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ABSTRACT 
In this paper, an influence model is used to recognize functional 
roles played during meetings. Previous works on the same corpus 
demonstrated a high recognition accuracy using SVMs with RBF 
kernels. In this paper, we discuss the problems of that approach, 
mainly over-fitting, the curse of dimensionality and the inability 
to generalize to different group configurations. We present results 
obtained with an influence modeling method that avoid these 
problems and ensures both greater robustness and generalization 
capability.  

Categories and Subject Descriptors 
H.5.3 [INFORMATION INTERFACES AND 
PRESENTATION]: Group and Organization Interfaces: 
Computer-supported cooperative work - Synchronous interaction 

I.2.10. [ARTIFICIAL INTELLIGENCE]: Vision and Scene 
Understanding – Perceptual Reasoning 

General Terms 
Design, Experimentation, Human Factors. 

Keywords 
Group Interaction, Support Vector Machines, Intelligent 
Environments. 

1. INTRODUCTION 
The complexity of social dynamics occurring in small group 
interactions often hinders the performance of teams. The 
availability of rich multimodal information about what is going on 

during the meeting makes it possible to explore the possibility of 
providing various kinds of support to dysfunctional teams, from 
facilitation to training sessions addressing both the individuals 
and the group as a whole. A necessary step in this direction is that 
of automatically capturing and understanding group dynamics. 
In order to improve performance of meetings, external 
interventions by experts such as facilitators and trainers are 
commonly employed. Facilitators participate in the meetings as 
external elements of the group and their role is to help participants 
maintaining a fair and focused behavior as well as directing and 
setting the pace of the discussion. Training experiences aim at 
increasing the relational skills of individual participants by 
providing an offline (with respect to meetings) guidance—or 
coaching—so that the team eventually will be able to overcome or 
to cope with its disfunctionalities.  
In [17], the absence of any detectable difference in the 
acceptability of reports about own relational behaviour according 
to whether they had been produced by a human expert or by an 
automatic system was reported. Clearly, crucial to any such an 
automatic system is that it be capable of understanding people 
social behaviour, e.g., by abstracting over low level (visual, 
acoustic, etc.) information to produce medium-/coarse-grained 
one about the social/relational roles members play in the group. 
The latter is the kind of information that most coaches and group 
facilitators (implicitly or explicitly) use while doing their job. In 
[21;18], sliding windows multiclass SVMs with radial kernels 
were used to recognize functional relational roles in meetings. 
The results were very positive, with the macro F scores for the 
different roles above 80%. However this approach suffers from 
two limitations. First, the observation vector included not only the 
features of the participant whose role had to be detected but also 
those of all the other participants and it is therefore very sensible 
to the curse of dimensionality [5], which might artificially inflate 
results. The second limitation is that radial kernels might turn out 
to have an infinite VC dimensionality and that can easily lead to 
over-fitting [8].  
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In this paper, we investigate a new framework for functional role 
detection in meetings, the ‘influence model’ [4; 12], and compare 
this approach with multi-class SVMs based on linear and RBF 
kernels, and Hidden Markov Models. Among its advantages, the  



influence model overcomes problems such that the curse of 
dimensionality that easily affect alternative framework (e.g., 
SVM). We will show that when the features from a single 
participant only are used both the SVM and HMM approaches 
achieve similar accuracy at role classification. When features 
from all the participants are included the SVM performance 
increases dramatically, but at the cost of a loss of robustness and 
generalizability. The influence model, on the other hand, can take 
into account the features of other participants in a more robust and 
generalizable manner, with an intermediate increase in accuracy 
over the single-person role classification methods. Both all-person 
SVM and influence model results at labeling roles are comparable 
to the human inter-rater reliability, but show different patterns of 
error.  
This paper is structured as follows: in the next section, previous 
work relevant to the topic of the automatic detection of social 
phenomena in groups is presented and discussed. Section 3 
introduces the corpus used for our experiments, the particular 
phenomenon we are tackling—namely, functional relational 
roles—and discusses some previous results on their automatic 
detection. Section 4 introduces the influence modelling, while the 
results of our experiments are discussed in section 5. Finally, 
section 6 draws the conclusions and hints at future work. 

