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Abstract

In this paper we study the generalized version of weighted matching in bipartite networks. Consider a

weighted matching in a bipartite network in which the nodes derive value from the split of the matching

edge assigned to them if they are matched. The value a node derives from the split depends both on

the split as well as the partner the node is matched to. We assume that the value of a split to the node

is continuous and strictly increasing in the part of the split assigned to the node. A stable weighted

matching is a matching and splits on the edges in the matching such that no two adjacent nodes in the

network can split the edge between them so that both of them can derive a higher value than in the

matching. We extend the weighted matching problem to this general case and study the existence of a

stable weighted matching. We also present an algorithm that converges to a stable weighted matching.

The algorithm generalizes the Hungarian algorithm for bipartite matching. Faster algorithms can be

made when there is more structure on the value functions.

1 Introduction

In this paper we analyze the following problem. Consider a weighted matching in a bipartite

network in which the nodes derive value from the split of the matching edge assigned to

them if they are matched. The value a node derives from the split depends both on the split

as well as the partner the node is matched to. We assume that the value of a split to the

node is continuous and strictly increasing in the part of the split assigned to the node. A

stable weighted matching is a matching and splits on the edges in the matching such that

no two adjacent nodes in the network can split the edge between them so that both of them

can derive a higher value than in the matching. We extend the weighted matching problem

to this general case and study the existence of a stable weighted matching. We also present

an algorithm that converges to a stable weighted matching. The algorithm generalizes the

Hungarian algorithm [8] for bipartite matching. Faster algorithms can be made when there

is more structure on the value functions.
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Weighted matching in bipartite networks has been studied in the context of linear valua-

tions [10]. The problem is often posed as such.

In a bipartite network S = (A ∪B,E ⊆ A× B), whose nodes belong to A∪B and whose

edges connect nodes from A to nodes in B with weights w (i, j) for the edge (i, j) that can be

split between i and j as si and sj to give them values Vi = si and Vj = sj, find a matching M∗

with characteristic function χM that maximizes the sum of weights of edges in the matching

∑

(i,j)∈E

w (i, j)χ (i, j)

The characteristic function χM must satisfy the following constraints to be the characteristic

function of a matching.

∑

(i,j)∈E

χ (i, j) ≤ 1, ∀i ∈ A ∪ B (1)

χ (i, j) ≥ 0, ∀ (i, j) ∈ E (2)

χ (i, j) ∈ {0, 1}, ∀ (i, j) ∈ E (3)

The last constraint is an integer constraint and can be neglected since the corners of the

polytope resulting from the remaining constraints are integral. The above is called the

maximum weight matching problem. In a finite graph with finite weights, the optimal

solution exists and the optimal value is finite. The stable matching problem is the dual of

the maximum weight matching problem which is to find the minimum sum of values given

to the nodes in the network

min
∑

i∈A∪B

Vi (4)

such that Vi + Vj ≥ w (i, j) , ∀ (i, j) ∈ E (5)

Vi ≥ 0 (6)
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The existence of a stable matching is evident from the finiteness of the optimal value in the

maximum weight matching problem. In fact at optimal solution for the stable matching

problem, for any edge (i, j) ∈M∗, Vi + Vj = w (i, j). For any maximum weighted matching,

there exists splits s = V that is an optimal solution to the stable matching problem. This

problem has been well understood and several algorithms have been proposed to find the

optimal stable matching. The extensions, when the values V are increasing functions of the

split and do not depend upon the edge, can be reduced to the above problem.

We study the problem when the values V depend upon the edge as well as the part of

the split given to the node. The stable matching problem in this case is as such. Find a

matching M◦ and a split s such that

si + sj = w (i, j) , ∀ (i, j) ∈M◦ (7)

vi = Vi (j, si) , vj = Vj (i, sj) , ∀ (i, j) ∈M◦ (8)

V −1
i (j, vi) + V −1

j (i, vj) ≥ w (i, j) , ∀ (i, j) ∈ E (9)

si ≥ 0, ∀i ∈ A ∪B (10)

The existence of such a matching and a split is not evident. In this paper, we show that

such a matching and a split exists and we give an algorithm to find such a matching and a

split. The problem features in many practical problems. We give a few examples.

Consider the stable marriage problem and related problems studied in [4] and later by

several others. A survey of related literature can be found in [9]. The classical formulation

assumes exogeneous partner preferences. Other formulations including [1] study endoge-

neous partner preferences arising from types of partners. An important and more realistic

formulation is to consider that utilities of individuals in a marriage depends both on the

type or the identity of the partner as well as the effort the partner puts in the marriage. In

this scenario, a stable marriage is the one in which the neither partner in the marriage has

a proposal for mariage in which the partner will have a higher utility.
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Another example is the exchanges in buyer-seller networks [7]. The problem has been

studied in the context of indivisible goods. An important scenario is the case of divisible

goods with the buyer-seller relations being exclusive. When the preferences for the goods are

strictly convex, continuous and strongly monotone, we observe a connected contract curve

or the set of individually rational pareto-efficient exchanges between any adjacent buyer-

seller pair in the network. As we move along the contract curve in a given direction, the

utility of buyer/seller strictly decreases and the utility of seller/buyer strictly increases. The

stable set of exchanges in this network is the one in which all exchanges are stable or no

adjacent buyer-seller pair in the network can do better by simultaneously breaking their

current contracts and forming a new contract among them.

An important example is the study of bargaining in networks. This problem has recently

been studied widely and takes the form of the stable matching problem in teh case of lin-

ear utilities. However, often in real life bargaining situations, the utility is non-trasferable

between the bargaining parties through a quasilinear numeraire. In such situations as the

sum of offers to the two parties in bargaining is not constant. A stable bargaining solution

in this case takes a different form as studied in this paper. Another line of work that can

benefit by the results in this paper is the work on social games introduced in [5].

The organization of the rest of the paper is as such. In the next section, we introduce the

setup. We try to maintain the notations close to the notations in the matching literature

while introduce additional terminology as required. In section 3, we show introduce some

important concepts that are needed to prove the existence of a stable matching. Finally in

section 4, we show a contructive proof and an algorithm to find the stable matching.

2 Setup

In this section we formulate the problem and introduce necessary terminology.
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2.1 Network and Payoffs

Assume A and B are two finite and mutually exclusive sets of nodes and X = A ∪ B. A

bipartite network between A and B is a graph S = (X,E ⊆ A× B), whose nodes belong to

X and whose edges connect nodes from A to nodes in B. Given a bipartite network S, we

will refer to the set of nodes as XS, the sets of nodes in A and B as AS and BS respectively,

and the set of edges as ES when necessary. When the node set X is understood, we will

refer to the network by the edge set E. Without loss of generality, we will assume that the

graph S is connected.

A set of nodes X ′ ⊆ X induces a subgraph S|X′ =
(

X ′, E|X′

)

of S, such that E|X′ =

{(i, j) ∈ E : i ∈ X ′, j ∈ X ′}.

The set of neighbors of a node i ∈ A is NbrS (i) = {j ∈ B : (i, j) ∈ E}. The set of

neighbors of a node of j ∈ B is NbrS (j) = {i ∈ A : (i, j) ∈ E}. When the context is well

understood, we will also refer to NbrS (i) as NbrE (i) or just Nbr (i). The set of neighboring

nodes of x ⊆ X is NbrS (x) = ∪i∈xNbrS (i).

A weight function w : E → R+ assigns a weight to each edge. An edge (i, j) with i ∈ A

and j ∈ B has a weight w (i, j) that can be split between i and j.

A split s(i,j) on the edge (i, j) is the pair (si, sj), with si + sj = w (i, j).

The nodes derive payoffs from the part of the split given to them. For a split s(i,j), the

payoff of the node i is ui (j, si) and the payoff of the node j is uj (i, sj). The payoff of a

node depends upon both the part of the split given to the node and the edge on which the

split is made. Thus for each edge the payoff of a node is a unique function of the part of the

split given to the person. We assume that these payoff functions are strictly increasing and

continuous and hence they are invertible and the inverse functions are also strictly increasing

and continuous.

We also define payoffs of nodes as a function of its neighbor when the split is made

between them. The payoff of node j for the split on edge (i, j) is a function of the payoff of
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node i is vj (i, vi) = uj

(

i, w (i, j)− u−1
i (j, vi)

)

. So the payoffs of neighboring nodes for the

split between them are strictly decreasing and continuous with respect to one another. For

simplicity, we will assume that the function vi (j, x) is defined for all x ∈ R and is strictly

decreasing and continuous. We will refer to these functions as pareto payoff function.

2.2 Matching

A matching in the bipartite network is a subset of edges M ⊆ E such that no two edges

in M share a common node. The size of the matching |M | is the number of edges in the

matching. The matching defines a characteristic function on the set of edges in the bipartite

network χM : E → {0, 1} where ∀ (i, j) ∈ E,

χM (i, j) =















1 if (i, j) ∈M

0 if (i, j) /∈M

such that

∀i ∈ A,
∑

j∈Nbr(i) χ
M (i, j) ≤ 1 and

∀j ∈ B,
∑

i∈Nbr(j) χ
M (i, j) ≤ 1.

