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Abstract 

The diffusion of information, ideas, opinions and media in a 
social network and the influence of individual nodes on the 
diffusion process are important questions in the social 
sciences. However, till date, there has been no method to 
automatically capture fine-grained social interactions 
between people and utilize it to better model the diffusion 
process. In this paper, we describe the use of socially-aware 
mobile phones to capture face-to-face interactions and 
music diffusion for eighty-percent of the residents of an 
undergraduate dormitory. We show that observations of 
diffusion can be used as an `active probe’ to parse the 
network structure and the type of relationship between 
nodes more accurately than with ‘passive’ mobile sensor 
data alone. We propose that automatically captured social 
interactions can be used to create more accurate quantitative 
models of real-world diffusion and influence. 

Introduction 

Social networks play a fundamental role in the propagation 

of ideas, opinions, innovations, recommendations and 

media. Diffusion is the phenomena of propagation within a 

social network. Social influence is the ability of a node to 

manipulate the propagation process, by inducing other 

nodes to adopt or reject the transmission. 

 

Models of social diffusion and influence have been studied 

in many different forms. For example, the transmission of 

political opinions and news in political science [10]; the 

diffusion of innovations in management science [18]; the 

value of novel information in organizational behavior [1], 

the propagation of obesity and smoking behaviors in public 

healthcare [5]. Several simple probabilistic models of 

diffusion processes have been proposed, like the threshold 

model [13] and variants of the cascade model [11]. Social 

influence is also a fashionable topic of discussion in 

popular culture, as marketers and product designers 

attempt to utilize viral media and viral propagation to 

advance their products or services. The proliferation of 

social applications on the web has generated copious 

amounts of data about user interaction and observations of 

diffusion. These data, in turn, are driving new theories and 

a better understanding of the field [14, 19].  
 

 

In order to create realistic predictive models of diffusion 

phenomena, it is important to train with a complete picture 

of the social interactions between participants and the 

exogenous variables that affect the transmission process.  

An important aspect missing from prior work is fine-

grained data about communication and face-to-face 

interaction between individuals. Existing social science 

research has relied on survey instruments to capture such 

interaction data. However, surveys simply cannot provide 

fine-grained data about the user’s day-to-day interactions 

or communication with others. In addition, human errors 

are induced into surveys due to time omission (i.e. the 

memory of events and actions decays with time), 

telescoping effects (i.e. individuals tend to under-estimate 

the time dimension of an event) and selective memory bias 

(e.g. people find it easier to remember social interactions 

with people they admire or are attracted towards). In a 

survey of informant accuracy literature, Bernard and 

colleagues found that recall of social interactions in 

surveys is typically in the range of 50% accuracy [2]. 

Similarly, Brewer and Webster found that when asked to 

recall something as important as friends living in the same 

dormitory, college students failed to even mention about 

20% of their friends [3]. 

 

With better tools to capture face-to-face interaction and we 

could answer questions like-- if we measure who talks to 

whom, and how often, does that represent the transmission 

probability between two people? Does regular co-location 

or frequent communication imply greater social influence? 

What is the role of different types of communication and 

interactions, e.g. the interaction in the workplace or in 

social milieu – do they translate into different types of 

social influence? Is one type of interaction more powerful 

than the other? 

 

In this paper, we show that fine-grained interactions 

between people in a social network captured using 

socially-aware mobile phones can be used to understand 

real-world diffusion phenomena. We describe our current 

experimental deployment with eighty percent participation 

in an undergraduate dormitory and discuss analysis and 

results from a smaller pilot deployment. We show that 

observations of diffusion can be used as an `active probe’ 

to parse the network structure and the type of relationship 

between nodes more accurately than with ‘passive’ mobile 
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sensor data alone. We propose that the combination of 

automatically captured social interactions and measured 

diffusion can be used to create more accurate quantitative 

models of diffusion and influence in real-world social 

networks. 

