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In this paper we discuss the threat of malware targeted edaixtg information about the relationships in a
real-world social network as well as characteristic infatimn about the individuals in the network, which we
dub Stealing RealityWe present Stealing Reality (SR), explain why it diffei@nfrtraditional types of network
attacks, and discuss why its impact is significantly moregdaous than that of other attacks. We also present
our initial analysis and results regarding the form that Bnaack might take, with the goal of promoting the
discussion of defending against such an attack, or evedg@istting the fact that one has already occurred.

I. INTRODUCTION spread further. In the context of Stealing Reality, thishoelt
is not as useful, since a majority of peers would not be con-
@cted on a routine basis. There is a great deal of informa-

value associated with it, there will always be those who try“(_)n in_ the patterns of communication exercised by the user
to malevolently ‘game’ the system for profit. These days, the” 'Ith .h's |f;]e.ers. (‘jl'hese patterr:js arelgflf)ected zy. many factors o
field of social networks is experiencing exponential grovvth.re ationship and context, and could be used in reverse — to
in popularity while in parallel, computational social swoe infer the relationship and context. In addition the comrmuni
[1] and network science [2—41] are providing real-world ap_cation patterns, combined with other behavioral data that ¢
plicable methods and results with a demonstrated moneta harv_ested fro_m mobile devices, C(.)UId serve to .teach agrea
value. We conjecture that the world will increasingly sed-ma eal of |_nform:3t|or|1 abrc:u_t the user Ihlmsel(fj— their deéthelr
ware integrating tools and mechanism from network scienc ccupation and role, their personality, and a great deaemor
into its arsenal, as well as attacks that directly targetdmsm

his type of information could be summarized as a “rich iden-
network information as a goal rather than a means. Paraphrady” Profile of a person [8], which is much more informative
ing Marshall McLuhan’s “the medium is the message,” we

than direct demographic information which is currentlydise
have reached the stage where, now, “the network is the mel® profile users, and could be very valuable to advertiseds an
sage.”

spammers, for example.

Social networking concepts could be discussed both in the Expanding from an individual’s egotistical network, the so
context of malware’s means of spreading, as well as in thé&ial network as a whole has intricate relationships andltspo
context of its target goal. Many existing viruses and wormsgies among cliques and sub-groups, which may be both over-
use primitive forms of ‘social engineering’ [5] as a means oflapping as well as residing in multiple hierarchies. This is
spreading, in order to gain the trust of their next victimd an complicated even more by issues of like trust or influence.
cause them to click on a link or install an application. For ex The fact that three people know each other does not necessar-
ample, ‘Happy99’ was one of the first viruses to attach itgelf ily mean that information received by one will propagate in
outgoing emails, thus increasing the chances of havinm.he rthe same format to the two peers, if at all. Computational SO-
Cipient open an attachmentto a Seeming|y |egitimate messagiiaj science has shown that many of these aspects of a social
sent by a known acquaintance [6]. Sometimes the malware®etwork could be learned and extracted from communication
originators use similar techniques to seed the attack. AemorpPatterns [8].
recent example is ‘Operation Aurora’, a sophisticatedcatta  |n this paper we discuss the ability to steal vital pieces of
originating in China against dozens of US companies duringnformation concerning networks and their users, by a non-
the first half of 2009, where the attack was initiated via$ink aggressive (and hence — harder to detect) malware agent. We
spread through a popular Korean Instant Messaging applicamalyze this threat and build a mathematical model capable
tion [7]. Nevertheless, the current discussion focusesrmor  of predicting the optimal attack strategy against varioess n
the second context — in which the human network structurgyorks. Using data from real-world mobile networks we show
itself is the goal of the attack. that indeed, in many cases a “stealth attack” (one that i har

When discussing the goal of learning a network’s structureto detect, however, and steals private information at a slow
it is important to distinguish between the “technical” tbpo pace) can result in the maximal amount of overall knowledge
ogy of a digital network and the actual topology of the humancaptured by the operator of this attack. This attack styateg
network that communicates on top of it — which is what we also makes sense when compared to the natural human so-
are actually interested in. Technically, every phone or-comcial interaction and communication patterns, as we disituss
puter can reach nearly any other on the planet, but in peacticour concluding section. The rest of the paper is organized as
it will only contact a small subset, based on the contextof it follows: Sections Il and Il expand on the motivation behind
user. Many existing network attacks gather informationtent reality stealing attacks and their dangers. Section |V iiless
digital network topology, usually in order to leverage the a the threat model and its analysis, while Section V presanmts o
tack itself. Some attacks, for example, make use of an emafireliminary empirical results. Concluding remarks aresgiv
program’s address book or a mobile phone’s contact list ton Section VI.