The match for a node i ∈ A in the matching M is

M (i) =















j ∈ Nbr (i) ifχM (i, j) = 1

null if
∑

j∈Nbr(i) χ
M (i, j) = 0

.

We say that a node i is matched if M (i) 6= null.

A split for a matching M is a function sM : A ∪ B → R+ such that

∀ (i, j) ∈ M, sM (i) + sM (j) = w (i, j)

∀i ∈ A, sM (i) = 0if
∑

j∈Nbr(i) χ
M (i, j) = 0

∀j ∈ B, sM (j) = 0if
∑

i∈Nbr(j) χ
M (i, j) = 0.

A weighted matching
(

M, sM
)

is a pair matching and a split for the matching.

The payoff profile U
(

M, sM
)

for a weighted matching
(

M, sM
)

is a vector where each

element is the payoff of a node for the given weighted matching. The payoff of a node i for

the weighted matching
(

M, sM
)

is
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Ui

(

M, sM
)

= ui

(

M (i) , sM (i)
)

.

A weighted matching is stable if ∀ (i, j) ∈ E and all splits s(i,j) on (i, j),

ui (j, si) ≤ Ui

(

M, sM
)

and uj (i, sj) ≤ Uj

(

M, sM
)

.

2.3 Paths

A path in the network S is a subgraph P =
(

XP , EP
)

, where XP ⊆ A∪B is a set of nodes

and EP is a set of edges with both end points in XP such that two nodes in XP have exactly

one edge in EP and all other nodes in XP have exactly two edges in EP . The two nodes with

exactly one edge will be referred to as the end nodes. A path also induces index function

over its nodes as follows:

1. Pick an end node and set its index as 0. This node is the source node.

2. Set i← last indexed node.

3. If i is an end node, then stop else index the only unindexed neighbor of i as (index of

i)+1. The end node with the highest index is the sink node.

This index generates a sequence of nodes {xP
n } where the subscript stands for the index and

xP
0 and xP

|X| are end nodes.

Thus a path P of length N can be seen as a sequence {xn}n∈{0,...,N} of nodes in A ∪ B,

such that ∀n < N, (xn, xn+1) ∈ E. We call this a path from the source to the sink node.

Alternatively, a path is a sequence of nodes such that for each node in the sequence shares

edges with both the immediately preceding and immediately succeeding nodes. When the

source and sink is determined for the path P , we will refer a path from the source i to sink

j as Pi,j. The reverse path from j to i will be refered to as Pj,i.

A subpath P ′ of a path P is a connected subgraph of the path P . Alternatively, a

subpath P ′ ⊆ P between nodes xm, xM ∈ XP is a subsequence {xP
n }n∈{m,...,M}. A subpath

is a path by itself.
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The union of two paths P1 and P2 is also a path P3 = P1 ∪ P2 if P1 and P2 share exactly

one end node.

We will denote the set of paths from i to j in a network S as P
S
i,j.

2.4 Offers

An offer profile is a vector O ∈ R
A∪B where the element Oi is node i’s offer. We will

denote the restriction of an offer profile O to a set of nodes X as O|X .

An offer profile O is feasible, if ∃
(

M, sM
)

weighted matching, with payoff profile U
(

M, sM
)

=

O.

An offer profile O is stable if ∀(i, j) ∈ E, Oj ≥ vj (i, Oi).

Using the definition and properties of the pareto payoff functions, we can reformulate the

stable matching problem as such. Find a matching M◦ and a split s such that

si + sj = w (i, j) , ∀ (i, j) ∈M◦ (11)

oi = ui (j, si) , oj = uj (i, sj) , ∀ (i, j) ∈M◦ (12)

oj ≥ vj (i, oi)}, ∀ (i, j) ∈ E (13)

si ≥ 0, ∀i ∈ A ∪B (14)

The first, second and fourth inequalities provide the constraints for the offer profile to

be feasible and the third inequality provide the constraints for the offer profile to be stable.

Thus, if we have a feasible and stable offer profile, then we have a weighted stable matching.

Hence, in this paper, we will focus on finding a feasible and stable offer profile.

Given an offer profile O, the equality subgraph EQ (O) is the subset of edges E with

EQ (O) = {(i, j) ∈ E : Oj = vj (i, Oi)}.

We will refer to the neighbors of a node i in the equality subgraph EQ (O) as NbrEQ(O) (i).

Given an offer profile O, a path P is feasible if EP ⊆ EQ (O).

Given a node i with offer oi ≥ 0, a path P with an end node i induces an offer for each
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node xP
n in the path as follows:

• xP
0 = i, Therefore, OxP

0
= oi

• ∀0 < n < N,OxP
n
= vxP

n

(

xP
n−1, OxP

n−1

)

.

For any pair of nodes i, j and a path P from i to j, we define the path induced offer

function fP
i,j : R → R where fP

i,j (x) is the offer that P induces for j given i has the offer

x. Clearly, fP
i,j is continuous since the pareto payoff functions are continuous. Also fP

i,j is

strictly increasing if both i, j ∈ A or both i, j ∈ B and strictly decreasing if either i ∈ A and

j ∈ B or i ∈ B and j ∈ A since pareto payoff functions are strictly decreasing.

Given a node i with offer x and another node i′, a path P ∗
i,i′ from i to i′ is maximum

offer inducing path from i to i′ given the offer x on i if

P ∗
i,i′ ∈ arg max

P∈PS
i,i′

fP
i,i′ (x).

The maximum offer inducing paths and the maximum path induced offers have important

properties that we will use for the main result. In the following two lemmas we state these

properties.

Lemma 1. Assume i, i′ ∈ A and x ∈ R. Assume P ∗
i,i′ is a maximum offer inducing path

from i to i′ given the offer x on i. If P ′
i,i′′ ⊆ P ∗

i,i′ is the subpath between nodes i and i′′ ∈ A
P ∗
i,i′ .

Then P ′
i,i′′ is a maximum offer inducing path from i to i′′ given the offer x on i.

Proof. The proof follows from the principle of optimality [2] and is omitted.

Lemma 2. Pick i ∈ A and oi ∈ R.

For all i′ ∈ A set

Oi′ = max
P∈PS

i,i′

fP
i,i′ (oi).
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For all j ∈ B, set

Oj = max
i′∈Nbr(j)

vj (i
′, Oi′).

Then the following hold true about the equality subgraph EQ (O)

1. the equality subgraph EQ (O) is connected and the offer profile O is stable. Therefore

all nodes j ∈ B have at least one edge in the equality subgraph.

2. ∀ (i′, j) ∈ E, either (i′, j) ∈ EQ (O) or all paths from i to i′ in EQ (O) include at least

one of the nodes i′′ ∈ NbrEQ(O) (j).

3. If (i′, j′) , (i′, j′′) ∈ E \EQ (O) and vi′ (j
′, Oj′) > vi′ (j

′′, Oj′′), then all paths from i to j′

in EQ (O) include at least one node in NbrEQ(O) (j′′).

4. If (i′, j′) ∈ E \EQ (O), then for any path Pi,i′ ∈ P
S

i,i′ that does not include at least one

node in NbrEQ(O) (j′), f
Pi,i′

i,i′ ≤ vi′ (j
′, Oj′).

Proof. Consider all nodes in A for which the maximum offer inducing path is of length 2.

Pick any of such nodes i′ and its neighbor j along the maximum offer inducing path. Clearly

Oj ≥ vj (i
′, Oi′) from the construction of Oj. Assume Oj > vj (i

′, Oi′). Then ∃ (i′′, j) ∈ E

with Oi′′ = vi′′ (j, Oj) < vi′′ (j, vj (i
′, Oi′)), the inequality exists because the functions v are

strictly increasing. This implies that Oi′′ is not the maximum path induced offer induced on

i′′ over all paths from i to i′′. Therefore by contradiction Oj = vj (i
′, Oi′) and i′ is connected

to i in EQ (O) through a maximum offer inducing path.

Now assume that all nodes in A for which the maximum offer inducing path is of length

less than n is connected to i through a maximum offer inducing path. Then following lemma

1 for all nodes in A for which the maximum offer inducing path is of length n all nodes in A

along the path are connected to i along the same path. Also by a similar argument as above

all nodes in A for which the maximum offer inducing path is of length n is connected to i

through a maximum offer inducing path. Thus by induction, all nodes in A are connected
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to i through a maximum offer inducing path. As a consequence all nodes in B that belong

to any of the maximum offer inducing paths are also connected to i through the respective

maximum offer inducing paths.

Now since all nodes in B that do not belong to any maximum offer inducing paths are

connected to at least one node in A, therefore they are also connected to i through some

path. Hence the equality subgraph is connected. The offer profile is stable because for all

j ∈ B, Oj = maxi′∈Nbr(j) vj (i
′, Oi′).