2. PREVIOUS AND RELATED WORK 
Multimodal analysis of group behavior is a relatively recent 
research area compared to the large body of studies focusing on 
multimodality as a flexible, efficient, and powerfully expressive 
mean for human-computer interaction (see [Oviatt, 2002] for a 
survey of multimodal input). Despite this, some research groups 
have started producing important results. For instance, McCowan 
et al. [14] developed a statistical framework based on different 
Hidden Markov Models to recognize the sequences of group 
actions using observations provided by a set of audio-visual 
features obtained by monitoring the individuals’ actions. For 
example, “discussion” is a group action which can be recognized 
from the verbal activity of individuals. Rienks and Heylen [19] 
used Support Vector Machines to automatically detect the team 
members who play a dominating role in a meeting, by relying on 
a few basic features. In a more recent work, Rienks et al. [20] 
addressed the problem of automatically detecting participant’s 
influence levels in meetings using static models (i.e. SVMs) and a 
dynamic model, the team-player influence model (a dynamic 
Bayesian network with a two-level structure: the player level and 
the team level). Banerjee and Rudnick [3] proposed a simple 
taxonomy of participant roles and meeting states, and then trained 
a decision tree classifier to learn them from simple speech-based 
features. The classifier takes as input a feature representation of a 
short time window during the meeting (meeting history) and 
classifies the roles and the states at the end of the window. 
Finally, Brdiczka and colleagues [7] developed a real-time 
detector for configurations of interaction groups. 

3. THE MISSION SURVIVAL CORPUS 
For the experiments discussed in this paper, we have used the 
Mission Survival Corpus [18], a multimodal annotated corpus 
based on the audio and the video recordings of eight meetings that 
took place in a lab setting appropriately equipped with cameras 
and microphones. Each meeting consisted of four people engaged 

in the solution of the “mission survival task”. This task is 
frequently used in experimental and social psychology to elicit 
decision-making processes in small groups. Originally designed 
by National Aeronautics and Space Administration (NASA) to 
train astronauts, the Survival Task proved to be a good indicator 
of group decision making processes [13]. The exercise consists in 
promoting group discussion by asking participants to reach a 
consensus on how to survive in a disaster scenario, like moon 
landing or a plane crash in Canada. The group has to rank a 
number (usually 15) of items according to their importance for 
crew members to survive. In our setting, we used the plane crash 
version. This consensus decision making scenario was chosen for 
the purpose of meeting dynamics analysis mainly because of the 
intensive engagement requested to groups in order to reach a 
mutual agreement, thus offering the possibility to observe a large 
set of social dynamics and attitudes. In our setting, we retained 
the basic structure of the Survival Task with minor adjustments: 
a) the task was competitive across groups/team, with a price being 
awarded to the group providing the best survival kit. b) the task 
was collaborative and based on consensus within the group, 
meaning that a participant’s proposal became part of the common 
sorted list only if he/she managed to convince the other of the 
validity of his/her proposal. 

 

Figure 1. A picture of the experimental setting. 

The recording equipment consisted of five Firewire cameras—
four placed on the four corners of the room and one directly 
above the table— and four web cameras installed on the walls 
surrounding the table. Speech activity was recorded using four 
close-talk microphones, six tabletop microphones and seven T-
shaped microphone arrays, each consisting of four omni- 
directional microphones installed on the four walls in order to 
obtain an optimal coverage of the environment for speaker 
localization and tracking. 
Each session was automatically segmented labeling the speech 
activity recorded by the close-talk microphones every 330ms [9]. 
The fidgeting—the amount of energy in a person’s body and 
hands—was automatically tracked by using skin region features 
and temporal motion [10]. The values of fidgeting for hands and 
body were extracted for each participant and normalized on the 
fidgeting activity of the person during the entire meeting. 

