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ABSTRACT

An important question in behavioral epidemiology and pub-
lic health is to understand how individual behavior is af-
fected by illness and stress. Although changes in individual
behavior are intertwined with contagion, epidemiologists to-
day do not have sensing or modeling tools to quantitatively
measure its effects in real-world conditions. In this paper,
we propose a novel application of ubiquitous computing.
We use mobile phone based co-location and communication
sensing to measure characteristic behavior changes in symp-
tomatic individuals, reflected in their total communication,
interactions with respect to time of day (e.g., late night, early
morning), diversity and entropy of face-to-face interactions
and movement. Using these extracted mobile features, it is
possible to predict the health status of an individual, with-
out having actual health measurements from the subject. Fi-
nally, we estimate the temporal information flux and implied
causality between physical symptoms, behavior and mental
health.
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INTRODUCTION

Face-to-face interactions are the primary mechanism for prop-
agation of airborne contagious disease [28]. An important
question in behavioral epidemiology and public health is to
understand how individual behavior patterns are affected by
physical and mental health symptoms. Epidemiologists cur-
rently do not have access to sensing and modeling capa-
bilities to quantitatively measure behavioral changes expe-
rienced by symptomatic individuals in real-world scenarios
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[11]. Such research requires continious, long-term data about
symptom reports, mobility patterns and social interactions
amongst individuals. In this paper, we propose a novel appli-
cation of ubiquitous computing, to better understand the link
between physical respiratory symptoms, influenza, stress,
mild depression and automatically captured behavioral fea-
tures. This is an important problem for several reasons.

Quantitatively understanding how people behave when they
are infected would be a fundamental contribution to epi-
demiology and public health, and can inform treatment and
intervention strategies, as well as influence public policy de-
cisions. On one hand, clinical epidemiology has accurate in-
formation on the evolution of the health of individuals over
time but lacks realistic social interaction as well as spatio-
temporal data [15]. On the other hand, current research ef-
forts in theoretical epidemiology model the rate of infection
in a population whose behavior is stationary over time and
do not account for individual changes [26]. For instance,
if a person infected with influenza continues his habitual
lifestyle instead of isolating himself, he could pose a bigger
risk to others in proximity. Based on our analysis and re-
sults, policymakers can recommend social interventions that
minimize such risk.

On the modeling front, compartmental epidemiological mod-
els (e.g., the Susceptible, Infectious, Recovered or SIR model)
commonly assume that movement and interaction patterns
for individuals are stationary during infection, i.e., that indi-
viduals will continue their typical behavioral patterns when
sick. More recent epidemiological models accommodate re-
duced mobility variations to to fit epidemic curves, but in a
heuristic way due to lack of data at the individual level [4,
9, 14], which possibly limited their prediction accuracy dur-
ing the 2009 H1N1 influenza epidemic [22]. To our knowl-
edge, we provide the first quantitative results on this impor-
tant measurement based on mobile sensing. Our results, de-
scribed below, can be plugged into the SIR model by speci-
fying the number and frequency of contacts that individuals
will likely have when going from the S(usceptible) to the
I(infected) state, and therefore improving prediction accu-
racy. Furthermore, predicting likelihood of symptoms from
behavior could lead to a possible early-warning system and
intervention by medical experts, with the associated savings
in economic and human resources [7].

In this paper, we describe experimental work that illustrates
the use of co-location and communication sensors in mo-
bile phones to characterize the change in face-to-face inter-



actions and individual trajectories in the contagion process.
The experimental context consists of residents of an under-
graduate residence hall for two months, from February to
April 2009. Individuals were surveyed daily for symptoms
of contagious diseases like common colds, influenza and
gastroenteritis. We find that there are characteristic changes
in behavior when individuals are sick, reflected in automati-
cally captured features like their total communication, com-
munication patterns with respect to time of day (e.g., late
night, early morning), diversity of their network and entropy
of movement within and outside the university, and these
variations can be used to identify symptomatic days for in-
dividuals. Finally, we use a recently developed signal pro-
cessing approach [17] to shed light on the temporal informa-
tion flux between physical symptoms, behavior changes and
mental health symptoms. This is, to our knowledge, the first
comprehensive empirical study in this direction.