We now prove the second claim. Assume that there exists (i′, j) ∈ E \ EQ (O) and path

Pi,i′ from i to i′ in EQ (O) that does not include any of the nodes in NbrEQ(O) (j). Then

pick a node i′′ ∈ NbrEQ(O) (j) and consider the path Pi,i′ ∪ {i
′, j, i′′}. This path induces

offers vj (i
′, Oi′) < Oj on j and vi′′ (j, vj (i

′, Oi′)) > vi′′ (j, Oj) = Oi′′ . This is a contradiction

because by construction of O, Oi′′ was the maximum offer induced on i′′ over all paths from

i to i′′ given the offer x on i. Hence the claims holds true.

We now prove the third claim. Assume there exists (i′, j′) , (i′, j′′) ∈ E \ EQ (O) and

vi′ (j
′, Oj′) > vi′ (j

′′, Oj′′). From the second claim, all paths from i to i′ in EQ (O) include

a node from NbrEQ(O) (j′) and a node from NbrEQ(O) (j′′). First we will show that either

all paths from i to j′ in EQ (O) include at least one node in NbrEQ(O) (j′′) or all paths

from i to j′′ in EQ (O) include at least one node in NbrEQ(O) (j′). Then we will show that

it is actually the first case. Assume there exists a path Pi,j′ from i to j′ in EQ (O) not

including any node in NbrEQ(O) (j′′) and a path Pi,j′′ from i to j′′ in EQ (O) not including

any node in NbrEQ(O) (j′). Pick a path Pi,i′. This path includes a node i′′ with the highest

index among all nodes in NbrEQ(O) (j′) ∪ NbrEQ(O) (j′′) with the highest index. Consider

the subpath Pi′′,i′ ⊂ Pi,i′ . If i′′ ∈ NbrEQ(O) (j′), then the path Pi,j′ ∪ {j
′, i′′} ∪ Pi′′,i′ is a path

from i to i′ not including any node in NbrEQ(O) (j′′). If i′′ ∈ NbrEQ(O) (j′′), then the path

Pi,j′′ ∪{j
′′, i′′}∪Pi′′,i′ is a path from i to i′ not including any node in NbrEQ(O) (j′). In either

case, this contradicts the second claim, so either all paths from i to j′ in EQ (O) include

at least one node in NbrEQ(O) (j′′) or all paths from i to j′′ in EQ (O) include at least one
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node in NbrEQ(O) (j′). Now assume that all paths from i to j′′ in EQ (O) include at least

one node in NbrEQ(O) (j′). Pick a path Pi,i′ from i to i′ in EQ (O) and the node i∗ on the

path Pi,i′ with the lowest index among all nodes in NbrEQ(O) (j′)∪NbrEQ(O) (j′′). From the

assumption, i∗ ∈ NbrEQ(O) (j′)

Pick a node i′′ ∈ NbrEQ(O) (j′′) and consider the subpaths Pi,i∗ ⊂ Pi,i′ . The path Pi,i∗ ∪

{i∗, j
′, i′}∪{i′, j′′, i′′} exists in S. The path Pi,i∗ ∪{i∗, j

′, i′}∪{i′, j′′, i′′} induces the following

offers:

vi′ (j
′, Oj′) > vi′ (j

′′, Oj′′) on i′ {from the assumption in the claim}.

vj′′ (i
′, vi′ (j

′, Oj′)) < vj′′ (i
′, vi′ (j

′′, Oj′′)) = Oj′′ on j′′.

vi′′ (j
′′, vj′′ (i

′, vi′ (j
′, Oj′))) > vi′′

(

j′′, O′′
j

)

= Oi′′ on i′′.

This is a contradiction because by construction of O, Oi′′ was the maximum offer induced on

i′′ over all paths from i to i′′ given the offer x on i. Hence, all paths from i to j′ in EQ (O)

include at least one node in NbrEQ(O) (j′′).

We now prove the the fourth claim. Assume that there exists (i′, j′) ∈ E \ EQ (O) and

path Pi,i′ from i to i′ in S that does not include any of the nodes in NbrEQ(O) (j′). Then pick a

node i′′ ∈ NbrEQ(O) (j′) and consider the path Pi,i′ ∪ {i
′, j′, i′′}. Assume, f

Pi,i′

i,i′ > vi′ (j
′, Oj′).

Then vj′
(

i′, f
Pi,i′

i,i′

)

< Oj′. The path Pi,i′ ∪ {i
′, j′, i′′} induces offers vj′

(

i′, f
Pi,i′

i,i′

)

< Oj′

on j′′ and vi′′
(

j′, vj′
(

i′, f
Pi,i′

i,i′

))

> vi′′ (j
′, Oj′) = Oi′′ . This is a contradiction because by

construction of O, Oi′′ was the maximum offer induced on i′′ over all paths from i to i′′ given

the offer x on i. Hence the claims holds true.

2.5 Alternating Paths, Alternating Trees and Near-Perfect Matchings

Given an offer profile O and a matching M ⊆ EQ (O), an alternating path is a path

within the equality subgraph EQ (O) with alternating pair of nodes share an edge in the

matching and not in the matching M .

The matching also induces directionality on the alternating paths in the following way.
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Direct all edges (i, j) ∈M from j to i and all edges (i, j) /∈ M from i to j.

An augmenting path is an alternating path that starts and ends at an unmatched

vertex.

An alternating tree for a matching M is a tree TM which contains exactly one un-

matched node r and has following properties:

• every node at odd distance from r has degree 2 in the tree

• all paths from r are alternating paths

• all leaf nodes are at even distance from r

Clearly, every alternating tree has one more node at even distance from r than at odd

distance from r.

A matching M∗ (O) ⊆ EQ (O) is a maximum matching in the equality subgraph

EQ (O) if |M∗ (O) | = max{|M | : M is a matching in EQ (O)}. A maximum matching

M∗ (O) can be obtained using the augmenting path algorithm [10]. A matching M is a

maximum matching in EQ (O), if and only if there is no augmenting path in EQ (O) with

respect to the matching M [10].

A near-perfect matching M◦ (O) ⊆ EQ (O) is a matching in the equality subgraph

such that exactly one node is unmatched. A near-perfect matching exists only if ‖|A|−|B|‖ =

1.

Given a maximum matching M∗ (O) ⊆ EQ (O), an alternating forest or a Hungarian

forest [3] FM∗(O) is a collection of alternating trees rooted at nodes in A induced by the

matching. The number of alternating trees in a Hungarian forest is equal to the number of

unmatched nodes in A. The Hungarian forest FM∗(O) is the subgraph of EQ (O) induced

by the set of nodes X ′ reachable through alternating path from unmatched nodes in A.

Given a maximum matching M∗ (O) ⊆ EQ (O) and an alternating tree T , an expanding

node is a node i′ ∈ AT with an edge with j′ ∈ B \ BT . We will refer CT to be the set of

expanding nodes for the tree T and for each i′ ∈ CT , the respective expanding offer

13



eoi′ = maxj′∈B\BT vi′ (j
′, Oj′). We will also refer to DT = NbrE

(

CT
)

\ BT as the set of

joining nodes for the tree T .

An alternating tree TM for a matching M is an alternating spanning tree if it spans

all the nodes in the network, i.e.- XTM

= A ∪B.

An offer profile O is a stable alternating spanning tree generating offer profile

if O is stable and EQ (O) has a near perfect matching M◦ (O) and associated alternating

spanning tree TM◦(O).

Lemma 3. Consider a set of nodes A and B with |A|− |B| = 1 and a graph S = (A ∪B,E)

that has a near-perfect matching generating an alternating spanning tree. Then:

• Every B′ ⊆ B has least |B′|+ 1 neighboring nodes in A.

• Every A′ ⊂ A has at least |A′| neighboring nodes in B.

Proof. Pick any subset B′ ⊆ B. Since all nodes in B are matched in a near-perfect matching,

then from the Hall’s theorem [6], B′ has edges to at least |B′| nodes in A. Since all nodes

in B′ are interior nodes of an alternating tree, therefore, each node in B′ has one unique

child it is matched to and one parent it is not matched to. Clearly, there is one parent node

different from all the child nodes, or else, there will be a loop in the alternating tree. Hence,

B′ has edges to at least |B′|+ 1 nodes in A in the alternating tree within the network S.

For the second claim, pick any A′ ⊂ A and a near-perfect matching M with an alternating

tree T . If A′ does not contain the root of the alternating tree, then all nodes in A′ are matched

and hence, the number of neighbors of the set A′ must be at least |A|. If A′ contains the root

of the alternating tree, then pick a node i′ not in A′ and change the matching M by switching

the edges within the matching with the edges outside the matching along the alternating

path from the root of T to i′. This creates a new near-perfect matching and an alternating

spanning tree whose root is at i′. For this matching, all the nodes in A′ are matched and

hence the claim follows.
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Proposition 1. Consider a set of nodes A and B with |A|−|B| = 1 and an equality subgraph

EQ (O) that is connected. Then EQ (O) has a near-perfect matching if ∃ a tree T ⊆ EQ (O)

with the following properties:

1. ∀j ∈ B, j is not a leaf node in T .