History has shown that whenever something has a tangibl
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FIG. 1: The evolution ofAs as a function of the overall percentage of edges learnedédtworks of same number of edges, but different
values of Kolmogorov complexity.

Il. MOTIVATION FOR STEALING REALITY attacks or configuring the ‘social engineering’ components
other attacks.

Many commercial entities have realized the value of in-
formation derived from communication and other behavioral
data for a great deal of applications, like marketing cam- 1Il. WHY STEALING REALITY ATTACKSARE SO
paigns, customer retention, security screening, recordaren DANGEROUS
systems, etc. There is no reason to think that developers of

malicious applications will not implement the same methods Qne of the biggest risks of real world social network in-
and algorithms into future malware, or that they have not alformation being stolen is that this type is very static, espe
ready started doing so. cially when compared to traditional targets of malicious at
There already exist secondary markets for resale of thes typtacks. Data network topologies and identifiers could be re-
of information, such asnf ochi nps. com or black market placed with the press of a button. The same goes for pass-
sites and chat-rooms for resale of stolen identity infofamat words, usernames, or credit cards. An infected computer
and other illegal data sets [9]. It is reasonable to assuate thcould be wiped and re-installed. An online email, instansme
a social hub’s email address would worth more to an adversenger, or social networking account could be easily replac
tiser than an edge node. It is also reasonable to assume thaith a similar one, and the users’ contacts can be quickly
a person meeting the profile of a student might be priced difwarned of the original account’s breach.
ferently than that of a corporate executive or a homemaker. However, it is much harder to change one’s network of real
There are already companies operating in the legal grey areaorld, person-to-person relationships, friendships,aonify
which engage in the collection of email and demographic inties. The victim of a “behavioral pattern” theft cannot eas-
formation with the intention of selling it [10]. Why work hér  ily change her behavior and life patterns. Plus this type of
when one can set loose automatic agents that would collegaformation, once out, would be very hard to contain. In addi
the same if not better quality information? Wang et al. predi tion, once the information has been extracted in digitaifor
that once the market share of any specific mobile operating would be quite hard if not impossible to make sure that all
system reaches a computable phase transition point, siruseopies have been deleted.
could pose a serious threat to mobile communications [11] There are many stories in recent years of “rea'iw” infor-
One might also imagine companies performing this typesnation being stolen and irreversibly be put in the open. In
of attacks on a competitor's customers (to figure out which2008, real life identity information of millions of Korearit¢
customers to try and recruit), or even operations perforiayed izens was stolen in a series of malicious attacks and posted
one country on another. Finally, the results of an SR attackor sale [7]. In 2007, Israel Ministry of Interior's dataleas
might be later used for selecting the best targets for futurevith information on all of the country’s citizens was leaked
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FIG. 2: An illustration of thesasily learnable networkotion. The graph depicts the critical learning threshijgfor networks oft, 000, 000
nodes, as a function of increasing values of the Kolmogoomapiexity. Notice how networks for whickg < max {O, |E| — %} are

easily learnable, while more complex networks requireifiigantly larger amounts of information in order to be abl@atcelerate the network
learning process.