RELATED WORK

Mobile Phones as Social Sensors

The four billion mobile phones worldwide are ubiquitous so-
cial sensors of location, proximity and communication. Ea-
gle and Pentland [13] coined the term Reality Mining, and
used mobile phone Bluetooth proximity, call data records
and cellular-tower identifiers to detect the social network
structure and recognize regular patterns in daily user activity.
For human location traces, Gonzalez et. al [19] showed that
call detail records can be used to characterize temporal and
spatial regularity in human mobility patterns better than ran-
dom walk or Levy flight simulations. Similarly, electronic
sensor badges like the Sociometric badge [25] have been
used to identify human activity patterns and analyze con-
versational prosody features. Other examples of the use of
mobile phones to map human interaction networks include
the CENS and mHealth projects [1, 2].

In addition to mobile phones, web based and survey based
data sources have also been used as social sensors in the
healthcare space. Google Flu Trends uses aggregated Google
search data to estimate current flu activity around the world
in near real-time [18]. In [3], Barabasi reported how social
networks impact the spread of obesity and pathogens includ-
ing influenza, severe acute respiratory syndrome and human
immunodeficiency virus. Finally, and more related to our
project, Christakis and Fowler used archival data from the
Framingham Heart Study to study how social interactions
affect the spread of obesity, smoking behavior and mental
health [5, 6, 16]. In summary, the emerging field of Compu-
tational Social Science [10] leverages the capacity to collect
and analyze data at a scale that may reveal patterns of indi-
vidual and group behaviors, with an enormous potential for
social health applications.

Link Between Physical Symptoms, Behavior Changes and

Stress

Ubiquitous computing approaches may allow us to make a
fundamental contribution to epidemiology, in understanding
the link between physical symptoms, mental health symp-
toms, and their expression in social interactions and behav-
ior. The intertwined relationships between these is not well

understood, due to limitations of existing clinical diagnosis
and public health tools, but plays an important role in medi-
cal detection, treatment and management of conditions.

In medical literature, substantial evidence has been found for
an association between stress and increased illness behavior,
and less convincing but provocative evidence was found for
a similar association between stress and infectious pathol-
ogy: Introverts, isolates, and persons lacking social skills
may also be at increased risk for both illness behaviors and
pathology [8]. Various medical conditions that involve ac-
tivation of the immune system are associated with psycho-
logical and neuro-endocrine changes that resemble the char-
acteristics of depression. Recent studies have presented em-
pirical evidence on the relationship between the behavioral
effects of immune activation and depressive symptomatol-
ogy, characterized by reduced locomotor, exploratory, and
social behavior [30].

The association between psychosocial stress and susceptibil-
ity to upper respiratory tract infection has also been inves-
tigated in people with a history of recurrent common colds
and flu. Several dimensions of psychosocial stress, including
exposure to stressful experiences, stress-prone personality
traits, and signs of emotional disturbance have been inves-
tigated in people with a history of recurrent common colds
and flu. Experts conjecture that stress depletes local im-
mune protection, increasing susceptibility to colds and flu.
Alternatively, psychological disturbances could develop in
response to frequent illness [12].

METHODOLOGY

Several projects have used existing call data records and mo-
bile operator location information to model movement pat-
terns and social ties. Our approach is to build a mobile phone
software platform for primary personal use by participants,
as a tool for long-term data collection.

The dataset described below was collected as part of a lon-
gitudinal study with seventy residents of an undergraduate
residence hall (referred to as an undergraduate dormitory
in North America), that serves as the primary residential,
cooking, social activity and sleeping quarters for the resi-
dents. This residence hall was the smallest undergraduate
dormitory at the university. The participants in the study
represent eighty-percent of the total population of this hall,
and most of the remaining twenty-percent are spatially iso-
lated. The dormitory is known within the university for its
pro-technology orientation and the decision of students to
reside within the dorm is determined by self-selection by
both students and the existing residents. The students were
distributed roughly equally across all four academic years
(freshmen, sophomores, juniors, seniors), about 54% of the
students were male, and predominantly engineering, math-
ematics and science majors. The study participants also in-
cluded four graduate resident tutors that supervised each floor.
The participants used these data collection Windows Mobile
devices as their primary phones, with their existing voice
plans. Students had data access on these phones due to per-
vasive wifi on the university campus and in the metropolitan



Table 1. Symptom Survey Questionnaire. All questions were Yes/No

responses

Survey Question (as shown on mobile phone)
Do you have a sore throat or cough?
Do you have a runny nose, congestion or sneez-
ing?
Do you have a fever?
Have you had any vomiting, nausea or diarrhea?
Have you been feeling sad, lonely or depressed
lately?
Have you been feeling stressed out lately?

area. As compensation for their participation for the entire
academic year, they were allowed to keep the smart phones
at the end of the experiment. In this paper however, we de-
scribe the mobile platform, dataset and analysis related to
measuring the spread of influenza, common colds and stress
in this community over two months. Additional information
about the broader experiment is available here [21].