2. ∀j ∈ B, j has exactly one child node in T .

Proof. Clearly ∀B′ ⊆ B, | ∪j∈B′ Nbr(j)| > |B′|. Hence following Hall’s theorem, there exists

a matching M◦ in T , such that all of B is matched. Therefore, M◦ is a near-perfect matching.

3 Stable Alternating Spanning Tree Generating Offer Profiles

In this section, we introduce three main lemmas about the existence, uniqueness and strict

monotonicity of the stable alternating spanning tree generating offer profiles. Using this,

we prove the main theorem of this section that helps extend the Hungarian algorithm to

find the generalized stable matching. The main theorem introduces a set of continuous and

strictly monotonic offer generating functions for each pair of nodes in the bipartite network.

Lemma 4. Assume there exists two stable offer profiles O
1 and O

2.

• If i ∈ A with O1
i ≤ O2

i and (i, j) ∈ EQ (O2), then O1
j ≥ O2

j .

• If i ∈ A with O1
i ≥ O2

i and (i, j) ∈ EQ (O1), then O1
j ≤ O2

j .

• If j ∈ B with O1
j ≤ O2

j and (i, j) ∈ EQ (O2), then O1
i ≥ O2

i .

• If j ∈ B with O1
j ≥ O2

j and (i, j) ∈ EQ (O1), then O1
i ≤ O2

i .

The resulting inequalities are strict when the conditioning inequalities are strict.

Proof. We only need to prove the first statement and the rest follow similarly. To prove the

first inequality, assume that O1
j < O2

j . Then, O1
j < O2

j = vj (i, O
2
i ) ≤ vj (i, O

1
i ). The second
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inequality is due to the strict monotonicity of pareto payoff function. This implies that O
1

is not stable contradicting our assumption. Hence, by contradiction, the first statement is

true.

Lemma 5. Assume |A|− |B| = 1. Pick any i ∈ A and offer oi. Assume there exists a stable

alternating spanning tree generating offer profile O with Oi = oi. Then O is the unique

stable alternating spanning tree generating offer profile with Oi = oi.

Proof. Assume there exists two stable alternating spanning tree generating offer profiles O1

and O
2 with O1

i = O2
i = oi. Then EQ (O1) 6= EQ (O2) or else O

1 = O
2. Let M◦ (O1)

and M◦ (O2) be the associated near perfect matchings and TM◦(O1) and TM◦(O2) be the

associated alternating spanning trees. Clearly TM◦(O1) 6= TM◦(O2) or else O
1 = O

2. With-

out loss of generality assume that i is unmatched in both M◦ (O1) and M◦ (O2). In both

alternating spanning trees, the nodes at even distances from i belong to A and the nodes at

odd distances from i belong to B. Define

AMi = {i
′ ∈ A : O1

i′ = O2
i′} and BMi = {j

′ ∈ B : O1
j′ = O2

j′}

AM1
i = {i′ ∈ A : O1

i′ > O2
i′} and BM1

i = {j′ ∈ B : O1
j′ > O2

j′}

AM2
i = {i′ ∈ A : O1

i′ < O2
i′} and BM2

i = {j′ ∈ B : O1
j′ < O2

j′}

Since both offer profiles are stable, therefore following the lemma 4:

1. In the alternating tree TM◦(O1), the parents and children of nodes in AM1
i must belong

to BM2
i

2. In the alternating tree TM◦(O1), the parents and children of nodes in BM1
i must belong

to AM2
i

3. In the alternating tree TM◦(O2), the parents and children of nodes in AM2
i must belong

to BM1
i
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4. In the alternating tree TM◦(O2), the parents and children of nodes in BM2
i must belong

to AM1
i

Since, the nodes at odd distance in the alternating trees have exactly one child, and all

nodes have exactly one parent, therefore:

1. Using 1, we have |BM2
i | ≥ |AM

1
i | and from 4, we have |AM1

i | ≥ |BM2
i |+ 1. This gives

a contradiction |BM2
i | ≥ |AM

1
i | ≥ |BM2

i |+ 1 > |BM2
i |.

2. Using 2, we have |AM2
i | ≥ |BM1

i |+ 1 and from 3, we have |BM1
i | ≥ |AM

2
i |. This gives

a contradiction |AM2
i | ≥ |BM1

i |+ 1 > |BM1
i | > |AM

2
i |.

Therefore all the sets AM1
i , AM

2
i , BM1

i , BM2
i are empty which implies that O1 = O

2.

Lemma 6. Assume |A| − |B| = 1. Pick any i ∈ A and assume that for all oi ≤ ci there

exists a stable alternating spanning tree generating offer profile O with Oi = oi. Pick any

two stable alternating spanning tree generating offer profiles O
1 and O

2 with O1
i ≤ ci and

O2
i ≤ ci. If O1

i < O2
i , then ∀i′ ∈ A, O1

i′ < O2
i′ and ∀j′ ∈ B, O1

j′ > O2
j′.

Proof. Clearly, there is no i′ ∈ A, with O1
i′ = O2

i′, otherwise by lemma 5 o1i = o2i . Define

AM
′

i = {i
′ ∈ A : O1

i′ > O2
i′} and BM

′

i = {j
′ ∈ B : O1

j′ < O2
j′}

Since both offer profiles are stable, therefore following the lemma 4:

1. In the alternating tree TM◦(O1), the parents and children of nodes in AM
′

i must belong

to BM
′

i .

2. In the alternating tree TM◦(O2), the parents and children of nodes in BM
′

i must belong

to AM
′

i .

Since, the nodes at odd distance in the alternating trees have exactly one child, and all

nodes have exactly one parent, therefore using 1, we have |BM
′

i | ≥ |AM
′

i | and from 2, we
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have |AM
′

i | ≥ |BM
′

i |+ 1. This gives a contradiction |BM
′

i | ≥ |AM
′

i | ≥ |BM
′

i |+ 1 > |BM
′

i |.

Therefore, we have AM
′

i and BM
′

i empty which implies that ∀i′ ∈ A, O1
i′ < O2

i′ and ∀j′ ∈ B,

O1
j′ > O2

j′.

Lemma 7. Assume |A| − |B| = 1 and assume there exists a stable alternating spanning

tree generating offer profile O. Then ∀i ∈ A, and oi ≤ Oi, there exists a stable alternating

spanning tree generating offer profile O
∗ with O∗

i = oi.

Proof. First we note that since there exists a near-perfect matching with an alternating

spanning tree in S, therefore by lemma 3, every A′ ⊂ A has at least |A′| neighbors in B and

every B′ ⊆ B has at least |B′|+ 1 neighbors in A.

We will prove the lemma by induction. First for |B| = 1, lets call A = {a1, a2} and

B = {b}. Assume there exists a stable alternating spannign tree generating offer profile

O with the equality subgraph EQ (O), a near perfect matching M◦ (O) and the associated

alternating spanning tree TM◦(O). Then pick oa1 < Oa1 and set O
′ as O′

a1
= oa1 , O′

b =

vb (a1, oa1) and O′
a2

= va2 (b, O
′
b). Then clearly, TM◦(O′) = TM◦(O). Hence the lemma is true

when |B| = 1.

Now assume that the lemma is true for all 1 ≤ |B| < n. We will show that the lemma is

true for |B| = n. Pick i ∈ A and oi < Oi.

• For all i′ ∈ A set O′
i′ = maxP∈PS

i,i′
fP
i,i′ (oi).

• For all j ∈ B, set O′
j = maxi′∈NbrS(j) vj (i

′, O′
i′).

From lemma 2 the equality subgraph EQ (O′) is connected and the offer profile O
′ is

stable. Also all nodes j ∈ B have at least one edge in the equality subgraph. Pick a

maximum matching M∗ in EQ (O′) and the alternating forest F ∗ = FM∗
with respect to

the matching M∗. If F ∗ has exactly one alternating tree that spans all nodes in X, then
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O
∗ = O

′ is the desired offer profile and the lemma is true for |B| = n. Otherwise, we proceed

as follows. We will denote:

• AF ∗
= A ∩XF ∗

, BF ∗
= B ∩XF ∗

: the set of nodes in the Hungarian forest that belong

to A and B respectively.

• AF ∗

out = A \ AF ∗
, BF ∗

out = B \ BF ∗
: the set of nodes outside the Hungarian forest that

belong to A and B respectively.

We will create a sequence of offer profiles Ot all with Ot
i = oi and show that the sequences

converges to a stable alternating spanning tree generating offer profile in finite number of

steps. Let I = {i1, i2, ..., im} ⊂ A be the set of unmatched nodes in A. Then the Hungarian

forest F ∗ has m alternating trees each rooted at one of the nodes in I. For node ik we will

call the alternating tree rooted at ik as Tik . Then Tik has one more node in A than in B.

For t=0, set

• O
t = O

′.

• EQt = EQ (Ot).

• M t = M∗ and F t = F ∗.