and posted on the Web [12]. Just these days, a court sill has IV. THREAT MODEL

to rule whether the database of bankrupt gay dating site for
teenagers will be sold to raise money for repaying its credi- | this section we describe and analyze the threat model.
tors. The site includes personal information of over a.nmih First, we define the attacker’s goals in the terms of our model
teenage boys [13]. In all of these cases, once the informayng develop a quantitative measure for assessing the ggre
tion is out, there is no way back, and the damage is felt fof, achieving these goals. Then, we present an analyticaéiod
a long time thereafter._ In a recent Wall Street Journal_irll'.[erto predict the success rate of various attacks. Finally, we p
view, Google CEO Eric Schmidt referred to the possibility yige an assessment for the best strategies for devising such
that people in the future might choose to legally change theign attack. We demonstrate both based on analytical mod-
name in order to detach themselves from embarrassing “reakis as well as using real mobile network data, that in many
ity” information publically exposed in social networkindes  cases the best attack strategy is counter intuitively a “low
[14]. Speculative as this might be, it demonstrates theisensaggressiveness attack”. Besides yielding the best outéome
tivity and challenges in recovering from leakage of ref-li {he attacker, such an attack may also deceive existing mon-
information, whether by youthful carelessnes or by malisio jtoring tool, due to its low traffic volumes and the fact that
extraction through an attack. it imitates natural end-user communication patterns (enev
“piggibacks” on actual messages).

For this reason, Stealing Reality attacks are much more A.  Network Model

dangerous than traditional malware attacks. The diffexenc
between SR attacks vs. more traditional forms of attacks We shall model the network as an undirected graph

should be treated with the same graveness as nonconventioa(V, E). The difficulty of learning the relevant information
weapons compared to conventional ones. The remainder of the network’s nodes and edges may be different for differ-
this document presents our initial analysis and resultarceg  ent nodes and for different edges. In general, we denote the
ing the form that an SR attack might take, in contrast to theprobability that vertex: was successfully “learned” or “ac-
characteristics of conventional malware attacks. quired” by an attacking agent that was installeducat time O
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FIG. 3: An observational study of the overall amount of dat tan be captured as a functionpef- the attack’s aggressiveness. Notice the
local maximum aroun@ = 0.5 that is outperformed by the global maximumnmpat 0.04.

aspv (u, t). Similarly, we shall denote the probability that an
edgee(u, v) was successfully learned at timby an agentin- 1
stalled onitattime O gsg (u, t). We shall denote the presence Ap(t) = — Z L(t) - pe(e,t — Tb)
of an attacking agent on a vertexat timet¢ by the following E| ek
Boolean indicator:
As an extension in the spirit dfletcalfe’s[15] andReed’s
Law [16], a strong value emerges from learning the “social
I,(t) = 1iff uis infected at time principles” behind a network. Understanding essence loehin
o _ the implied social network is more valuable (and also resguir
Similarly, we shall denote the presence of an attackingnych more information in order to learn) as the information
agent on an edg€(u, v) attimet as: it encapsulates is greater. For example, let us imagineothe f
lowing two mobile social networks:

I.(t) = 1iff eitherw or v or both are infected at time 1. For every two users;, u;, the users are connected if

. and only if they joined the network on the same month.
For each vertex and edge, let the timed’, and7, denote

their initial time of infection. 2. For every two users;, u;, the users are connected in
probabilityp = 1.

B. Attacker'sGoal: Stealing Reality It is easy to see that given a relatively small subset of net-
work 1, the logic behind its social network can be discovered
As information about the network itself has become a wor-duite easily. Once this logic is discovered, the rest of @i n
thy cause for an attack, the attacker's motivation is stgali Work can automatically be generated (as edges are added ex-
as much properties related to the network’s social topotsgy actly for pairs of users who joined the network at the same

possible. The percentage of vertices-related informasion  Month). Specifically, for every value efwe can calculate a
quired at time is therefore: relatively small number of queries that we should ask in or-

der to be able to restore the complete network with mistake
probability of 1 — ¢. However, for network the situation is

1 ; o
Av(t) = — Z L.(t) - py(u,t — T) much dlffere_nt, as the o_nIy strategy for accurate_ly obttgr_n
V| = the network is actually discovering all the edges it corgatis

of.

