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Analysis of an unusually detailed telephone call data set — a month of nearly all mobile and
landline phone calls placed during August 2005 the United Kingdom — allows us to identify several
different types of social networks that are formed, and relate them to different activities that generate
them. We distinguish, among others, work-related and personal or leisure-focused activities and
show that the networks they form have very different characteristics. Our principal tool for the
analysis, k-core decomposition, shows that distinct distributions of connectivity are present in the
two spheres, and that this differentiation affects dramatically the dynamics of information diffusion.
Both differ from the simpler and more globally connected structure evident in communications data
such as the Internet AS graph.

We know from common sense that the social network of
a country is composed of multiple entangled networks, or
communities, such as work and leisure, which are differ-
ent, and have different requirements, but these are diffi-
cult to disentangle.[1–8]. We present here a new approach
to this question.

Our objective is to obtain functional inferences one
might want to make from call graphs regarding their
structure, with applications to modeling innovation, po-
litical opinion-making, emergency notification, advertis-
ing and various other sorts of socially relevant communi-
cations among friends, family, work groups and the like.

I. DATA TO BE STUDIED

We use a month of nearly all mobile and landline phone
calls placed during August 2005 in the United Kingdom
to infer its social communication structure. This data set
comprises 65× 106 different numbers (anonymized, with
the area prefix and phone number separated, both then
hashed) and 368 × 106 phone calls, timestamped to the
second, which represents more than 90% of the mobile
phones and greater than 99% of the residential and busi-
ness landlines in the country. We further consider the
links (i, j) to be undirected, storing them in a canonical
order (i < j).

We track separately the number of calls i → j and
j ← i, as is customary in discussions of social networks,
since highly directional links express a different sort of re-
lationship than links in which the calls are reciprocated
relatively equally. This data set compares with others re-
cently published [9–15]. In the process of aggregation, we
also save the total duration of calls between each pair of
numbers in each direction. Finally, we construct subnet-
works which should represent a stronger degree of mini-
mum relationship between nodes by restricting attention
to links in which calls are reciprocated – the smaller of
the number of calls from i to j and the number of calls
from j to i is at least 1 or 2.

Metro area #nodes #work links #leisure links

PnLa 3,000,119 21,471,591 10,683,865

VCWy 1,866,693 11,727,023 3,398,336

GNgr 866,402 6,540,751 3,051,083

TABLE I: Three large metropolitan areas in the UK.

Given the large amount of work on Internet-derived
networks, it is natural to ask if insights from communi-
cations networks can be applied to this data, or are so-
cial networks different? To answer this we extract three
metropolitan areas (phone number prefixes) from the call
logs. Within these 3 metropolitan areas we distinguish
work and leisure calls. Work calls are those placed from
8:00 a.m. to 6:00 p.m. during the week. Leisure calls
are those placed between 6:00 p.m. and 8:00 a.m. during
the week, plus all phone calls on the weekend. August is
a popular month for vacations, so this separation is not
absolute. Table I summarizes this data.

The results shown throughout the paper are consistent
across the 3 metropolitan areas. We restrict our presen-
tation to PnLa in this report.

Figure 1 shows degree and clustering coefficient distri-
butions. They show small differences between work and
leisure, but give no insights into their causes. The degree
distributions are quite similar, although the leisure net-
work nodes are generally of smaller degree. In fig. 1(b),
we also observe small differences in the clustering coef-
ficients. Even though Newman conjectured social net-
works – as opposed to communication networks – to be
assortative [16], our measurements show that social net-
works inferred from call logs are dissasortative, which
Ravasz and Barabasi and have attributed to an underly-
ing hierarchical structure [17].

A larger variation is seen between work and leisure in a
simple model of overall diffusion of information (see Fig.
2). We consider how information diffuses out from low
degree sites, using the call network in PnLa, restricted to
links which are reciprocated at least once. In our model,
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(a)Degree. (b)Clustering coefficient.

FIG. 1: PnLa’s networks of work and leisure.

FIG. 2: Simple diffusion rate on work and leisure networks.

information takes one hop to move from one site to all of
its neighbors. The time axis is number of hops, and the
vertical axis is the number of nodes which the informa-
tion has reached. The work network spreads information
roughly twice as fast as does the leisure network in this
simple model. These differences, however, cannot be un-
derstood without extracting more local characteristics of
the processes involved.

We construct our analysis in two steps, first using k-
core decomposition into k-shells to relate the role of each
node (here a phone number) to its local environment in
the call graph. Then we run a simple diffusion model of
information spreading in the call graph to relate function
to our k-shell labelling of the nodes in the graph. We de-
scribe the decomposition in detail below. It has been used
in the analysis of communication networks, and identifies
a simple and elegant structure for the graph of the In-
ternet’s constituent subnetworks, or autonomous systems
(ASes) [18, 19]. As we will illustrate, our call networks

display a much more complex structure with evident dif-
ferences between the leisure and work time period net-
works, when disentangled in this way. A greater fraction
of the nodes form a loose edge of small clusters of indi-
viduals, poorly connected over greater scales. Some of
the fractal features seen in communications networks are
also seen in these social networks, but with very different
exponents, which are affected by the difference between
work and leisure connectivity. One characteristic that is
common to both social and communications networks is
the existence of a central nucleus, which is very highly
and robustly connected. We show next how this can be
uniquely defined.