• At = AF t

, Bt = BF t

and At
out = AF t

out, B
t
out = BF t

out.

• mt = m, I t = {it1, i
t
2, ..., i

t
mt} = I and ∀ik ∈ I t, T t

it
k

= Tik , i
t = it1, T

t = T t
it
1

.

At any time t, pick it and the alternating tree T t. By lemma 3 there exists an expanding

node i′ ∈ CT t

with an expanding offer eoi′ = maxj′∈DTt vi′
(

j′, Ot
j′

)

. Since |BT t

| < n,

therefore by the assumption for induction, within the subgraph S|XTt , there exists a stable

alternating spanning tree generating offer profile O
i′

|XTt with Oi′

i′ = eoi′ . Consider any two

expanding nodes i′ and i′′, their respective expanding offers eoi′ and eoi′′ and their respective

stable alternating spanning tree generating offer profiles, Oi′

|XTt and O
i′′

|XTt . By lemma 6, if

eoi′ > Oi′′

i′ , then eoi′′ < Oi′

i′′ . By repeated application of lemma 6, we find that there exists an
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expanding node i∗ with expanding offers eoi∗ and stable alternating spanning tree generating

offer profile, Oi∗

|XTt such that for all expanding nodes i′, eoi′ ≤ Oi∗

i′ . For t+ 1, we set:

• For all i′ ∈ XT t

, set Ot+1
i′ = Oi∗

i′ and for i′ /∈ XT t

, set Ot+1
i′ = Ot

i′.

• EQt+1 = EQ (Ot+1).

• Since, Ot+1

|XTt is a stable alternating spanning tree generating offer profile within the sub-

graph S|XTt , therefore there is a unique near-perfect matching M∗
|XTt ⊆ EQ|XTt that

leaves it unmatched. First set M t+1 = M t

|XTt
out

∪M∗
|XTt . If there exists an augmenting

path from it with respect to the matching M t+1 within the equality subgraph EQt+1,

then switch the edges within the matching and outside the matching along the aug-

menting path to create a new matching M t+1. Clearly this is a maximum matching in

EQt+1 because there does not exist any other augmenting paths in EQt+1. F t+1 is the

Hungarian forest induced by the matching M t+1 in the equality subgraph EQt+1.

• At+1 = AF t+1

, Bt+1 = BF t+1

and At+1
out = AF t+1

out , Bt+1
out = BF t+1

out .

• If the matching size changed, then set mt+1 = mt − 1, for all k < mt,set it+1
k = itk+1,

I t+1 = {it+1
1 , ..., it+1

mt+1}. If the matching did not change set mt+1 = mt, for all k ≤ mt,set

it+1
k = itk, I

t+1 = I t. ∀it+1
k ∈ I t+1, T t+1

it+1

k

is the new alternating tree rooted at it+1
k . Set

T t+1 = T t+1

it+1

1

.

We now show that the Hungarian forest satisfies certain properties at all time t.

Proposition 2. The following hold about the Hungarian forest at any time t:

• |BF t

out| ≥ |A
F t

out|.

• There is no edge between a node in AF t

and a node in BF t

out in the equality subgraph

EQ (Ot), i.e.-
(

AF t

×BF t

out

)

∩ EQ (Ot) = φ. In other words, all the neighbors of BF t

out

belong to AF t

out.

• All edges in the matching M t belong to AF t

× BF t

∪AF t

out × BF t

out.
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• The number of alternating trees in the Hungarian forest is one more than the number

of unmatched nodes in BF t

out, i.e.- mt = |BF t

out|+ 1.

Proof. Since all nodes in AF t

out are matched to nodes in BF t

out, the first claim holds.

Pick a nodei′ ∈ AF t

and an alternating tree T that contains i′. If there exists an edge

(i′, j′) ∈ EQ (Ot) between node i′ and another node j′ ∈ B, then:

• if the edge is in matching M t, then the alternating path from the root of the alternating

tree T to i′ includes j′ and hence j′ /∈ BF t

out.

• if the edge is not in the matching M∗, then the alternating path from the root of the

alternating tree T to i′ can be extended to include j′. Hence, j′ /∈ BF t

out.

Hence, the second claim follows and the third claim follows from it.

We now prove the fourth claim. The number of unmatched nodes in BF t

out is |BF t

out|−|A
F t

out|.

Since all nodes in AF t

out and BF t

are matched and the number of unmatched nodes in A is

one more than the number of unmatched nodes in B, therefore the number of unmatched

nodes in AF t

is |BF t

out| − |A
F t

out|+1. Since each unmatched node in AF t

is the root of a unique

alternating tree, and each alternating tree has a unique root that belong to AF t

therefore

the number of alternating trees in the Hungarian forest is one more than the number of

unmatched nodes in BF t

out.

We also observe that the offer profile O
t is stable at any time t as shown in the following

proposition.

Proposition 3. At any time t, the offer profile O
t is stable.

Proof. From 2, we know that the offer profile is stable at t = 0.

Assume that for some t ≥ 0, the offer profile O
t is stable. At iteration t + 1, if the offers

change, then:
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From the construction of Ot+1, and by lemma 6 we know that:

∀i′ ∈ A \ AT t

, Ot+1
i′ = Ot

i′ and ∀j′ ∈ B \BT t

, Ot+1
j′ = Ot

j′

∀i′ ∈ AT t

, Ot+1
i′ < Ot

i′ and ∀j′ ∈ BT t

, Ot+1
j′ > Ot

j′

The edges in E can be divided into four mutually exclusive subsets:

• E1 = E ∩
(

AT t

× BT t)

• E2 = E ∩
((

A \ AT t)

×BT t)

• E3 = E ∩
(

AT t

×
(

B \BT t))

• E4 = E ∩
((

A \ AT t)

×
(

B \BT t))

From the construction, since O
t+1

|XTt is a stable alternating spanning tree generating offer

profile within the subgraph S|XTt , therefore,

∀ (i′, j′) ∈ E1, Ot+1
i′ ≥ vi′

(

j′, Ot+1
j′

)

.

Since O
t was stable therefore

∀ (i′, j′) ∈ E4, Ot+1
i′ = Ot

i′ ≥ vi′
(

j′, Ot
j′

)

= vi′
(

j′, Ot+1
j′

)

.

From the construction of Ot+1 and the stability of Ot and since the pareto payoff functions

are strictly decreasing therefore

∀ (i′, j′) ∈ E2, Ot+1
i′ = Ot

i′ ≥ vi′
(

j′, Ot
j′

)

> vi′
(

j′, Ot+1
j′

)

22



Since for all i′ ∈ At, O
t+1
i′ ≥ eoi′ , therefore

∀ (i, j) ∈ E3, Ot+1
i′ ≥ eoi′ ≥ vi′

(

j′, Ot
j′

)

= vi′
(

j′, Ot+1
j′

)

Therefore we see that

∀ (i′, j′) ∈ E,Ot+1
i′ ≥ vi′

(

j′, Ot+1
j′

)

and hence the offer profile O
t+1 is stable.

By induction at any iteration t ≥ 0, the offer profile O
t is stable.

We also notice the following about the structural properties of the Hungarian forest and

the offer profile at any time t in the following proposition.

Proposition 4. At any time t ≥ 0:

1. For all t′ > t and all i′ ∈ A, Ot′

i′ ≤ Ot
i′ and for all j′ ∈ B, Ot′

j′ ≥ Ot
j′.

2. For all unmatched nodes j′ ∈ B, Ot
j′ = O0

j′.

3. If at any time t a node j ∈ B \BT t

has Ot
j > Ot

j, then j has an alternating path for the

matching M t in EQt from some j′ ∈ B such that Ot
j′ = O0

j′.

4. If at any time t a node j ∈ Bt has Ot
j > O0

j , then j has a path in EQt to some j′ ∈ B

such that Ot
j′ = O0

j′.

Proof. Since at any time t, for any expanding node i′ ∈ CT t

, the expanding offer eoi′ < Ot
i′,

therefore by lemma 6 for all i′ ∈ AT t

, Ot
i′ < Ot−1

i′ and for all i′ ∈ A \ AT t

, Ot
i′ = Ot−1

i′ . Also,

for all j′ ∈ BT t

, Ot
j′ > Ot−1

j′ and for all j′ ∈ B \BT t

, Ot
j′ = Ot−1

j′ . Hence the first claim holds.

Clearly, if the node j′ ∈ B is unmatched, it must not have been any alternating tree until

time t. Hence Ot
j′ = O0

j′.
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We now prove the third claim. first we note that B \BT t

=
(

Bt \BT t)

∪ (B \Bt).

If j ∈ Bt \ BT t

, i.e.- j is in the Hungarian forest but not in the alternating tree T t at time

t, then Ot
j = O0

j . To see this, assume that j ∈ T t
it
k

for some 1 < k < mt. Then all nodes

i′ ∈ A
T t

it
k have Ot

i′ = O0
i′ and therefore by stability of O0 and claim 1, Ot

j = O0
j .