Similarly, the percentage of edges-related information ac Let us denote byK i the Kolmogorov Complexityl17] of
quired attime is : the network, namely — the minimal number of bit required in
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FIG. 4: An extensive study of a real-life mobile networkio706 nodes and 7, 404 edges. Each graph presents the performance of a Stealing
Reality attack for a specific different set of valuesngf3, o, M, r;. The performance is measured as the percentage of infamatiuired,

as a function of the infection raje The scenarios that are presented in this figure demonstmgitgbal optimum of the attack performance
for very low values ofp. In other words, for many different scenarios it is best te asrery non-aggressive attack, which would result in
maximizing the amount of network information obtained.\éd ofa. and g which had demonstrated this behavior were betwigeand500.
Values ofr; were betweer).1 and 100, whereas the values of were betweei).1 and12. The values of\/ were betweei.1 and30. Itis
interesting to mention that for high values®findg, low values ofM did display this phenomenon while high valuesidgfdid not.

order to “code” the network in such a way that it could later

be completely restored. As the number of vertidésis as- B
sumed to be known, the essence of the network is coded in Ve, € B, prlet)=e
its edges. Dividing the number of edges learnBt\ ¢ (¢) by

the number of “redundant edge#| — K yields the amount

of information learned at time Following a similar logic of Yur eV, py(u,t) =e”
Reed’'s Lawwe shall evaluate the benefit of the learning pro-

cess proportionally to the number of combinations that @n bWith a and3 representing the efficiency of the learning mech-
composed from the information learned. Normalizing it by th @nism used by the attacker, as well as the amount of informa-

number of edges, we shall receive the following measuremenion that is immediately obtained upon installatiendenotes
for the social essence learned: the learning rate of each edge vertex, determined by the ac-

tivity level of the edge vertex (namely — accumulation of
new information). Variable; is also used for normalizing

As(t) = o EHE R and. Hence, the attack success rates can now be written as
follows:

The attacker in interested in maximizing the values of

ae~Ti()

Be~ it

Av(t), Ag(t) andAg(t). The evolution of the\g, the so- 1 e-ri=Tup)
cial essence of the network, as a function of the “complexity Ay (t) = m Z L (t) e
hardness” of the network is illustrated in Figure 1. ui €V
1 e Ti(t=Te))
C. Attack Analysis Ap(t) = 1E] Z I, (t) e
e, €k

We assume that the learning process of vertices and edgesAttacking agents spread through movements on network
follows the well-knownGompertZunction, namely: edges. Too aggressive infection is more likely to be detkcte



causing the accumulation of information concerning the net
On the other hand, attackribution of initial infection times of vertices and edgésote

work to be blocked altogether.

This expression can now be used for calculating the dis-

agents that spread too slowly may evade detection for a lonthat information is gathered faster as infection yaitecreases.
period of time, however, the amount of data they gather wouldHowever, so does the detection probability. The optimum can

still be very limited. In order to predict the detection padi-
ity of attacking agents at time t we shall URehard’s Curve
for as follows :

1
14 e—p(t—M)) 37
( )

Pdetect (t) -

wherep is the probability that an agent would copy itself

to a neighboring vertex at each time steps a normalizing
constant for the detection mechanism, dddienotes the nor-
malizing constant for the system’s initial state. Lgtdenote
the number of infected vertices at timeAssuming that ver-
tices infection by their infected neighbors is a random pss¢
the number of infected vertices vertexvould have at time
is :

deg(u)
V]

Ny -

The probability that vertex. would be attacked at time
equals therefore at least:

“N,-p-——degw)
pattack(u, t) =1—¢e ' P ey deg()

and the expected number of infected vertices is :

¢
Nipar =1|V| - Z H(1 — Dattack(v, 1))

vinV =0

The number of infected nodes therefore grows as :

¢
N, pdea(®)
Nisar=1|V| - E He Ni-p=3iE1

vinV =0

From N; we can now derive the distribution of the Boolean

infection indicators :

N, N?

plle(t) =1] = 2m BRGE

And the attack probability can now be given as follows :

Pattack (U, t+ At) =

1 — PSP (FIVIH S ey ITio(-Partack (v,1)))

therefore be derived by calculating the expectance of tta to
amount of information obtained (in which the only free pa-
rameter i) :

Ap— /O"O (BA;;(t)

Ay = /OOO <8Agt(t)