The dataset used in this analysis was collected from two dif-
ferent sources. Social interaction data from mobile phones
was collected via call data records, SMS logs, Bluetooth
co-location sensing and WLAN-based location sensing. In-
tuitively, these sensors reflect pairwise communication and
face-to-face proximity, intensity and nature of social ties, the
homogeneity of behaviors across individuals, and the dy-
namics of network structure. The use of these particular
sensors to understand human behavior is not novel in itself–
however to our knowledge this is the first time they have
been used to understand epidemiological behavior change.

Symptom data was collected using a daily-self report survey
instrument, designed by an experienced epidemiologist. The
survey instrument consisted of six questions with yes/no re-
sponses, which are listed in Table 1. The working of the sur-
vey launcher mobile application is described in more detail
in the next section. In addition, a baseline survey instrument
asked participants whether they had been immunized with
flu vaccinations (flu-shots or flu-mist sprays), as well as their
international travel before the start of the experiment. Of a
total of 69 participants that completed the baseline survey,
20 reported that they had been immunized for influenza, via
either a flu-shot or flu-mist spray.

User Privacy Considerations

A key concern with such long-term user data collection ap-
proaches is securing personal privacy for participants. This
study was approved by the Institutional Review Board (IRB).
As financial compensation for completing monthly surveys
and using data-collection devices as their primary phones,
participants were allowed to keep the devices at the end of
the study. The sensing scripts used in the platform capture
only hashed identifiers, and collected data is secured and
anonymized before being used for aggregate analysis. To
minimize missing data from daily symptom reports, partici-
pants were compensated $1 per day that they completed the
on-device symptom survey.

MOBILE SENSING PLATFORM

With the above goals in consideration, the mobile phone
based platform for data-collection was designed with the fol-
lowing long-term continuous sensing capabilities, based on
Windows Mobile 6.x devices. Daily captured mobile sens-
ing data was stored on-device on read/write SD Card mem-
ory. On the server side, these logs files were merged, parsed
and synced by an extensive Python post-processing infras-
tructure, and stored in MySQL for analysis. This sensing
software platform for Windows Mobile 6.x has been released
under the LGPLv3 open source license for public use [24].

Proximity Detection (Bluetooth)

The software scanned for Bluetooth wireless devices in prox-
imity every 6 minutes (a compromise between sensing short-
term social interactions and battery life, [13]). The Windows
Mobile phones used in our experiment were equipped with
class 2 Bluetooth radio transceivers, with practical indoor
sensing range of approximately 10 feet. Scan results for two
devices in proximity have a high likelihood of being asym-
metric, which is accounted for in our analysis. Due to API
limitations of Windows Mobile 6.x, signal strength was not
available during scans.

Approximate Location (802.11 WLAN)

The software scanned for wireless WLAN 802.11 Access
Point identifiers (hereafter referred to as WLAN APs) every
6 minutes. WLAN APs have an indoor range of approxi-
mately 125 feet and the university campus had almost com-
plete wireless coverage. Across various locations within the
undergraduate residence, over 55 different WLAN APs with
varying signal strengths can be detected.

Communication (Call and SMS Records)

The software logged Call and SMS details on the device
every 20 minutes, including information about missed calls
and calls not completed.

Daily Survey Launcher

For collection of self-report data, the sensing platform in-
cluded a daily survey launcher. The application launches
a foreground survey dialog at 6am everyday that asked the
user to respond to symptom-related questions. After three
reminders, the smartphone was unusable until the user com-
pleted the survey. In the experiment deployment, users were
paid $1 USD for every completed daily survey as partic-
ipation incentive. The survey launcher invoked the daily
symptom survey instrument described in the previous sec-
tion. The design of the survey questionnaire and subsequent
labeling of self-report responses was supervised by a trained
epidemiologist.