If a node j ∈ B \ Bt, i.e.- j is not in the hungarian forest, then either Ot
j = O0

j or at some

time t′ < t it was in the alternating tree T t′. Pick t◦ to the be maximum of such times

t′. Since, j′ was never in the hungarian forest after t◦, therefore at t◦ + 1, the alternating

tree T t◦ connected to a joining node j′ with an alternating path to an unmatched node j◦.

From claim 2, Ot◦

j◦ = O0
j◦. At that time t◦ + 1, an alternating path was created from j◦ to j.

Clearly, j◦ was never in the hungarian forest until t, otherwise j would be in the hungarian

forest after time t◦ too. Therefore, Ot
j◦ = Ot◦

j◦ = O0
j◦ and j has an alternating path from j◦

for which Ot
j◦ = O0

j◦. Hence claim 3 holds.

We will prove the fourth claim by induction. Clearly the claim holds for t = 0. Assume

the claim holds for some t ≥ 0. At time t + 1, the alternating tree connects to one of the

joining nodes j ∈ B \ BT t

. By claim 3 j has a path to some j′ with Ot+1
j′ = Ot

j′ = O0
j′ and

hence all nodes in the alternating tree have a path to a nodes j′ for which Ot+1
j′ = O0

j′. Hence

by induction the claim holds.

We now observe cetain properties of the equality subgraph outside the Hungarian forest

at all times in the following proposition.

Proposition 5. At any time t ≥ 0, the following hold:

1. If there is more than one alternating tree in the Hungarian forest, then for all j ∈ B,

such that there is an alternating path Pj,i ⊆ EQt from j to i, for all nodes k′ ∈ XPj,i,

Ot
k′ = O0

k′.

2. Assume that at time t+ 1 the alternating tree T t connects to a joining node j ∈ DT t

=

NbrE
(

AT t)

\ BT t

such that there is an alternating path Pj,i ⊆ EQt from j to i,. Let
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J ⊂ DT t

be the set of joining nodes that the tree T t connects to at time t + 1. Then

each node in DT t

can be reached on alternating paths from nodes in J in EQt.

3. If i belongs to the alternating tree T t then DT t

= φ.

4. If there is more than one alternating tree in the Hungarian forest, the the node i does

not belong to the Hungarian forest.

Proof. Clearly, the first claim hold at t = 0.

For the fourth claim at t = 0, assume that there is more than one alternating tree in the

Hungarian forest and i belongs to the Hungarian forest. Assume without loss of generality

that i belongs to an alternating tree T . Then AT ⊂ A has at least |AT | neighbors in S. Since

T has |AT | − 1 nodes in BT , therefore at least one of these neighbors is outside T . Pick one

such neighbor j′ ∈ B \BT . By lemma 2, since the tree T contains i, therefore, T contains at

least one neighbor i′ of j′ in the equality subgraph EQ (O0). Then since (i′, j′) ∈ EQ (O0)

and i′ ∈ AT , therefore by proposition 2, j′ ∈ BT . This contradicts our assumption that j′ is

outside the alternating tree. Hence by contradiction, the fourth claim holds at t = 0.

Assume the first and the fourth claims hold for some t ≥ 0. Then at t+1 if for any node

k′ ∈ XP , Ot+1
k′ 6= Ot

k′ = O0
k′, then k′ must be in the alternating tree BT t

at t. This means

that i was in the alternating tree at t which is a contradiction. Hence, the first claim is

satisfied at t + 1. Therefore by induction claim 1 holds true.

At t + 1, assume that the alternating tree T t connects to a joining node j that has an

alternating path to i. Let J ⊂ DT t

be the set of joining nodes that the tree T t connects

to at time t + 1. Pick any j′ ∈ NbrE
(

AT t)

\ BT t

and assume that j′ is not reachable from

an alternating path from any node in J in EQt. Clearly, then j′ is not reachable from an

alternating path from any node in J in EQt+1. Pick i′ ∈ AT t

such that (i′, j′) ∈ E. By

proposition 4, j′ is reachable by an alternating path Pj◦,j′ from some j◦ with Ot
j◦ = O0

j◦ in

both EQt EQt+1. By stability of Ot and O
t+1, and claim 1 of proposition 4, all neighbors of

j◦ in EQ0 are also neighbors of j in EQt and EQt+1. Pick a neighbor i◦ of j◦ in EQ0. From
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the assumption, no node in XPj◦,j′ ∪ {i◦} belongs to the alternating tree T t and no node in

XPj◦,j′ ∪ {i◦} is reachable by an alternating path from any node in J . Consider the paths

Pi,i′ ⊂ EQt+1,Pj′,j◦ ⊂ EQt+1 and the path Pi,i◦ = Pi,i′ ∪ {i
′, j′}∪Pj′,j◦ ∪ {j

◦, i◦} from i to i◦.

The offer induced on i◦ by the path Pi,i◦ for the offer oi on i is

f
Pi,i◦

i,i◦ (oi)

= vi◦
(

j◦, f
Pj′,j◦

j′,j◦

(

vj′
(

i′, f
Pi,i′

i,i′ (oi)
)))

> vi◦
(

j◦, f
Pj′,j◦

j′,j◦

(

Ot+1
j′

)

)

since by stability of Ot+1, Ot+1
j′ > vj′

(

i′, Ot+1
i′

)

= vj′
(

f
Pi,i′

i,i′ (oi)
)

= vi◦
(

j◦, Ot+1
j◦

)

= Ot+1
i◦

= O0
i◦

This is a contradiction because by the definition of O0, O0
i◦ is the maximum path induced

offer on i◦ for the offer oi on i. Hence by contradiction, the second claim holds.

We now prove the third claim. Assume that at time t i belongs to the alternating tree

T t and DT t

6= φ. Pick j′ ∈ DT t

. By proposition 4, j′ is reachable by an alternating path

Pj◦,j′ from some j◦ with Ot
j◦ = O0

j◦ in EQt. By stability of Ot, and claim 1 of proposition 4,

all neighbors of j◦ in EQ0 are also neighbors of j in EQt. Pick a neighbor i◦ of j◦ in EQ0.

From the assumption, no node in XPj◦,j′ ∪ {i◦} belongs to the alternating tree T t. Consider

the paths Pi,i′ ⊂ EQt,Pj′,j◦ ⊂ EQt and the path Pi,i◦ = Pi,i′ ∪ {i
′, j′} ∪ Pj′,j◦ ∪ {j

◦, i◦} from

i to i◦. The offer induced on i◦ by the path Pi,i◦ for the offer oi on i is
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f
Pi,i◦

i,i◦ (oi)

= vi◦
(

j◦, f
Pj′,j◦

j′,j◦

(

vj′
(

f
Pi,i′

i,i′ (oi)
)))

> vi◦
(

j◦, f
Pj′,j◦

j′,j◦

(

Ot
j′

)

)

since by stability of Ot, Ot
j′ > vj′

(

i′, Ot
i′

)

= vj′
(

f
Pi,i′

i,i′ (oi)
)

= vi◦
(

j◦, Ot
j◦

)

= Ot
i◦

= O0
i◦

This is a contradiction because by the definition of O0, O0
i◦ is the maximum path induced

offer on i◦ for the offer oi on i. Hence by contradiction, either i does not belong to the

alternating tree T t or DT t

= φ. This proves claim 3.

The fourth claim follows from the first claim as follows. Assume i does not belong to the

Hungarian forest until time t− 1. Assume i belongs to the Hungarian forest at time t which

implies that at time t, T t−1 connected to a node j with an alternating path to i and hence

i belongs to the alternating tree T t. Since there are more than one alternating trees in the

Hungarian forest, then |AT t

| < |A|, and therefore there is at least one joining node j′ ∈ DT t

that T t can connect to by some expanding node i′ ∈ AT t

. This contradicts claim 3 that

DT t

= φ. Hence i does not belong to the Hungarian forest at time t. By induction, claim 4

holds.

Proposition 6. At any time t, if the Hungarian forest has only one alternating tree T t, and

this alternating tree contains i, then this alternating tree spans all nodes in X.

Proof. Since the Hungarian forest has only one alternating tree T t and it contains i, then by

proposition 5, DT t

= φ. If AT t

6= A then |NbrE
(

AT t)

| = |BT t

|+ |DT t

| = |AT t

|−1+ |DT t

| =

|AT t

| − 1 < |AT t

| which contradicts lemma 3. Therefore AT t

= A and |BT t

| = |AT t

| − 1 =
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|A| − 1 = |B|. Therefore BT t

= B. Therefore T t spans all nodes in X.

Proposition 7. If at some time t, mt > 1, then at some finite time t◦, the matching increases

by 1.

Proof. The root of the alternating tree T t is it1. At each time t′ > t, until it1 is matched, the

alternating tree T t′−1 has the root it
′−1
1 = it1 and one of the following happens:

1. T t′−1 connects to a joining node j ∈ DT t′−1

such that j has an alternating path to an

unmatched node j◦.

2. T t′−1 connects to a joining node j ∈ DT t′−1

such that j has an alternating path to i.

