role in dissemination by recruit-

ing a very large number of people (E.g. see Figure 2(a)). Our data also compares very

favorably with the newsletter subscription experiment mentioned above, in which spread-

ers invited an average of 2.96 individuals, but were only able to cause 0.26 individuals to

sign up on average (22).

An interesting aspect of our data is the dynamics of the diffusion process. Figures 4(a)

and 4(b) show the dynamics of recruitment over time, highlighting two bursts of day-time

recruitment activities on Friday and Saturday just before DARPA launched the balloons

into their locations. In contrast with the newsletter subscription experiment (22), in

which diffusion experienced a continuous decay, these bursts enabled our mechanism to

amass a large number of people quickly.

Moreover, in the newsletter subscription experiment (22), the dynamics of diffusion

were slow, which was attributed to a heterogeneous, non-Poissonian distribution of in-

dividuals’ response time. Interestingly, we observe an exponential distribution of inter-

signup time (See Figure 4(c)).4 This contrasts with the empirically observed power-

law distribution of inter-response time in human activity (26, 27) and information cas-

cades (22). Ongoing initiatives that utilize our approach could determine whether this

deviation is due to the incentive mechanism.5

4Our data does not include the time stamp of sending out invitations, but we are able to measure
the intervals between actual signup events between a parent and its children in the trees.

5Similar mechanisms, inspired by our approach, are being used to spread petitions for fighting world
hunger (www.1billionhungry.org), in games of cooperation and prediction http://brsts.com/, and
for marketing campaigns (https://10.thinkworld.com.cn/).
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Figure 4: (a) Number of people recruited over time up to the winner announcement. The dotted

line marks the time the balloons were launched into their positions by DARPA. (b) Cumulative

number of people recruited over time. (c) Complementary cumulative distribution of the inter-

signup time on a semi-log scale with an exponential fit. Observe the larger-than-exponential

drop off at the end of the graph, due to the time-critical nature of the task.

5 Conclusion

From an observational perspective, previous studies have shown that the success of infor-

mation cascades on social networks is affected by various factors, such as the percentage

of targeted individuals (19), the heterogeneity in response time (22, 24, 28), the types

of social ties used in the spread (15), the heterogeneity in response thresholds among

nodes (23), and the density of the network (23, 24). However, from the perspective of

an incentive designer seeking large-scale social mobilization, the problem boils down to

two questions: (i) which individuals to target directly? (ii) what incentives to provide in

order to encourage participation? While others have addressed the first question (29–32),

here we addressed the question of incentives, which has not received much attention in

the literature, as pointed out by Dodds et al (15), until the DARPA Network Challenge.

In particular, our mechanism simultaneously provides incentives for participation and for

recruiting more individuals to the cause. This mechanism is already being used in differ-

ent contexts, such as social mobilization to fight world hunger, in games of cooperation
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and prediction, and for marketing campaigns.

We believe that it is not a coincidence that the winning strategy in the DARPA

Network Challenge was one that exploited ideas from both incentive design (33) and

computational social science (34). After all, people are self-interested individuals, but also

embedded within social networks. It is hoped that this paper will stimulate theoretical and

empirical efforts to devise incentive mechanisms for a variety of challenging, time-critical

social mobilization problems.
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A Supporting Online Material: Formal Proofs

A.1 Mechanism Always within Budget

Proposition 1. The recursive incentive mechanism is never in deficit (i.e. never exceeds

its budget).

Proof. Recall that each sub-task ψi is allocated an equal share of Bi = B/|Ψ| budget.

Hence, it suffices to show that the payment for any arbitrary task ψi is bounded by Bi.

Let S(ψi) = 〈a1, . . . , ar〉 be the (finite) sequence leading to the successful completion of

ψi. We need to show that the total payment made to all agents in sequence S(ψi) within

budget, that is, we need to show that:

r∑
k=1

Bi

2(r−k+1)
≤ Bi or equivalently we need to show that

r∑
k=1

1

2(r−k+1)
≤ 1

We can easily see that:
∑r

k=1
1

2(r−k+1) =
∑r

k=1(
1
2
)(r−k+1) =

∑r
k=1

1
2
× (1

2
)(r−k)

Defining i = r − k, we can rewrite:

r∑
k=1

0.5(½)(r−k) = 0.5(½)(r−1) + 0.5(½)(r−2) + . . . 0.5(½)(r−r)

= 0.5(½)(r−1) + 0.5(½)(r−2) + . . . 0.5(½)0

=
r−1∑
i=0

0.5(½)i

This is a finite geometric series, with a well-known closed form:

r−1∑
i=0

0.5(½)i = 0.5
1− (½)(r−1)+1

1− ½
= 1− (½)r =

2r − 1

2r
≤ 1 (for r ≥ 1)
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A.2 Incentives With Uniform Success Probability Among Re-
cruited Individuals

A.2.1 All-or-None Recruitment on Fixed-Forest Social Networks

We consider the case in which the social network takes the form of a forest of rooted trees,

and the roots of these trees form the set of initially-recruited nodes I.