 Background and Related Work 

Mobile Phones as Social Sensors 

There have been several recent projects that have used 

pervasive, mass-market mobile phones as active social 

sensors. Eagle and Pentland [7] coined the term Reality 

Mining, and used mobile phone Bluetooth transceivers, 

phone communication logs, and cellular tower identifiers 

to identify the social network structure, recognize social 

patterns in daily user activity, infer relationships, identify 

socially significant locations, and model organizational 

rhythms. Farrahi and Gatica-Perez [8] used probabilistic 

topic models learned from activity-related cues in the same 

dataset, to identify behavioral routines in an unsupervised 

manner. Liao and colleagues [15] used a hierarchical 

Markov model and particle filtering approach to infer 

locations related to changes in modes of transport, 

destinations and novel user behavior.  Gonzalez et. al [12] 

analyzed GPS location traces for a 100,000 individuals and 

found that a simple spatial probability distribution could be 

used to characterize human mobility patterns better than 

random walk or Levy flight models. Onnela and colleagues 

[17] used phone communication logs to characterize the 

local and global structure of a 4.6 million node network, 

and found that intermediate strength ties play a key role in 

the diffusion of information.  

 

Similarly, socially-aware electronic sensor badges have 

also been used to capture interactions and learn the 

structure of social networks. Choudhury and Pentland [4] 

designed the Sociometer, a wearable sensor package for 

measuring face-to-face interaction between people using an 

infrared (IR) transceiver, a microphone and 

accelerometers. Face-to-face interactions captured using 

the Sociometer were used to model the structure and 

dynamics of social networks. The Sociometric badge [20] 

was designed to identify human activity patterns, analyze 

conversational prosody features and wirelessly 

communicate with radio base-stations and mobile phones. 

Sensor data from these badges has been used in various 

organizational contexts to automatically predict 

employees’ self-assessment of job satisfaction and quality 

of interactions.  

 

Relevant Theories of Diffusion & Influence 

What kind of social interaction data captured from mobile 

phones can predict diffusion? In his theory of social 

influence, Friedkin [9] explains that strong, cohesive ties 

between nodes lead to high interpersonal influence and 

faster diffusion. It is likely that such strong ties will be 

easily detected in co-location and communication patterns 

of users.  An alternative explanation is the theory of weak 

ties [13], which discusses the bridging role of long-

distance ties in diffusion. Due to less-frequent interaction, 

such weak ties are not likely to be frequently expressed in 

location and communication data, or they may not be 

recognized as ties.  Hence, in our case, it is expected that 

such weak ties are harder to detect from co-location and 

communication features available on mobile phones. 

Features that capture email and other online interactions 

may help to complete the picture. A third, more recent 

theory [17] suggests that medium-strength ties play the 

most important role in the diffusion process.  

 

 
Measuring Diffusion in a Social Community 

 
Our current study consists of sixty-five undergraduate 

residents of a university dormitory. They represent eighty 

percent of the total population of the dormitory—the 

remaining twenty percent of students declined to 

participate in our study citing privacy concerns. The 

undergraduate dormitory is known for its pro-technology 

orientation and tight-knit community. 

 

Each participant is using a Windows Mobile smartphone 

for a year, modified with the following capabilities: 

 

 

� The phones periodically scan for Bluetooth 

wireless devices in proximity. Mobile phones are 

equipped with class 2 Bluetooth radio 

transceivers, which have a maximum range of 

10m. It has been shown that Bluetooth and other 

wireless-radio based co-location techniques can 

be used to identify the nodes and edges in the 

social network [4, 7 and 19]. 

 

• The phones periodically scan for wifi (WLAN 

802.11b) access point identifiers. Since the 

university campus has high wifi penetration, these 

identifiers can be used to infer homogeneity and 

entropy of location and proximity patterns, e.g. is 

there a cluster of users who tend to visit similar 

locations frequently? In addition to measuring co-

location between participants, we also compute 

the statistical distance between the distributions of 

locations frequented by different participants. 