3. T t′−1 connects to joining nodes J ⊆ DT t′−1

such that no nodes in J have an alternating

path to either an unmatched node or to i.

In the third case, BT t′−1

⊂ BT t′

. Thus the alternating tree rooted at it1 increases. Since,

B is finite, therefore the third case happens only finitely many times. Therefore, at some

finite time t◦, either of the first two cases happen. If the first case happens at t◦, then there is

an augmenting path from it1 to some unmatched node j◦. Thus, by construction of matching

M t◦ at time t◦, it1 is matched in M t◦ and the matching increases by 1. If the second case

happens at time t◦, then it will contradict proposition 5 unless the first case happens along

with the second case at time t◦. Hence at time t◦, it1 is matched in M t◦ and the matching

increases by 1.

Proposition 8. At some finite time t∗, the offer profile O
t∗ is a stable alternating spanning

tree generating offer profile.

Proof. By repeated application of proposition 7, we see that at some finite t◦, there is only

one alternating tree in the Hungarian forest. At any time t′ > t◦, unless T t′−1 spans all nodes
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in X, the alternating tree T t′−1 has the root it
◦

1 = it
′−1
1 and one of the following happens:

1. T t′−1 connects to a joining node j ∈ DT t′−1

such that j has an alternating path to i.

2. T t′−1 connects to joining nodes J ⊆ DT t′−1

such that no nodes in J have an alternating

path to i.

In the second case, BT t′−1

⊂ BT t′

. Thus the alternating tree rooted at it
◦

1 increases. Since,

B is finite, therefore the second case happens only finitely many times. Therefore, at some

finite time t∗, the first case happens. By proposition 6 at time t∗, the alternating tree T t∗

spans all nodes in X. Also by proposition 3, the offer profie O
t∗ is stable. Therefore, at

some finite time t∗, the offer profile O
t∗ is a stable alternating spanning tree generating offer

profile.

By proposition 8, in finite time the sequence O
t converges to a stable alternating spanning

tree generating offer profile O
∗ for |B| = n. By induction, the lemma holds. This completes

the proof of the lemma.

We now present the main result of this section that uses the results we developed.

Theorem 1. Assume |A| − |B| = 1. Assume there exists a stable alternating spanning tree

generating offer profile O with Oj ≥ 0, ∀j ∈ B. Pick i, i′ ∈ A and j ∈ B and define the

functions:

• fS
i,i′ : (− inf, Oi]→ (− inf, Oi′] with fS

i,i′ (x) = O′
i′, such that O′ is the stable alternating

spanning tree generating offer profile with O′
i = x and O′

j ≥ 0, ∀j ∈ B.

• fS
i′,i : (− inf, Oi′]→ (− inf, Oi] with fS

i′,i (x) = O′
i, such that O′ is the stable alternating

spanning tree generating offer profile with O′
i = x and O′

j ≥ 0, ∀j ∈ B.
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• fS
i,j : (− inf, Oi] → [Oj, inf) with fS

i,j (x) = O′
j, such that O

′ is the stable alternating

spanning tree generating offer profile with O′
i = x and O′

j ≥ 0, ∀j ∈ B.

The functions fS
i,i′ and fS

i′,i are inverse of each other and are continuous and strictly

increasing for each pair i, i′ ∈ A. The function fS
i,j is continuous and strictly decreasing for

each pair i ∈ A, j ∈ B.

Proof. From lemmas 7 and 5, we know that the functions fS
i,i′ and fS

i′,i are well defined and

are inverse of each other. Also from lemma 6, we know the functions fS
i,i′ and fS

i′,i are strictly

increasing within the intervals (− inf, Oi) and (− inf, Oi′) respectively.

Now consider an open interval (x, y) ⊆ (− inf, Oi) with y ≤ Oi and set x′ = fS
i,i′ (x)

and y′ = fS
i,i′ (y). Then since fS

i,i′ and fS
i′,i are strictly increasing, ∀z ∈ (x, y), fS

i,i′ (z) =
(

fi′,i
)−1

(z) ∈ (x′, y′) and ∀z′ ∈ (x′, y′), fS
i′,i (z

′) =
(

fS
i,i′

)−1
(z′) ∈ (x, y). Since, x, y were arbi-

trarily picked, therefore for all open intervals in (− inf, Oi], the inverse images f−1
i′,i ((x, y)) =

fS
i,i′ ((x, y)) are open intervals. Therefore, by definition, fS

i′,i is continuous. By similar rea-

soning, fS
i,i′ is continuous.

Since for any x ∈ (− inf, Oi), the offer profile O
′ is stable alternating spanning tree gen-

erating offer profile, therefore fS
i,j (x) = maxi′∈Nbr(j) vj (i

′, O′
i′) = maxi′∈Nbr() vj

(

i′, fS
i,i′ (x)

)

.

Since the functions v are continuous and strictly decreasing and fS
i,i′ is continuous and strictly

increasing and maximum of continous strictly decreasing functions is continuous and strictly

decreasing, therefore fS
i,j (x) is continuous and strictly decreasing in x.

4 Algorithm

In this section, we present an algorithm to find a stable and feasible offer profile for a bipartite

network S. Existence of a stable and feasible offer profile proves the existence of a stable

weighted matching in S. The algorithm is described as follows.
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4.1 Initialization

We first define an initial offer profile O
0 and the initial matching as follows.

For t=0, set

1. ∀j ∈ B, set O0
j = 0 and ∀i ∈ A, set O0

i = maxj∈Nbr(i) vi (j, 0).

2. Set EQ0 = EQ (O0).

3. Set M0 = M∗ (EQ0) some maximum matching in EQ0.

4. if there is an alternating path from an unmatched node i ∈ A with Oi > 0 to a matched

node i◦ ∈ A with O◦
i = 0, then switch the alternating edges from within the matching

M0 to outside the matching M0 and vice-versa along the alternating path from i to i◦.

This leaves the matching size unchanged. Repeat this process until no such alternating

paths are present in EQ0.

5. Set I0 = {i01, i
0
2, ..., i

0
m0} as the set of unmatched nodes in A with positive offers. Set

m0 = |I0|, and ∀i0k ∈ I0, setT 0
i0
k

= Ti0
k

as the alterating tree induced by the matching M0

rooted at i0k. Set T 0 = T 0
it
1

as the alternating tree under consideration.

4.2 Iteration

We iteratively change the offer profile to create a sequence of offer profiles. At each time

t ≥ 0, we compute the new offer profile O
t+1 as follows.

While I t 6= φ, pick T t.

1. ∀i ∈ CT t

, set the expanding offer

eoi = max{max
j∈DTt

vi
(

j, Ot
j

)

, 0}

and select ic ∈ CT t

: f
S
|XTt

ic,i (eoic) ≥ eoi, ∀i ∈ CT t

Theorem 1 implies that such a node exists in CT t

.
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2. ∀i ∈ AT t ∪ BT t

set Ot+1
i = f

S
|XTt

ic,i (eoic) and

∀i /∈ AT t ∪ BT t set Ot+1
i = Ot

i.

3. Set EQt+1 = EQ (Ot+1).

4. Since, Ot+1

|XTt is a stable alternating spanning tree generating offer profile within the sub-

graph S|XTt , therefore there is a unique near-perfect matching M∗
|XTt ⊆ EQt+1

|XTt that

leaves it1 unmatched. First set M t+1 = M t

|XTt
out

∪M∗
|XTt . If there exists an augmenting

path from it with respect to the matching M t+1 within the equality subgraph EQt+1,

then switch the edges within the matching and outside the matching along the aug-

menting path to create a new matching M t+1. This increases the size of the matchign

by 1. If there is no augmenting path but there is an alternating path from it1 to a

matched node i◦ ∈ A with Ot+1
i◦ = 0, then switch the alternating edges from within the

matching M t+1 and outside the matching M t+1 along the alternating path from it1 to

i◦. This leaves the matching size unchanged but it1 is now matched. Clearly this is a

maximum matching in EQt+1 because there does not exist any other augmenting paths

in EQt+1.

5. If it1 is matched in M t+1, or Ot+1
it
1

= 0 then set mt+1 = mt − 1, for all k < mt,set

it+1
k = itk+1, I t+1 = {it+1

1 , ..., it+1
mt+1}. Otherwise set mt+1 = mt, for all k ≤ mt,set

it+1
k = itk, I

t+1 = I t. ∀it+1
k ∈ I t+1, T t+1

it+1

k

is the new alternating tree rooted at it+1
k . Set

T t+1 = T t+1

it+1

1

.

4.3 Convergence

We now show that the algorithm converges in finitely many iterations and the offer profile

at the point of convergence is feasible and stable. We need to show that for some finite t∗,

the maximum matching M t∗ has all nodes with positive offers are matched. We also need

to show that Ot∗ is stable.
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Proposition 9. At any iteration t ≥ 0, the offer profile O
t is stable.