Battery Impact

The battery life impact of periodic scanning has been pre-
viously discussed [13]. In this study, periodic scanning of
Bluetooth and WLAN APs reduced operational battery life
by 10-15%, with average usable life between 14-24 hours
(varying with handset models and individual usage). Win-
dows Mobile 6.x devices have relatively poorer battery per-
formance than other smartphones, and WLAN usage (web



browsing by user) had a bigger impact on battery life than
periodic scanning.

DATASET CHARACTERISTICS

The dataset described here corresponds to the date range
from 1st February to 15th April 2009, the peak influenza
months in New England. The phone sensor data during this
period consists of 1.4 million scanned Bluetooth devices,
201,000 scanned WLAN APs, 15,700 call data records and
11,269 SMS records. In order to perform meaningful anal-
ysis, it is important to separate the effects due to immuniza-
tion prior to the experiment. In a pre-study baseline survey
completed few days before start of the study, 20 participants
reported received influenza immunization via a flu-shot or
flu-mist spray. These participants are not considered in the
analysis in the next section.

Daily Symptom Surveys

A total of 2994 survey responses were generated using the
smartphone-based survey launcher described in the previ-
ous section within the relevant date range, of which 2099
responses were from individuals who had not been immu-
nized, with an approximate survey completion rate of 63%
overall during the study. These responses were converted
into 48-hour windows, since individuals take up to one day
to report a symptom. This approach also reduces the im-
pact of uncompleted survey responses, since there is a higher
likelihood that a participant will have completed at least one
survey during a 48-hour period. A few samples were dropped
because of missing sensor data during the period, e.g., due
to lost or broken mobile phones. With these steps, a total of
2283 sets of good quality mobile behavior sensor data and
dependent variable reports were obtained.

For analysis, mobile symptom reports have to be converted
into syndrome conditions. Specifically, it is important to
distinguish between symptoms that represent common colds
and allergies versus CDC-defined influenza [20] which has
a characteristic signature reflected in runny nose, sore throat
and fever symptoms. Due to our limited expertise in this
area, selected combinations of self-reported symptoms were
labeled as CDC-defined influenza by a medically trained epi-
demiologist. In our dataset, twelve such cases of influenza,
on average lasting 5-7 days and each affecting a distinct indi-
vidual were observed. The respiratory symptoms not identi-
fied as influenza cases by our expert, are considered common
colds or seasonal allergies.

ANALYSIS

Mobile Behavioral Features

The following features were extracted from mobile phone
sensor data over 48-hour window sizes, with 50 percent over-
lapping windows. The window size was chosen for epidemi-
ological reasons, as individuals take up to one day to report a
symptom. The features chosen represent statistics of whom
we talk to and where we are, i.e. the total number of in-
teractions, the diversity of interactions, and the entropy of
our behaviors. Such observational data has been shown to
reflect important aspects of individual and collective behav-
ior, like friendships and individual job satisfaction [13, 25].

For days with reduced activity, the entropy features capture
the higher predictability of an individual’s behavior, and was
a better feature than total number of bluetooth devices or
WLAN APs observed.

Total Communication

This is the total number of phone calls and SMS exchanged,
both with other participants as well as third parties. This
measure includes incoming and outgoing communication.

Late night and Early Morning Communication

Call and SMS communication between 10pm and 9am on
weekdays, with both other participants and non-participants.

Communication Diversity

The number of unique individuals reflected in phone and
SMS communication within the 48-hour period.

Physical Proximity Entropy with Other Participants

This is the entropy of distribution of Bluetooth proximity
with other participants.

Hp = −

n
∑

i=1

p(xi)log2p(xi)

where p(xi) is the empirical probability of Bluetooth prox-
imity with the remote device xi belonging to another partic-
ipant, within the particular time-window, i.e., p(xi) is the ra-
tio of the number of times the remote device xi was scanned
divided by total count of scanned devices in the 48-hour pe-
riod.

Physical Proximity Entropy with Other Participants Late Night

and Early Morning

Similarly, this is the entropy of the distribution of Bluetooth
proximity with other participants in the study, but only dur-
ing late-night and early morning periods.