 

• All phone call logs and sms logs are captured. The 

temporal and frequency features extracted from  

communication logs can be used to infer strength 

of social ties and identify relationships, e.g. how 



often do certain people call on weekends?  

 

• A custom music player is installed on the phone, 

which allows participants to play, share, rate and 

search through the music library.  Participants 

have access to over 1500 independent music 

tracks from a wide assortment of genres. All 

events are logged on the server-side, and user-

ratings are used to control for quality in the 

analysis. To send a track to any other participant, 

participants simply click on the ‘share’ button on 

the mobile phone application and select the 

recipient.  

 

• To eliminate confounding effects, special care 

was taken to ensure that the artists and albums 

distributed through the custom music service were 

not featured in mass media or were otherwise 

familiar to the participants. All the content was 

sourced under the Creative Commons license or 

with explicit permission from the independent 

artists.  

 

In addition to the music propagation, participants are 

required to complete monthly surveys that help us model 

diffusion along the following behavioral dimensions: 

 

• Sociometric survey for relationships (choose from 

‘friend’, ‘acquaintance’, or ‘don’t know’) 

• Political opinions (democratic vs. republican) 

• Recent smoking behavior 

• Attitudes towards exercise and fitness 

• Attitudes towards diet 

• Attitudes towards academic performance 

• Current confidence and anxiety level 

 

This experiment is currently in progress and we expect to 

have more results by the conference. Meanwhile, we report 

on the findings from a pilot deployment in the next section. 

 

 

 

Pilot Deployment: Analysis and Results  
 

 

Data Collection: 

 
The mobile phone platform described above was deployed 

with seventeen residents of three floors of a similar 

undergraduate dormitory for one month. Data was captured 

from two sources—long-term social interaction data in the 

form of WLAN IDs, call and sms logs were captured using 

mobile phones; and the consumption and propagation of 

music with timestamps was logged on the music server. 

Data was discarded from two participants due to logging 

errors. 

 

The social interaction dataset for all users over 30 days 

consists of 3499 unique call events (making a call, 

receiving a call or missed call), 350 short message (SMS) 

events (sending or receiving), and 570,000 snapshots of 

WLAN identifiers. The average length of a call is 122 

seconds, 663 call events are during off-peak hours (i.e. 

after 11pm and before 9am), and 1154 call events are from 

weekends (i.e. either Saturday or Sunday). Over the entire 

month, 111 songs were shared and 1234 songs were played 

by users on mobile phones.  

 

The following features were extracted for every participant 

dyad and used in the subsequent analysis of relationships 

and sharing behavior between 210 dyads: 

 

� Communication features: total communication, 

off-peak communication (after 11pm and before 

8am), weekend communication (Saturday and 

Sunday of the week), incoming versus outgoing 

communication and SMS communication 

 

� Location features: co-location based on WLAN 

IDs, and the Jensen Shannon divergence between 

distributions of the first hundred most-frequently 

observed WLAN IDs between individuals.  

 

 

Inferring Relationships from Phone Sensors 

 
User self-assessments of relationships between dyads 

(‘friend’, ‘acquaintance’, or ‘don’t know’) from the 

sociometric survey were used as training labels. The 

‘passive’ communication and location features are 

correlated with the user-stated relationship (r =0.6, 

p<0.01). If the number of shares is used as an ‘active 

probe’ of the social network, the correlation improves 

(r=0.66, p < 0.01). 

 

The communication and location features help to be used 

to discriminate between different types of relationships, 

i.e., friends vs. acquaintances. The total communication 

and total number of shares between individuals are 

positively correlated with both friends and acquaintance 

types of relationships. The off-peak communication and 

SMS communication features were positively correlated 

only with the ‘friend’ relationships, and not with the 

‘acquaintance’ relationships. Fig 1. illustrates the linear 

separability between the ‘friend’ and remaining 

relationship types. 