The k-core is an old concept from graph theory [20]. It
is the largest subgraph of selected sites and their direct
interconnections such that all sites have degree >= k. A
k-core is unique and easily found. The usual procedure
is to first prune, recursively, all sites with only one neigh-
bor, removing that link as well, until all sites remaining
have degree two or more. The sites removed at this stage
are called the 1-shell, and what remains is the 2-core. In
this way a series of k-shells are identified and removed,
leaving at each step a k+1-core. The union of shells 1
through k constitutes a “k-crust.” K-crusts, shells, and
cores have been studied in random graphs and in com-
munication graphs [18, 19, 21–23].

There are some surprising properties that this decom-
position can expose. Bollobás showed that in Erdos-
Renyi style random graphs, each k-core is with high
probability k-connected. This means that every pair
of sites is joined by k or more entirely disjoint paths,
with no intermediate link or site in common. This is
a very strong demonstration of robustness for whatever
information the network distributes. Second, Shalit et
al.[21] showed that for a simple class of random networks
with a long-tailed degree distribution, the sizes of the
k-cores follow a power law distribution, decreasing ap-
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(a)Work. (b)Leisure.

(c)Average degree of the sites in each shell (work and leisure
networks).

(d)The contribution of each shell to the peer-connected
component in the Internet AS system (extracted from [19]).

FIG. 3: K-core decomposition of PnLa.

proximately as kα with−2.4 ≤ α ≤ −2.8 for the shells,
and −1.4 ≤ α ≤ −1.6 for the cores. The k-shell distribu-
tion ends at a value kmax. For the random networks, this
is simply the point at which k exceeds the number of sites
remaining, but for communications networks, the Kmax-
core contains many more sites than kmax, and forms a
natural “nucleus” of the network. It contains the sites
and links with highest betweenness centrality. In the ac-
tual Internet AS-graph, the nucleus or kmax-core consists
of major international and large country carriers plus a
few companies, such as Google, which have created their
own multi-continent data networks.

In this work, we discover that the telephone call-
networks, analyzed using k-core decomposition, have a
number of characteristics that are different. In partic-
ular, the earlier k-shells of the call-network are more
complex, and seem to capture the rich local structure

of a society. This frames the question of whether a so-
cial network, grown bottom-up from local relationships,
is fundamentally different from a communications net-
work, which is strongly shaped by top-down design prin-
ciples and the objective to provide global communica-
tions paths connecting all participants.

II. K-SHELL DECOMPOSITION

To understand better the local structure of these net-
works, we now construct their k-shell decompositions.
The results are shown in 3(a) and 3(b), first for the work
links, and then for the leisure network. In each figure we
first show the number of nodes in each of the complete
subnetwork’s k-shells, followed by the same information
for the k-shells of the restricted networks in which we
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(a)Work. (b)Leisure.

FIG. 4: PnLa’s contributions of the doubly reciprocated call graph by k-shell to the k-shells of the complete call graph using
work and leisure data. The upper three curves show the contributions of k-shells 1, 2, and 3 in the doubly-reciprocated call-
network during work and leisure hours to various k-shells of the full call graph. The lower three curves show the contributions
of shells 7, 8, and 9.

include only singly- and doubly-reciprocated links, those
for which the number of calls in the less-common direc-
tion is at least 1 or 2. Note that separating the nodes into
their k-shells corresponds only roughly to an ordering by
node degree, as shown in the third section of this figure.
Finally, for comparison, we include the result from Carmi
et al. for the Internet AS-graph as Fig. 3(d). The k-shell
size distributions for the call graphs are very different in
shape from that of an Internet graph, with the flat initial
sections of the complete graphs (not restricted to recip-
rocated links) extended over 10 shells, rather than one
or two shells. The slopes of the descending parts of both
curves are steeper than is seen in Fig. 3(d). But both
graphs have clearly identifiable nuclei in the complete
and singly reciprocated networks.

Fig. 3 also shows differences between work and leisure
k-shells. There are similarities in the initial shells, but
much more rapid decrease in the “fractal” part of the
curve. As in Fig. 3d, there is a big jump to the nucleus,
but the size of the nucleus is over 1000 sites in both call
graph networks, and less than 100 in the AS graph. The
plots show that the deepest shell of the reciprocal net-
work contributes mostly to the deepest shell of the overall
network, but only a little to the second peak, which may
be a different cluster.

Note that in Fig. 3(c), while the average degree of the
sites in each shell increases monotonically, there is an ex-
ceptional behavior near the end of the distribution, with
the highest degree nodes appearing not in the nucleus
shell, but a few shells earlier, followed by a small set of
sites of large but not so extreme degree. This remains
unexplained at present.