Physical Proximity Entropy for Bluetooth Devices Excluding

Experimental Participants

Similarly, this is the entropy of distribution of Bluetooth
proximity. However, all Bluetooth devices in discoverable
mode scanned on the phone are considered in this case. This
feature reflects variations in interactions with ‘familiar strangers’,
i.e., bluetooth beacons that the user is often in proximity to,
say at the bus-stop or in the classroom [23].

WLAN Entropy based on University WLAN APs

This is entropy for the distribution of WLAN access points
scanned within the given period. Only WLAN APs belong-
ing to the university are considered.

Hw = −

n
∑

i=1

p(xi)log2p(xi)

where p(xi) is the empirical probability of scanning a WLAN
AP xi within the particular time-window. Similar to Blue-
tooth physical proximity above, p(xi) is the ratio of the num-
ber of times the WLAN AP xi was scanned divided by the
total count of scanned WLAN APs in the 48-hour period.



WLAN Entropy based on external WLAN APs

Similarly, this is entropy for the distribution of WLAN ac-
cess points scanned within the given period. Only WLAN
APs external to the university are considered.

Behavioral Effects of Low Intensity Symptoms (Runny

Nose, Sore Throat and Cough)

(a) Total com-
munication
increases ***

(b) Late-
night early
morning
commu-
nication
increases **

(c) Overall
Bluetooth
entropy
decreases *

(d) Total
WLAN APs
detected
increase **

Figure 1. Behavior effects of runny nose, congestion, sneezing symp-

tom, n=587/2283, *: p < 0.05 **: p < 0.01 ***: p < 0.001

A sore throat or runny nose report may either be a symptom
of CDC-defined influenza or simply an independent respira-
tory condition due to common colds or allergies.

For the runny nose condition (n=587/2283), participants show
increased total communication as well as increased late night
early-morning communication. Additionally, total counts of
Bluetooth proximity and measures of WLAN entropy in-
creases, which is perhaps counter-intuitive. P-values are gen-
erated using unbalanced t-tests assuming unequal variance.

For sore-throat reports, Bluetooth-based entropy with respect
to other residents in the study dormitory increases. This
again, is slightly counter-intuitive, but may be explained if
participants are spending more time indoors and hence have
a higher likelihood of interacting with other participants, than
they would if they were spending time in classes and ac-
tivities. It is also found that WLAN based entropy mea-
sures, both with respect to university WLAN APs and exter-
nal WLAN APs decrease with sore-throat reports, indicating
more predictable movement patterns for the individual.

Behavior Effects of Higher-Intensity Symptoms (Fever and

Influenza)

For more intense conditions like a fever or CDC-defined in-
fluenza, participants have lower activity and entropy levels,

(a) Blue-
tooth entropy
with re-
spect to
other dorm
residents
increases
***

(b) WLAN
entropy with
respect to
university
WLAN APs
reduces *

(c) WLAN
entropy with
respect to
external
WLAN APs
reduces **

Figure 2. Behavior effects of sore throat and cough symptom,
n=393/2283, *: p < 0.05 **: p < 0.01 ***: p < 0.001

and this is captured using mobile sensors. Due to the sever-
ity of these symptoms, the number of reported cases in our
dataset is lower than that of low intensity symptoms (runny
nose, sore throat/cough). The number of rate of infection
amongst participants and study cohort sizes, however, are
comparable to Phase I clinical trials [29].

For fever, variations are observed in the late night early
morning behavior. Phone communication, Bluetooth prox-
imity counts, and Bluetooth entropy all show a decrease for
the late night early morning window. WLAN-based entropy
measures with respect to the university WLAN APs as well
as external WLAN APs both reduce dramatically.

Similar effects are seen for days labeled as CDC-defined
Influenza, as overall Bluetooth entropy, Bluetooth entropy
with regard to other dorm residents and WLAN based en-
tropy features decrease. This is also expected because fever
is a known influenza symptom.

Behavioral Effects of Stress and Mental Health Symp-

toms

In addition to the physical symptoms described in the above
section, the on-device mobile questionnaire also includes
two daily questions related to stress levels and sadness, lone-
liness or depression. As discussed in the previous section,
the link between behavior change, physical symptoms and
stress is not very well understood. Measuring these self-
report variables alongside symptom data allows modeling
the covariance and potentially causation across the three sets
of variables. With both often-stressed and sad-depressed-
lonely responses in our dataset, participants show a consis-



(a) Late
night early
morn-
ing calls
and SMS
decrease **

(b) Late
night
morning
Bluetooth
counts and
entropy
decrease*

(c) WLAN
based en-
tropy with
respect to
university
WLAN APs
decreases
***

(d) WLAN
Entropy
with respect
to external
WLAN APs
decreases
***

Figure 3. Behavior effects of fever, n=36/2283, *: p < 0.05 **: p < 0.01
***: p < 0.001

tent tendency to isolate themselves, reflected in various sen-
sor modalities.