 

 

 



 
 

 

 

 

 

 

 

The classification results for predicting relationships using 

a BayesNet classifier and SVM classifier with 5-fold cross 

validation are given in Table 1. The first row is the ‘non-

friends’ class and the second row is the ‘friends’ class. The 

training data is unbalanced (since only 28% of all dyads 

are friends), so a cost-sensitive approach is used in model 

training and classification errors for the ‘friends’ class 

were penalized more than the ‘non-friends’ class by a 

factor of 3. It is seen below that while the BayesNet 

classifier outperforms SVM approach in overall accuracy, 

recall for the ‘friends’ class is slightly better with the SVM 

model. As shown in Table 2, with the use of sharing data 

as an additional feature, the classification accuracy 

increases by a few percentage points. 

 

 

 

 

 

 

 

 

Estimating Likelihood of Transmission between 

Dyads from Social Interaction Data  

 
Overall, the communication and location features extracted 

from mobile phone logs are correlated with observed 

sharing behaviour (r = 0.65, p < 0.01) . The specific 

features that are important predictors of sharing are total 

calls and total off-peak duration, SMS communication and 

co-location based on WLAN identifiers.  Dyadic sharing 

behaviour shows a higher correlation with automatically 

captured communication and location features than self-

reported relationships (r = 0.42, p <0.01 for ‘mutually 

acknowledged friends’) . This result indicates that social 

interactions automatically captured using mobile phone 

sensors may be better predictors of the transmission 

probability than user self-assessments.  
 

The media propagation observed in the experiment was 

further broken down into two distinct types: 

 

(a) Approximately 70% of the total shares were between 

‘mutually acknowledged friends’. For this subset of 

dyads, the correlation of location and communication 

features with propagation is even higher.  This 

represents diffusion within cohesive social ties. 

 

(b) The remaining 30% of shares were between strangers 

or weak ties. For this subset of dyads, the location and 

communication features are not significantly 

correlated with sharing. This form of diffusion is 

consistent with the theory of weak ties.  

 

 

 

Model Acc. Class Precisi

on 

Recall F-

Meas

ure 

Non-

Friends 

0.879 0.972 0.923 Cost-

sensitive 

BayesNet 

with  

5-fold CV 

87.3% 

Friends 0.84 0.525 0.646 

Non-

Friends 

0.888 0.894 0.891 Cost-

sensitive 

Support 

Vector 

Machine with  

5-fold CV 

(polynomial 

kernel) 

83% 

Friends 0.615 0.6 0.608 

Model Acc. Class Precision Recall F-

Meas

ure 

Non-

Friends 
0.897 0.986 0.94 Cost-sensitive 

BayesNet 

with  

5-fold CV 

90.1% 

Friends 0.923 0.6 0.727 

Non-

Friends 

0.942 0.923 0.932 Cost-sensitive 

Support 

Vector 

Machine with  

5-fold CV 

(polynomial 

kernel) 

89.6% 

Friends 0.744 0.8 0.771 

Fig 1. Histogram of ‘friend’ relationships vs. values 

predicted using the location, communication and sharing 

features. X-axis values are computed as a linear function 

of the raw features and the Y axis represents the number 

of dyads in each bin. Friends can be visually separated 

from other classes by drawing a vertical line at x=0.2 or 

fitting Gaussian for each class. 

Table 1. Relationship classification accuracy without using 

sharing data 

Table 2. Relationship classification accuracy after the addition of 

sharing data 



The two types of sharing highlight the strengths and 

weaknesses of our approach. Face-to-face interaction 

features captured using socially-aware mobile phones can 

predict transmission probability for cohesive ties; however 

they are not very useful in identifying weak ties or the 

propagation probabilities associated with them. Other 

approaches like mapping email interactions or social 

network sites may be more useful. The Author-Recipient-

Topic (ART) model and Latent Dirchlet Allocation (LDA) 

are examples of approaches that have been used to identify 

roles, relationships and group membership from email 

interactions [16]. 