Given this forest F , which contains a total of n nodes, each node chooses whether

or not to recruit all of its children. This induces a “recruited subforest” F ′ of size n′,

consisting of all nodes which can trace a path of recruitment to a root node of F .'

&

$

%

R1

a1

c1 d1

b1

e1 f1

R2

a2

c2 d2

b2

e2 f2

R1

a1 b1

e1 f1

R2

Figure 5: Nodes R1, b1, and a2 choose to recruit; the rest not. The recruited subforest F ′

is shown in red. Note that a2’s choice to recruit is rendered moot by R2’s choice not to
recruit.

For each node in the recruited subforest, this results in an expected payment based

solely on the shape of its descendent recruited subtree. For each node, we can characterize

this shape with an ordered tuple X = 〈x1, x2, x3, . . . 0〉, representing the number of chil-

dren, grandchildren, great-grandchildren, etc. (i.e. in the example, R1’s tuple would be

〈2, 2, 0〉, and the tuple of any leaf node is 〈0〉). Given such a tuple, the expected payment

to a node is

U(X) =
1 +

∑
i
xi
2i

n′
,

where n′ is the number of nodes in the recruited subforest.
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a1
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Figure 6: The game played by R1 and R2 is equivalent to the “prisoner’s dilemma.”

Given the set of choices (recruit all children or recruit no children) made by each node,

this function U(X) is a payout function which defines a normal-form game played by all

non-leaf nodes in the original forest.

A.2.2 Game Definition

We demonstrate the definition of the game by example, recreating the “prisoner’s dilemma”

using a 5-node forest.

Consider the forest F shown in Figure 6. There are two players, R1 and R2, each

of which has the option to recruit a single child or not. If neither recruits, both receive

an expected payment of 1
3
. If one recruits but the other does not, the recruiter has an

expected payment of
1+ 1

2

4
= 3

8
, while the other has an expected payment of 1

4
. If both

recruit, both have an expected payment of
1+ 1

2

5
= 3

10
. This gives a payment matrix

approximated by:

N Y

N .33, .33 .25, .37

Y .37, .25 .3, .3

Clearly, choosing to recruit is a strictly dominant strategy for each player, so the only

Nash equilibrium that both players recruit – even though this is Pareto inefficient.
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A.3 Nash Equilibria of Larger Forests

Lemma 1. All nodes choosing to recruit is a Nash equilibrium for the game defined by a

forest F if and only if each node prefers recruitment over non-recruitment, predicated on

all other nodes choosing to recruit.

Proof. Consider a game in which all actors have two options: “recruit all” or “recruit

none.” For any given agent a, let all other agents choose “recruit all,” and consider a’s

optimal strategy. If choosing “recruit all” is optimal for a, then no agent can benefit by

deviating from a strategy of “recruit all,” if all other agents choose “recruit all.” This, by

definition, makes the uniform choice to “recruit all” a Nash equilibrium.

Theorem 1. A node a will prefer recruitment to non-recruitment predicated on all other

nodes choosing to recruit if and only if sufficiently many nodes in the forest F are not

descendants of a.

Proof. For a node a in a forest F of size n, let the tuple X = {x1, x2, x3, . . .} be defined

as the number of children, grand-children, great-grand-children, etc. of node a. If F is

finite, each xi is finite and there exists some j such that xi = 0 for all i > j. Let k be the

number of nodes in F that are not descendants of a, noting that k = n −
∑

i xi. Since

we assume all nodes other than a choose to recruit, the expected payment received by

a if a chooses to recruit is 1
k
. If a does choose to recruit, then a will receive expected

payment
1+

∑
i
xi
2i

n
=

1+
∑

i
xi
2i

k+
∑

i xi
. a will find it preferable to recruit if and only if

1+
∑

i
xi
2i

k+
∑

i xi
> 1

k
,

or, equivalently, when k >
∑

i xi∑
i
xi
2i

.

Corollary 1. In any forest F of size n for which no tree contains more than n
2

nodes, all

nodes choosing to recruit is a Nash equilibrium.
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Proof. Consider forest F with n nodes, and a node a which has m descendants, taking a

shape described by a tuple X = {x1, x2, x3, . . .}. We have that a will choose to recruit

predicated on all other nodes recruiting if and only if n −m > m∑
i
xi
2i

. We note that the

definition of X yields that no non-zero value can follow a zero value (i.e. one must have

grand-children in order to have great-grand-children). It follows that, if we fix m, the

setting of X which maximizes m∑
i
xi
2i

is X = {
m︷ ︸︸ ︷

1, 1, . . . , 1, 0, 0, . . .}, which gives
∑

i
xi
2i
< 1

for any value of m. Thus, a will choose to recruit if (but not only if) n −m > m. This

condition holds for all nodes if and only if no tree in F contains more than n
2

nodes. In

this case, all nodes will choose to recruit predicated on all other nodes recruiting, so all

nodes choosing to recruit is a Nash equilibrium.