For the often-stressed response, participants communication
diversity decreases, both overall Bluetooth based entropy
and Bluetooth entropy with respect to other residents during
late-night early morning hours decreases, and WLAN based
entropy decreases both with respect to university WLAN
APs and external WLAN APs.

For the sad-lonely-depressed responses, a similar tendency
to isolate themselves is observed. Total communication de-
creases and communication during late-night early morning
decrease, overall Bluetooth entropy and Bluetooth entropy
with respect to other residents decreases.

Symptom Classification using Behavioral Features

It is evident that there are characteristic behavioral changes
associated with respiratory symptoms, fever, influenza, stress
and depression. With this is in mind, is it useful to train
a classification scheme that identifies when individuals are
likely to be symptomatic from behavioral features alone. There
are two key considerations with regard to designing such a
classification scheme.

First, consider how such a classification system would be
used in a scenario where the user has the mobile sensing ap-
plication installed on their personal phone. When this ap-
plication detects uncharacteristic variations in behavior, it
could predict the likelihood that the user is infected with
a known symptom and potentially inform a nurse, family

(a) Total
Bluetooth
interactions
and entropy
decrease **

(b) Late
night early
morning
Bluetooth
entropy
with respect
to other
participants
decreases **

(c) WLAN
based en-
tropy with
respect to
university
WLAN APs
decreases
***

(d) WLAN
Entropy
with respect
to external
WLAN APs
decreases
***

Figure 4. Behavior effects of CDC-defined influenza, n=54/2283, *: p <

0.05 **: p < 0.01 ***: p < 0.001

member or healthcare professional. Such proactive health-
care is especially useful for conditions with risk of under-
reporting by patients (e.g., mental health, elderly healthcare).
With this goal in mind, the classification model should have
asymmetric misclassification penalties.

A second consideration is due to correlations amongst de-
pendent symptoms. While behavior variations with respect
to symptoms are reported individually in the previous sec-
tion, in reality, self-reported symptoms are correlated. Fig-
ure 7(a) shows the correlations between these variables, re-
ordered using K-nearest-neighbor clustering based on effect
size. Four main clusters that emerge are: stress + depression;
runny nose + sore throat; fever + influenza; and runny nose
+ sore throat + fever + influenza.

Given these considerations and unbalanced class sizes, clas-
sification is done using a Bayesian-network classifier with
MetaCost, a mechanism for making classifiers cost-sensitive
[27]. Structure learning for the network is performed using
K2 hill climbing and the results are based on 4-fold cross-
validation.

Recall, Precision and F-measure for the symptoms class as a
function of increasing misclassification penalty for the symp-
toms class are plotted in Fig 7(b) - 7(f), for different symp-
tom clusters. Recall from the trained classifier is also com-
pared with random assignment of priors averaged over 1000
simulated runs, to demonstrate improvement over ‘chance’.
The X-Axis represents increasing MetaCost misclassifica-



(a) Total com-
munication de-
creases *

(b) Late-
night early
morning
commu-
nication
decreases *

(c) Overall
Bluetooth
entropy
decreases *

(d) Late
night early
morning
Bluetooth
entropy
with respect
to other
experiment
participants
reduces **

(e) WLAN
based en-
tropy with
respect to
university
WLAN APs
decreases
***

(f) WLAN
Entropy
with respect
to external
WLAN APs
decreases
***

Figure 5. Behavior Changes with self-reported sad-lonely-depressed
responses n=282/2283, *: p < 0.05 **: p < 0.01 ***: p < 0.001

tion penalties, and the Y-Axis shows Recall, Precision, F-
Measure (for symptom class) and Recall based on chance.
As seen, Recall of the symptom class improves substantially
for the sore throat + runny nose + congestion cluster, and
also for influenza and fever clusters. Overall prediction ac-
curacy (not shown) is not a useful quality metric due to un-
balanced classes, and ranges between 60-80%.