3.1 The Functional Role Coding Scheme 
The Functional Role Coding Scheme (FRCS) was partially 
inspired by Bales’ Interaction Process Analysis [2]. It consists of 



ten labels that identify the behavior of each participant in two 
complementary areas: the Task Area, which includes functional 
roles related to facilitation and coordination tasks as well as to 
technical experience of members; the Socio Emotional Area, 
which is concerned with the relationships between group 
members and the functional roles “oriented toward the 
functioning of the group as a group”. Below we give a synthetic 
description of the FRCS (for more information, see [18]. 
The Task Area functional roles consist or: the Orienteer (o)—she 
orients the group by introducing the agenda, defining goals and 
procedures, keeping the group focused and on track and 
summarizing the most important arguments and the group 
decisions. The Giver (g): she provides factual information and 
answers to questions, states her beliefs and attitudes about an 
idea, expresses personal values and factual information. The 
Seeker (s), who requests information, as well as clarifications, to 
promote effective group decisions. The Procedural Technician 
(pt); she uses the resources available to the group, managing them 
for the sake of the group. The follower (f), who just listens, 
without actively participating in the interaction. 
The Socio-Emotional functional roles: the Attacker (a); she 
deflates the status of others, expresses disapproval, and attacks the 
group or the problem. The Gate-keeper (gk), who is the group 
moderator, mediates the communicative relations, encourages and 
facilitates the participation and regulates the flow of 
communication. The Protagonist (p); she takes the floor, driving 
the conversation, assuming a personal perspective and asserting 
her authority. The Supporter (su), who shows a cooperative 
attitude demonstrating understanding, attention and acceptance as 
well as providing technical and relational support. The Neutral 
Role (n), played by those who passively accept the ideas of the 
others, serving as an audience in group discussion.  
Of course, participants may—and often do—play different roles 
during the meeting, but at a given time each of them plays exactly 
one role in the Task Area and one role in the Socio-Emotional 
one.  
The FCRS was showed to have a high inter-rater reliability 
(Cohen’s statistics κ = 0.70 for the Task Area; κ =0.60 for the 
Socio-Emotional Area). 

3.2 Predicting the functional roles 
In [21 and 18], an SVM-based approach was discussed that 
predicts the functional roles taken by the participants of a meeting 
from information such as the speech activity and the fidgeting of 
each participant in a time window. The bound-constrained SV 
classification algorithm with a Gaussian RBF kernel was used. 
The cost parameter C and the kernel parameter γ were estimated 
through the grid technique by means of cross-fold validation 
using a factor of 10. 
In the first attempt ([21]), only the features of the participant 
himself were used to detect his role and different window' sizes 
were tested. In this case, the accuracy for the Task Area roles 
reached 0.65 for the 14-second window seconds, and the accuracy 
for the Socio-Emotional roles reached 0.70 for the 12-second 
window. 
In the second attempt [18], the features of all the four participants 
were used to predict the role of a single participant; again 
different window's sizes were tested. Note that this approach 

relies on a very large feature vector and risks problems of 
overfitting and robustness. The accuracy at 9-second window 
reached 0.90 for Task area roles and 0.92 for Socio-Emotional 
roles with high precision and recall for all the roles (see Table 1). 
In both attempts, the precision and recall on the individual roles 
were not homogeneous 

Table1. Precision and recall of the different roles in the 
second attempt using an SVM-based approach. 

Neutral Supporter Protagonist Attacker
Precision 0.89 0.89 0.91 0.83
Recall 0.92 0.81 0.91 0.74
F 0.91 0.85 0.91 0.78  

Follower Orienteer Giver Seeker
Precision 0.84 0.93 0.93 0.89
Recall 0.90 0.87 0.91 0.68
F 0.87 0.90 0.92 0.77  

4. INFLUENCE MODELING  
The influence modeling approach is a method that can effectively 
deal both with the curse of dimensionality and the over-fitting 
problem. It has been developed in the tradition of the N-heads 
dynamic programming on coupled hidden Markov models [15], 
the observable structure influence model [1], and the partially 
observable influence model [4]. It extends, though, these previous 
models by providing greater generality, accuracy, and efficiency. 
The influence modeling is a team-of-observers approach to 
complex and highly structured interacting processes. In this 
model, different observers look at different data, and can adapt 
themselves according to different statistics in the data. The 
different observers find other observes whose latent state, rather 
than observations, are correlated, and use these observers to form 
an estimation network. In this way, we effectively exploit the 
interaction of the underlying interacting processes, while avoiding 
the risk of overfitting and the difficulties of observations with 
large dimensionality.  
Mathematically speaking, a latent structure influence process is a 
stochastic process{St