A.4 Selective Recruitment on Fixed-Forest Networks

We now consider the same social graph structure, but allow a node to selectively recruit

any subset of its children.

Definition 1 (Weight). We define the weight of a node a, Wa, as the sum of the rewards

that would be received by a in the event that each of its descendants were to complete the

task. We note the following properties of Wa

• If a is a leaf, then Wa = 1.

• If a has children c1, c2, . . . with weights Wc1 ,Wc2 , . . ., then Wa = 1 + 1
2

∑
iWci.

• If node a has descendants described by shape X =< x1, x2, . . . , 0 >, then Wa =

1 +
∑

i
xi
2i

.

• In a forest with n nodes, the expected payment to node a is U(a) = Wa

n
.
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Lemma 2. A node a will prefer recruitment of all children to non-recruitment of any

child predicated on all other nodes choosing to recruit if and only if the weights of a’s

children are sufficiently large relative to the number of their descendants.

Proof. Consider a node a with children c1, c2, . . . , cm, and let all other nodes choose to

recruit all of their children. Let |c1|, |c2|, . . . , |cm| be the number of descendants of each

child of a, and let k be the number of nodes in the forest that are not descendants of a. a

can choose to recruit each child independently. When a recruits no children, its expected

payment is 1
k
. When a recruits all of its children, its expected payment is

1+ 1
2

∑
iWci

k+
∑

i |ci|
.

For a given child cx, the expected gain by recruiting cx is monotonically non-increasing

over the set of other children recruited (i.e. if it is advantageous to recruit cx when also

recruiting all other children, it will be advantageous to recruit cx when recruiting any

subset of the other children). For a given child cx, it is advantageous to recruit cx if and

only if
1+ 1

2

∑
i 6=xWci

k+
∑

i 6=x |ci|
<

1+ 1
2

∑
iWci

k+
∑

i |ci|
.

1+ 1
2

∑
i 6=xWci

k+
∑

i 6=x |ci|
is maximized in the case where all children

ci 6=x have no children of their own, and in that case equal to
1+ 1

2
(m−1)

k+m−1 . Thus, we can

guarantee that the inequality holds so long as Wcx

|cx| >
1+ 1

2
(m−1)

k+m−1 .

Theorem 2. A node a will prefer recruitment of all children to non-recruitment of any

child predicated on all other nodes choosing to recruit if sufficiently many nodes in the

forest F are not descendants of a.

Proof. Consider a node cx, and the inequality Wcx

|cx| >
1+ 1

2
(m−1)

k+m−1 . As before, the left side of

the inequality is minimized when the children of ci form a chain with no branching. This

chain has weight
∑|cx|

i=0
1
2i
< 2, which bounds the left side of the inequality by 2

|cx| . In a

forest in which no tree contains more than n
4

nodes, |cx| is bounded above by n
4
, and k is

bounded below by 3n
4

. m can only take values in the range 0 ≤ m ≤ n
4
, and for any such
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value, the inequality holds. Thus, so long as at least 3n
4

nodes in F are not descendants

of a, a will choose to recruit all of its children.

A.5 Recruitment on Graphs

We consider now the case in which the social graph is not a forest, but is instead a

general graph. In this case, the mechanism of recruitment itself plays a non-trivial role,

since it is possible for a node to be recruited by two different potential parents, and must

choose between them. There is significant literature on diffusion processes on graphs,

and wide varieties of such processes are seen in practice. We will not investigate the

properties of specific diffusion mechanisms, but instead we will define a property of a

diffusion mechanism that guarantees that recruitment is Nash.

Definition 2 (Monotonic Diffusion). Consider a diffusion process on a social graph,

and a set of seed nodes R1, R2, . . . , Rn. Let |R1|, |R2|, . . . , |Rn| be the number of nodes

whose recruitment leads back to R1, R2, . . . , Rn, respectively. We call the diffusion process

monotonic if removing a seed node Rx causes the sizes of |R1|, |R2|, . . . , |Rn| to either

increase or stay constant (i.e. if Rx does not participate, this does not cause another seed

node to recruit fewer children).

Monotonicity holds for most “well-behaved” diffusion processes, but is notably violated

by various “complex contagion” processes in which, for example, a node adopts after

receiving two signals.

Theorem 3. If no node can expect to recruit more than half of the social network and

diffusion is monotonic, then all nodes recruiting is a Nash equilibrium.

Proof. Consider a node a, which can choose whether or not to recruit, and suppose all
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other nodes recruit. Consider the case in which a recruits, and this results in no tree

in the induced forest containing more than half of the recruited nodes. Suppose it were

the case that if a were to not choose recruitment, then all nodes that would have been

recruited by a would end up un-recruited, instead. In this case, the graph reduces to the

same fixed forest we analyzed previously. Suppose instead that some of these nodes end

up recruited by a different node. In this case, not recruiting is strictly less desirable, since

the size of the network grows without any increase in potential payout. Hence, it follows

from the previous analysis that recruiting is more desirable in either case. If diffusion is

monotonic, the two cases considered are collectively exhaustive, so recruiting is always

the more desirable option.
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