D. Obtainingthe Social Essence of a Network

: (1 - pdetect(t))) dt

. (1 - pdetect(t))) dt

Recalling the expression that represents the progress of
learning the “social essence” of a network, we can see that
initially each new edge contributé¥(1) information, and the
overall amount of information is therefore kept proportibn
to O(ﬁ). As the learning progresses and the logic principles
behind the network’s structure start to unveil, the amodnt o
information gathered from new edges becomes greater than
their linear value. At this point, the overall amount of info
mation becomes greater th@(ﬁ), and the benefit of ac-
quiring the social structure of the network starts to acedée
Formally, we can see that this phase is reached when:

|E| — Kg

AE(t)>O(1— |E|

)

Let us denote by@ the Critical Learning Threshold
above which the learning process of the networks accekerate
as described above (having each new learned edge contribut-
ing an increasingly growing amount of information concern-
ing the network’s structure), to be defined as follows:

|E| - Kg

Ap 21—
|E]

In(|E])

Consequently, in order to provide as strong protection for
the network as possible, we should make sure that for every
value oft:

_ae*Ti(t*Tei)
Do Ia(t)-e < |E| = (|E| - Kg)In(|E])
e, el

Alternatively, the attack would prevail when there exist a
time ¢ for which the above no longer holds.

Notice that as pointed out above, “weaker” networks
(namely, networks of low Kolmogorov complexity) are easy
to learn using a limited amount of information. Generaliz-
ing this notion, the following question can be asked : How



“simple” must a network be, in order for it to be “easily learn A more extensive simulation research was conducted for
able” (namely, presenting an superlinear learning spead; s an arbitrary sub-network of this mobile network, contagnin
ing from the first edges learned)? 7,706 edges and 7,404 edges. In this research we have ex-
It can be seen that in order for a network to be easilytensively studied the success of a Stealing Reality attsitigu
learnable, its critical learning threshald; must equap(1).  numerous different sets of values (ice.3, i, o andM). Al-

Namely, the network’s Kolmogorov complexity must satisfy: though the actual percentage of stolen information hactuari
significantly between the various sets, many of them had dis-

played the same interesting phenomenon — a global optimum
for the performance of the attack, located around a very low
value ofp. Some of these scenarios are presented in Figure 4.

|E| - Kg

1—
|E|

In(|E]) < O(1)

We must obtain the following criterion faasily learnable

networks
E
Kg < |E| — 1 | Elj
n(| |) VI. CONCLUSIONS

The notion of areasily learnable networis illustrated in Fig-
ure 2, presenting the critical learning threshdlg for net- In this paper we discussed the threat of malware targeted at
works of 1,000,000 nodes, as a function of the network’s extracting information about the relationships in a reaka
Kolmogorov complexity. social network as well as characteristic information atibat

individuals in the network, which we name “Stealing Real-
ity”. We present Stealing Reality (SR), explain why it diffe
V. EXPERIMENTAL RESULTS from traditional types of network attacks, and discuss vy i
impact is significantly more dangerous than that of other at-
We have evaluated our model on aggregated call logs ddacks. We also present our initial analysis and resultsrdega
rived from a real mobile phone network, comprised of ap-ing the form that an SR attack might take. We have evaluated
proximately200, 000 nodes and00, 000 edges. These tests our model on data derived from a real mobile network. Our
have clearly shown that in many cases, an “aggressive attackesults clearly show that an “aggressive attack” achiemnes i
achieves inferior results compared to more subtle attdelks.  ferior results compared to more subtle attacks. This attack
thermore, although sometimes the optimal value for thecinfe strategy also makes sense when comparing it to natural hu-
tion rate revolves arouns0%, there are scenarios in which man social interaction and communication patterns. The rat
there is a local maximum around this value, with a globalof human communication and evolution of relationship is/ver
maximum around%. Figure 3 demonstrates the attack effi- slow compared to traditional malware attack message rates.
ciency (namely, the maximal amount of network information Stealing Reality type of attack, which is targeted at leagni
acquired) as a function of its “aggressiveness” (i.e. the atthe social communication patterns, could “piggyback” o th
tack’s infection rate). A global optimum both for the veesc  user generated messages, or imitate their natural patteuss
information as well as for the edges information is achievechot drawing attention to itself while still acheiving itsraget

around4%, with a local optimum aroun&2%. goals.
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