Proof. At t = 0 we know the offer profile is stable because by construction ∀i ∈ A, set

O0
i = maxj∈Nbr(i) vi

(

j, O0
j

)

. Assume that for some t ≥ 0, the offer profile O
t is stable. If at

iteration t+1, the offers do not change, then offer profile O
t+1 is stable. If at iteration t+1,

the offers change, then:

From the construction of Ot+1, and by theorem 1 we know that:

∀i′ ∈ A \ AT t

, Ot+1
i′ = Ot

i′ and ∀j′ ∈ B \BT t

, Ot+1
j′ = Ot

j′

∀i′ ∈ AT t

, Ot+1
i′ < Ot

i′ and ∀j′ ∈ BT t

, Ot+1
j′ > Ot

j′

The edges in E can be divided into four mutually exclusive subsets:

• E1 = E ∩
(

AT t

× BT t)

• E2 = E ∩
((

A \ AT t)

×BT t)

• E3 = E ∩
(

AT t

×
(

B \BT t))

• E4 = E ∩
((

A \ AT t)

×
(

B \BT t))

From the construction, since O
t+1

|XTt is a stable alternating spanning tree generating offer

profile within the subgraph S|XTt , therefore,

∀ (i′, j′) ∈ E1, Ot+1
i′ ≥ vi′

(

j′, Ot+1
j′

)

.

Since O
t was stable therefore

∀ (i′, j′) ∈ E4, Ot+1
i′ = Ot

i′ ≥ vi′
(

j′, Ot
j′

)

= vi′
(

j′, Ot+1
j′

)

.

From the construction of Ot+1 and the stability of Ot and since the pareto payoff functions
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are strictly decreasing therefore

∀ (i′, j′) ∈ E2, Ot+1
i′ = Ot

i′ ≥ vi′
(

j′, Ot
j′

)

> vi′
(

j′, Ot+1
j′

)

Since for all i′ ∈ At, O
t+1
i′ ≥ eoi′ , therefore

∀ (i, j) ∈ E3, Ot+1
i′ ≥ eoi′ ≥ vi′

(

j′, Ot
j′

)

= vi′
(

j′, Ot+1
j′

)

Therefore we see that

∀ (i′, j′) ∈ E,Ot+1
i′ ≥ vi′

(

j′, Ot+1
j′

)

and hence the offer profile O
t+1 is stable.

By induction at any iteration t ≥ 0, the offer profile O
t is stable.

Proposition 10. At any iteration t ≥ 0, if there exists j ∈ B with Ot
j > 0, then j is matched

in M t.

Proof. At t = 0, since all nodes in B have offers 0, this holds true. Assume that at some

iteration t ≥ 0, if there exists j ∈ B with Ot
j > 0, then j is matched in M t. If the offer

profile does not change at time t + 1, then nothing changes and the proposition holds at

t+ 1. Otherwise, at time t+ 1, one of the following happens:

1. T t connects to a joining node j ∈ DT t

such that j has an alternating path to an

unmatched node j◦.

2. T t connects to a joining node j ∈ DT t

such that j has an alternating path to a matched

node i◦ ∈ A \ AT t

with Ot+1
i◦ = 0.

3. Ot+1
i = 0 for some i ∈ AT t

.
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4. T t connects to joining nodes J ⊆ DT t

but the above cases do not happen.

At t + 1, all nodes in BT t

are matched to the nodes in AT t

by the selected near-perfect

matching M∗
|XTt at time t+ 1. From the assumption at time t, we know that if there exists

j ∈ B with Ot
j > 0, then j is matched in M t. Therefore, any node j ∈ B \BT t

with Ot
j > 0

is matched to some node in A \ AT t

in M t since EQt ∩
(

A \ AT t

×B \BT t)

= φ. For all

nodes j ∈ B \BT t

, we know that Ot+1
j = Ot

j.

In the fourth case M t+1 = M∗
|XTt ∪M t

|X\XTt and hence all nodes in B that were matched

at time t are matched at time t + 1. In the first case, before exchanging any edges, we see

that as in the third case, all nodes in B that were matched at time t are matched at time

t + 1. By exchanging the edges within the matching M t+1 with edges outside the matching

in the augmenting path, the nodes in the augmenting path still stay matched and it does not

change matching outside the augmenting path, so all nodes in B that were matched at time

t are matched at time t+1. For the second and third case, by the same argument, all nodes

in B that were matched at time t are matched at time t + 1. Thus we see that all nodes in

B that were matched in M t are matched in M t+1. Therefore any node j ∈ B with Ot
j > 0

that was matched in M t is matched in M t+1. Also all nodes j ∈ B for which Ot+1
j > Ot

j ≥ 0

belong to BT t

and hence are matched in M t+1. Therefore any node j ∈ B with Ot+1
j > 0 is

matched in M t+1. Thus by induction, the proposition holds.

Theorem 2. There exists a finite time t∗ for which Ot∗ is feasible and stable.

Proof. We will first show that at some finite time t∗, mt∗ = 0, i.e.- all nodes in A with positive

offers are matched. Then we will show that at that time t∗, Ot∗ is feasible and stable.

For any t, the root of the alternating tree T t is it1. At each time t′ > t, until it1 is matched,

the alternating tree T t′ has the root it
′

1 = it1 and one of the following happens:

1. T t′−1 connects to a joining node j ∈ DT t′−1

such that j has an alternating path to an

unmatched node j◦ or a matched node i◦ ∈ A \ AT t′−1

with Ot′

i◦ = 0.
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2. Ot′

i = 0 for some i ∈ AT t′−1

.

3. T t′−1 connects to joining nodes J ⊆ DT t′−1

but the above two cases do not happen.

In the third case, BT t′−1

⊂ BT t′

. Thus the alternating tree rooted at it1 increases. Since,

B is finite, therefore the third case happens only finitely many times. Therefore, at some

finite time t◦, either of the first two cases happen. If the first case happes at t◦, then there

is an augmenting path from it1 to j◦ or there is an alternating path from it1 to some i◦ with

Ot◦

i◦ = 0. Thus, by construction of matching M t◦ at time t◦, it1 is matched in M t◦ and

mt◦ = mt◦−1. If the second case happes at t◦, then there is an alternating path from it1 to

some i with Ot◦

i = 0. Thus, by construction of matching M t◦ at time t◦, it1 is matched in

M t◦ and mt◦ = mt◦−1. Hence at time t◦, it1 is matched in M t◦ and mt◦ = mt◦−1.

Since m0 is finite, and mt decreases by 1 in finitely many iterations when mt > 0, therefore

at some finite time t∗, mt∗ = 0.

We now show that at t∗, Ot∗ is feasible and stable. From proposition 9, it follows that Ot∗

is stable. Also from proposition 10 we see that all nodes j ∈ B with Ot∗

j > 0 are matched in

M t∗ . Since mt∗ = 0, therefore all nodes i ∈ A with Ot∗

i > 0 are matched in M t∗ . Consider

the matching M t∗ and a split sM
t∗

as follows:

∀(i, j) ∈M t∗ , set sM
t∗

(i) = u−1
i

(

j, Ot∗

i

)

,

sM
t∗

(j) = u−1
j

(

i, Ot∗

j

)

,

∀ unmatched i ∈ A, sM
t∗

(i) = 0.

∀ unmatched i ∈ A, sM
t∗

(i) = 0.

The above is a well defined split because for all(i, j) ∈M t∗ ,
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sM
t∗

(i) + sM
t∗

(j)

= u−1
i

(

j, Ot∗

i

)

+ sM
t∗

(j)

= u−1
i

(

j, vi
(

j, Ot∗

j

))

+ sM
t∗

(j)

= u−1
i

(

j, vi

(

j, uj

(

i, sM
t∗

(j)
)))

+ sM
t∗

(j)

= u−1
i

(

j, ui

(

j, w (i, j)− sM
t∗

(j)
))

+ sM
t∗

(j)

= w (i, j)− sM
t∗

(j) + sM
t∗

(j)

= w (i, j) .

Hence, we have a weighted matching
(

M t∗ , sM
t∗
)

with payoff profile U

(

M t∗ , sM
t∗
)

=

O
t∗ . Therefore O

t∗ is a feasible offer profile.

From theorem 2, we have proved the existence of a feasible and stable offer profile and

have also found a stable weighted matching
(

M t∗ , sM
t∗
)

in the bipartite network S.

5 Conclusions

In this paper we extended the stable matching problem in bipartite networks to the gen-

eral scenario where nodes derive value from the part of the split as well as the node they

are matched to. This problem appears in real life scenarios and has applications in several

problems such as marriage and matching theories, group selection, bargaining in networks

and exchanges in networks. We studied a very general case when the value is continuous

and strictly increasing in the part of the split and proved the existence of a stable weighted

matching. The key ingredient to the proof is the existence of strictly monotonic and con-

tinuous stable alternating spanning tree generating offer profiles that helps us exend the
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Hungarian method to the generalized case. The method of computing a stable alternating

spanning tree generating offer profile is not very efficient. However, with additional structure

on the value functions and correlations between value functions, more efficient methods can

be employed and will be an interesting line of future work.
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