(c ) ,Yt
(c ) : c ∈ {1,...,C},t ∈ N} . In 

this process, the latent variables St
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We give the forward-backward algorithm of the latent structure 
influence process (for latent state inference), and the maximum 
likelihood algorithm (for parameter estimation) below. A detailed 
discussion of this model, as well as its algorithms, can be found in 
[11; 12]. 
Given the parameters of the influence model, as well as the 
observation sequences, the marginal probability distributions on 
latent states for individual interacting processes can be computed 
as follows. 
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Given the observation sequences, as well as the inferred latent 
state sequences, the parameters can be re-estimated as the 
following: 
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The parameters that couple the latent states with the observations 
are computed as usual. 
The following imaginary power plant network example illustrates 
the interacting dynamic processes we are referring to, and how the 
influence modeling simultaneously exploring and exploiting the 
structure among them. In this example, we have a network of six 

power plants, and our task is to estimate whether a power plant is 
normal or overheated from noisy observations of it. A natural 
approach is to make estimations of the states of a power plant 
from the observations of not only this power plant, but also the 
related power plants, in a short window around the time of the 
estimated states. The estimation is a chicken and egg problem: the 
more we know about the structure, the better we can estimate the 
latent states, and vice versa. 

  

  

Figure 2: Estimating network structure and latent states 
simultaneously from noisy observations with the influence 
model. The task is to estimate the true states, as well as the 

interaction, from noisy observations shown in (b). The 
recovered interaction structure in (c) has 90% accuracy, and 

the estimated the latent states in (d) have 95% accuracy.  

An important consideration in choosing a multi-class classifier is 
whether the classifier, after it is trained from a training data set, 
can generalize to future applications. With increased 
dimensionality and without regularization, even a linear classifier, 
which is considered stable, can overfit. The latent structure 
influence modeling of interacting processes avoids the curse of 
dimensionality problem with the team of observers approach. In 
this approach, the individual observers only look at the latent 
states of the other related observers, rather than looking at the raw 
observations, and thus are less likely to be overfit and more likely 
to be generalizable.  
Figure 3 compares the performances of several dynamic latent 
structure models (the influence model, the hidden Markov model 
with 16 latent states and 10-dimensional Gaussian observations, 
the hidden Markov model with 64 latent states and 10-
dimensional Gaussian observations, and 10 hidden Markov 
models, each on one dimensional data). Of the 1000 samples, we 
use the first 250 for training and the rest 750 for validation.  
Judged from Figure 3, the logarithmically scaled number of 
parameters of the influence model allows us to attain high 
accuracy based on a relatively small number of observations. This 
is because the influence model preserves the asymptotic marginal 
probability distributions of the individual “bits”, as well as the 
linear relationship among them. Hence, the influence model 
shrinks the number of parameters of the original hidden Markov 



model logarithmically and in an efficient way, while still 
preserving the principal dynamics of the process.  

Figure 3: Latent state influence process is immune to 
overfitting.  

5. Detection of functional roles 
In this section we compare the results obtained from three 
different approaches: Support Vector Machines with linear kernel, 
Hidden Markov Models and Influence modeling. 
A simple multi-class SVM approach, although powerful, has 
several limitations in its generalization capability. The first issue 
is related to finding general features applicable to all speakers. 
Different speakers might have different ways to fulfill their 
functional roles in a group discussion. Having a speaker specific 
implementation is a nontrivial task for support vector classifiers. 
The second issue is related to the curse of dimensionality. When 
we make use of the observations of other speakers for our 
classification task, the length of the observation vector grows 
linearly with a large multiplication constant. For instance, using 
9-seconds windows the length of the observation vector is 432 (9 
seconds x 3 samples/second x features x 4 speakers). The third 
issue is about the assessment of the trained classifier, as well as 
how the speakers interact with each other. Extracting an intuitive 
understanding of group interactions among the speakers from the 
trained support vector classifiers, as well as how the individuals 
fulfill their function roles is not easy. A final issue is 
generalizability to different numbers of speakers. The SVM 
approach is not modular in the number of participants, whereas a 
network approach can be scaled to different sizes of groups. As a 
result, a natural next step is to use a Bayesian hierarchical 
dynamic model, and compare the performance with that of a 
standard multi-class SVM. 
Moreover, as already hinted at, the results by [18] might have 
another weakness related to the generalization capability. The 
RBF kernel, in fact, might have an infinite Vapnik-Chernovenkis 
dimension and might be subject to over-fitting and to a poor 
generalization capacity. To overcome this problem, we changed 
the partition between train-set and test-set in order to try out the 
robustness of our approach with respect to over-fitting. We used 
four meetings for train-set (040805_0930, 040805_1100, 
040805_1400, and 180805_1400) and the other meetings for test-