Temporal Flux Between Behavior, Stress and Physical

Symptoms

There is extensive medical and health policy interest in un-
derstanding the temporal link between behavior change, stress
and physical symptoms. In statistics, the Granger causality
test is a technique for determining whether one time series
is useful in forecasting another– A time series X is said to
Granger-cause Y if it can be shown, usually through a se-
ries of F-tests on lagged values of X (and with lagged values
of Y also known), that those X values provide statistically
significant information about future values of Y. Unfortu-
nately, Granger causality tests have been shown to have poor
noise immunity. In this section, we use a recently proposed
spectral method, Phase Slope Index to gain insight into the
temporal relationships between signals of behavior features,
stress and physical symptoms.

The Phase Slope Index (PSI) Method

PSI [17] is a recently proposed spectral estimation method
designed to measure temporal information flux between time-
series signals. The method is based on the knowledge that

(a) Com-
munication
diversity
decreases **

(b) Overall
Bluetooth
entropy
decreases **

(c) Late
night early
morning
Bluetooth
entropy
with other
experiment
participants
reduces **

(d) WLAN
based en-
tropy with
university
WLAN APs
decreases
***

(e) WLAN
Entropy
with external
WLAN APs
decreases
***

Figure 6. Behavior Changes with self-reported often-stressed responses

n=559/2283, *: p < 0.05 **: p < 0.01 ***: p < 0.001

the phase slope of the cross-spectrum of two signals can be
used to estimate information flux between these signals in
the time domain. Independent noise mixing does not af-
fect the complex part of the coherency between multivari-
ate spectra, and hence PSI is considered more noise immune
than Granger analysis. PSI has been used to make causal in-
ferences for brain cell activation and other domains, and is
calculated as,

Ψij = Υ





∑

f∈F

C∗
ij(f)Cij(f + δf)





where Cij is the complex coherency. When the input signals
are distributed across multiple epochs, then this estimate is
normalized by its standard deviation, calculated using the
Jackknife method [17].

Results

Our approach to using PSI for measuring information flux is
based on validating causal links consistently across multiple
participants in our dataset. This approach is first validated
on two simulated time series of varying sequence lengths
(n, representing number of continuous samples available per
user) that have a partial-causal relationship between them,
and additive noise. The leading time series has x symptom
days. The follower time series has y lagged symptom days
and z days of additive uniform noise, where the lag between
the two series for symptom days is 1 or more days. The
scatter-plot in Figure 8 shows the ability of PSI to recover
causal structure (normalized PSI coefficient > 0) across dif-
ferent ranges of parameters for the simulated signals. The X



(a) KNN reordered corre-
lations between dependent
symptom variables

(b) Sad-Depressed-
Stressed Symptoms

(c) Sore-Throat, Cough,
Runny Nose, Congestion,
Sneezing Symptoms

(d) Fever, Nausea, Stress
Symptoms

(e) Flu and Fever Symp-
toms

(f) Flu only (as per CDC
definition)

Figure 7. Classification results, recall for different symptoms ranges
from 0.6 to 0.9 for the symptom class. Y-Axis shows Recall, Precision,
F-Measure (for symptom class) and Recall based on chance. X-Axis is
the MetaCost misclassification penalty used with the Bayesian Network

classifier.

and Y-axes represent n and x, and each point is averaged over
1000 runs with y=x/3 and z=x/3, (these values are such that
would be intuitively expected for symptoms in our dataset),
and all points above the plane of Z = 0 represent correctly-
estimated PSI values. It is important to note that the method
recovers the correct direction of information flux for 97.6%
of the samples over the surface of the simulated signals.

In order to apply PSI to our dataset, the subset of partici-
pants that show both physical symptoms and stress and de-
pression related responses are considered. There is however,
a trade off to be made between using data from fewer partic-
ipants with longer sequences and hence more reliable esti-
mates, versus using data from more participants with shorter
sequences, and better validation across participants. Hence,
PSI was estimated for two sets of data– sequences of mini-
mum length 40 days and minimum length 60 days, shown in
Figure 9.

Figure 8. PSI evaluation on simulated data. Z-axis is the estimated
PSI value, across a wide range of total days (n) and sick days(x), with
additive noise. Points above the Z=0 plane (97.6%) represent correctly

estimated direction of information flux.