We plot in Fig. 4 the contributions from each k-shell
of the very restricted subnetworks in which all calls are
reciprocated at least twice to the k-shells of the full call

graph. Again, we separate work and leisure time pe-
riods. The earlier k-shells of the restricted subnetwork
contribute to the outer half of the k-shells in the full net-
work, with the largest contributions seen in the shells
of the full network where the power law-like decrease fi-
nally begins. The contribution of the reciprocated calls
to the outer k-shells of the full call graph is quite negli-
gible. However, the inner k-shells of the full call graph
are made primarily of the innermost shells of the recip-
rocated subnetwork.

III. INFORMATION DIFFUSION

Now we move on to understanding the different ways
in which information diffuses in the work and the leisure
networks. The traditional approach might be to note
how rapidly information spread from the sites of lower
degree reaches the whole network. We show this in fig
2. There is a clear difference between the slower initial
spread within the leisure network and the more rapid
initial diffusion in the work network but both conclude
the process at a similar rate. We need more information
about the networks’ local structure to understand the
differences. Analyzing diffusion patterns from these dif-
ferent cores and shells reinforces the k-shell analysis, and
actually makes these structures more evident. A prelim-
inary examination indicates that the differences between
information diffusion in the work and the leisure networks
lies in the different properties of the outer shells, as well
as overall greater connectivity of the work network com-
pared with the sparser leisure network.

Each curve in Figs. 5 shows the number of sites in
each k-shell of the singly reciprocated subnetworks for
the work and leisure periods in PnLa’s data that have
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(a)Diffusion from the Kernel in the work network. (b)Diffusion from the Kernel in the leisure network.

(c)Diffusion from the K = 1 shell in the work network. (d)Diffusion from the K = 1 shell in the leisure network.

FIG. 5: Diffusion from the kernel and outer shell for both work and leisure networks. The lines indicate, from top to bottom,
the spread at times 1, 2, 3, 4, 6 and 10 time steps. The upper line is the number of sites in each shell. For this study, the
network was restricted to links with at least one reciprocal call.

received information after a given number of iterations.
In Figs. 5(a) and 5(b) the network was initialized with
all sites in the kmax shell having information, which
then diffuses by direct links at each time step. Infor-
mation diffuses relatively quickly in the inner shells of
both networks, reaching all sites in the inner shells in two
iterations[24]. Diffusion into the outermost two shells is
slower in the work network of Fig 5(a) and 5(c), and
is slower into the outermost three shells in the leisure
network, as seen in Fig 5(b) and 5(c). In general, diffu-
sion of information among the sites in the outer shells is
about a factor of two times slower in the leisure network
than in the work network. Notice also that a few sites in
the k = 1 shell are never reached by the diffusing infor-
mation, because they are simply not connected with the
rest.

We would also like to know how diffusion processes
proceed when starting from a general site in the net-
work. Since most of the sites lie in the outermost two

or three shells, we initialized our model with 1, 000 sites
labelled in the k=1 shell of each network (leisure in Fig
5(c), work in Fig 5(d)). For the first two iterations, infor-
mation slowly makes its way to the nucleus sites. Once
most of the nucleus sites have received our diffusing in-
formation, they take over the principal role in further
spread of information, quickly saturating the center of
the network, while diffusion proceeds pretty much as in
the first experiments at the edges of the network. Once
again the tighter and wider-reaching connectivity of the
work network makes the process conclude approximately
twice as fast as in the leisure network. In constructing
the total diffusion curves of Fig. 2, we also followed this
procedure, using 1, 000 sites in the k = 1 shell of the
total network for PnLa (work and leisure combined) as
the sources. This indicates that that work and leisure ac-
tivities have very different characteristics. This may be
a function of their different requirements, or show that
a much stronger hierarchy organizes communications in
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the work network.
There is more to be learned about the local structure

of the outer shells. In the analysis of communication
networks it is important to understand the breakdown
of the network into connected components, and to refine
this analysis to regions such as cores and crusts. Commu-
nications networks are connected overall, but the crusts
exhibit a percolation transition, with a large fraction of
sites remaining isolated from the “infinite cluster” until
the nucleus is added, to link these with the rest of their
network. We have not yet performed the comparable
analysis for the call graphs, but expect to have this done
by the time of the 2010 WIN Workshop. In particular,
we suspect that a structure of many disconnected local
islands persists throughout the initial flat regions of the
k-shell size curves in Fig. 3, since the first and second

shells in communications networks, the ones which depart
from a nearly power law decrease in size with increasing
k, are so constructed.

Does this pattern emerge even more strongly in the
data for the whole country (or larger regions)? We are in
the process of aggregating and reducing the data for the
whole country and will report on that much larger data
set at a later time.

How can we best use this information? Does it emerge
quickly or take time to be evident as we accumulate ob-
servations of a social network? In terms of call graph data
such as we are studying, do the patterns emerge across a
country in days, weeks or months? Uses of such data to
understand the spread of opinion within a country will
require understanding these time constants.
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