 

The observations of sharing between participants can be 

broken into a 2-class (sharing /no-sharing) or 3-class model 

(no sharing; < 3 songs shared as ‘low sharing’; >= 3 songs 

shared as ‘high sharing’; these class boundaries were 

selected based on distribution of shares). Without any prior 

relationship data and based on mobile phone features 

alone, the 2-class prediction accuracy using a cost-sensitive 

Bayesian network classifier is 71.5 % (precision = 0.69, 

recall =0.426, f-measure = 0.527 for the sharing class). 

With a similar model, the 3-class, 5-fold CV accuracy is 

69%.   

 

It is also possible to implement a hierarchical Bayesian 

model, where relationships are inferred from mobile phone 

features, and then used as an additional feature to predict 

sharing. Our initial results show that with this approach, 

the 2-class classification accuracy for sharing increases 

slightly to 74%. 

 

 

Modeling Social Influence  
The latent-state influence model [6] is a tractable 

approximation for hidden Markov modelling of multiple 

interacting stochastic processes. In a hidden Markov model 

of n interacting processes, the number of latent states is 

product of the number of latent states per process, which 

implies that an impractical number of model parameters 

have to be learnt. In the corresponding influence model, 

the number of model parameters is reduced as the latent 

state distributions for time t + 1 are based on a linear 

combination of the latent states for time t. The static 

weights for this linear combination are the ‘influence’ 

values, and reflect the coupling between the interacting 

Markov chains.  

 

P(s 
i 

t+1 / s
1
t, s

2
t….s 

n 
t) = Σ α

ij
 P(s 

i 
t+1 / s 

j
t) 

 

where: 

  s 
i 

t  :  hidden state of chain i at time t,  

α
ij
   :  influence of chain i on chain j, for n chains with k 

states per chain.  

 

The forward backward algorithm for latent state estimation 

and the maximum likelihood algorithm for estimation of 

model parameters of the influence model are derived from 

the equivalence between the influence model and 

corresponding hidden Markov model, and the detailed 

derivation is available here [6]. 

 

The consumption and propagation dynamics between 

participants over time can be modelled as n interacting 

Markov chains using the influence model. Each participant 

represents a chain, and the observed variable is a function 

of captured interactions with other participants or media 

consumption. The inter-chain influences then represent the 

‘social influence’ between the nodes.  

 

Fig 2. shows the influence values for sixteen participants 

based on observed media consumption. The observed 

variable is the number of times a participant played one of 

the three most popular tracks. Two latent states are 

assumed per chain and represent the level of ‘activation’ 

for the participant. Each chain evolves with a time-step 

equal to one day.  

 

 
 

 

 

 

 

 

 Self-influences are absent from this graph because the 

playback sequences per person for the three most-popular 

tracks are sparse. An interesting future direction is to 

explore is whether the computed influence values can be 

related to the observed transmission probability.  

Conclusions 

 
Our initial analysis of the use of socially aware mobile 
phones to predict the diffusion process is promising. We 
find that 70% of the sharing behavior between dyads is 
highly correlated with captured social interaction features, 

Fig 2. Social influence matrix between 16 participants -- 

the observed variable for each chain is the number of 

times the three most popular tracks are played by the 

participant (on a daily basis) 



which is consistent with the theory of influence due to 
social cohesion between close ties. The remaining 30% of 
sharing behavior is between weak ties or strangers, and the 
social interaction features are not correlated with observed 
diffusion.  
 
We also find that that the sharing behavior has a higher 
correlation with automatically captured social interaction 
features than user self-reported relationship surveys. This 
suggests that socially-aware systems may be better 
estimators of real-world diffusion and dyadic transmission 
probability than user’s self-assessments themselves. 
 
We show that ‘passive’ interaction features like phone 
communication logs and SMS logs are correlated with 
stated relationships. However, we also find that the 
correlations increase when we consider ‘active probes’ in 
the network, in the form of observed diffusion.   The media 
consumption between nodes can be used to estimate the 
‘influences’ between dyads.  
 
Our main experiment is currently in progress and we 
expect to have more results by the time of the conference. 
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