Each approach generates slightly different directed links and
normalized coefficients. The twelve largest PSI coefficients
across both methods on the basis of a combined ranking
score are listed in descending order in Table 2 and illustrated
in Figure 10. An example insight is that ’often-stressed’ is
useful in forecasting proximity, communication and WLAN
behaviors, which suggests that individuals realize and report
that they are stressed before it is reflected in their behav-
ior. Another insight is that in two cases Bluetooth interac-
tion features are used to forecast WLAN features– this sug-
gests that a behavior change is reflected in face-to-face in-
teractions with others before it is reflected in the movement
patterns of the individual.

CONCLUSION

In this paper, we describe a novel application of ubiquitous
computing. We use mobile phones as an active sensing and
prediction platform to identify behavior changes reflected in
mobile phone sensors, when individuals suffer from com-
mon colds, influenza, fever, stress and mild depression. We
show that it is possible to determine the health status of indi-
viduals using information gathered by mobile phones alone,
without having actual health measurements about the sub-
ject. Given the pervasiveness of the mobile phone, this opens
an avenue for modeling of epidemiological contagion in so-
cial networks without medical health reports. We hope our
findings apprise spatial and behavioral epidemiology.



Table 2. PSI Results ordered by combined scores

Source Follower

Runny nose WLAN entropy with ex-
ternal APs

Sad-depressed-lonely Sore throat-cough
Often stressed Total Bluetooth proxim-

ity counts
Communication diver-
sity

Late-night early morn-
ing Bluetooth proximity
counts

Often stressed Communication diver-
sity

Often stressed Late-night early morn-
ing Bluetooth proximity
counts

Bluetooth entropy with
other residents

External WLAN entropy

Runny nose Total WLAN counts
Often stressed WLAN entropy with

university APs
Bluetooth proxim-
ity counts with other
residents

External WLAN entropy

Late-night early morn-
ing communication

Overall Bluetooth en-
tropy

Sad depressed lonely Bluetooth entropy

There are nonetheless, several limitations of this work, that
we are trying to overcome. The statistical tests in the analy-
sis section assume that the samples are independent, which
is not an entirely correct assumption, since we have repeated
measures from a limited set of individuals. This would be
improved with a repeated-measures approach, that will also
allow us to understand how much of the observed variation
in symptomatic behavior is individual dependent. Our work
does not account for confounding behavior changes due to
external events, e.g., exams or the end of semester. On the
modeling front, the Bayesian classifier used does not incor-
porate stochastic information about symptoms or behaviors
from previous days– this temporal structure could be better
modeled using the latent Markov family of models. As men-
tioned earlier, there is also extensive interest in augmenting
compartmental epidemiological models with parameters that
represent empirical behavior changes for symptomatic indi-
viduals. In addition to classifying observed symptoms from
behavior, we are also interested in forecasting when individ-
uals are likely to be sick in future analysis.

The understanding of behavior change in social health will
also benefit from the continuous evolution of mobile sensing
technologies. Our mobile platform did not support Blue-
tooth signal strength, which could provide a better measure
of physical proximity. WLAN-based location sensing could
be replaced with GPS and other location technologies in the
future.

Overall, we believe this work opens a valuable new area for
the ubiquitous computing community in social health and
predictive healthcare. The development of predictive health

(a) Min Length 40 (b) Min Length 60

Figure 9. PSI co-efficients for two sets of sequences based on partic-

ipant data. List of features: 1=sad-depressed-lonely 2=often-stressed
3=sore-throat 4=runny-nose 5=fever 6=nausea 7= influenza 8=total
communication 9=latenight/early morn comm. 10= communication

diversity 11=total Bluetooth proximity 12=overall Bluetooth entropy
13=Bluetooth proximity with other residents 14=Bluetooth entropy
with other residents 15=late-night/early morn Bluetooth proximity
with other residents 16=late-night/early morn Bluetooth entropy with

other residents 17=WLAN counts 18=external WLAN counts 19=over-
all WLAN entropy 20=WLAN entropy with university APs 21=WLAN
entropy with external APs

Figure 10. Highest-ranked PSI relationships across both data subsets.
Directed ties represent temporal flux.

tools will improve the doctor-patient interaction model, such
that health-workers and nurses can use diagnostic informa-
tion for early detection of conditions, ultimately leading to
better healthcare for individuals and lower costs for providers
and insurers.
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