set (030805_1100, 090805_1100, 180805_0930, and 
180805_1130). In all these experiments we modeled role 
assignment as a multi-class classification problem and used 
Support Vector Machines as classifier. A linear kernel was used 
in order to reduce the risk of overfitting. The highest accuracy 
score obtained is 70%. The macro precision and the macro recall 
for Task area roles are 48% and 52%. The performance is worst 
for Socio-emotional area roles: the macro precision is 39% and 
the macro recall 48%. Table 1 and Table 2 show the confusion 
matrices for Task area roles and Socio-Emotional area roles 
respectively. The observation vector is composed of the smoothed 
version of speaking/non-speaking, hand movement, and body 
movement of the speaker under investigation, as well as the 
number of simultaneous speakers in a fixed-length window 
centered around the moment of interest. We take this window to 
be from 10 seconds before till 10 seconds after the moment of 
interest. 

 Table 1: Confusion matrix between the ground truth and the 
typical classification result for task roles with Support Vector 
Machine and linear kernel (G=giver, N=neutral, O=orienteer, 

and S=seeker) 
SVM classification on test data  

Giver Neutra
l 

Oriente
er 

Seeker Total 

G 8468 4049 1624 635 14776 

N 2517 29304 520 899 33240 

O 1385 527 205 74 2191 

S 35 18 535 717 1305 

G
round truth 

Total 13571 28364 2416 7161 51512 

 

Table 2: Confusion matrix between the ground truth and the 
typical classification result for socio-emotional roles with 
Support Vector Machine and linear kernel (A=attacker, 

N=neutral, P=protagonist, and S=supporter) 
SVM classification on test data  

Attack
er 

Neutra
l 

Protago
nist 

Suppo
rter 

Total 

A 74 70 20 21 185 

N 460 32766 3936 1309 38471 

P 322 2463 5777 818 9380 

S 146 1351 1748 231 3476 

G
round truth 

Total 124 35386 8048 7954 51512 

 
A major goal of our work was to provide for a fair comparison 
between SVM approach and the Influence Model approach trying 
to avoid over-fitted results with SVMs.  
In the influence modeling of the speakers’ functional roles, we 
used  number of interacting processes to model the task roles 
and the social roles of the  individual speakers in a meeting. 
The observations for the individual processes are the 
corresponding speakers’ raw features (speaking/non-speaking, 
body movement, hand movement, and number of simultaneous 

2n
n



speakers) averaged over short fixed-length time windows centered 
around the observation times. The latent states for the individual 
processes are the corresponding labels. In the training phase of 
influence modeling, we find out the observation statistics of 
different functional role classes, as well as the interaction of 
different speakers with the EM (expectation maximization) 
algorithm, based on the training data. In the application phase, we 
infer the individual speakers’ social/task roles based on the 
observations about the individual speakers, as well as their 
interactions, using the parameters previously trained.  
We partitioned the data set of the eight meetings into two parts, as 
in the SVM experiments, and estimated the generalization 
capability of the trained classifier by two fold cross validation. 
With the influence modeling, we can generally get 75% accuracy 
in classifying both the task roles and the social roles. We are 
satisfied with this performance since identifying the functional 
roles without semantics is normally considered as a very hard 
problem.  
The trained influence matrix (Figure 4) gives an intuition on how 
the “team of observers” cooperates to gain the maximum 
classification accuracy. In this matrix, an entry at row x and 
column y indicates how the state corresponding to row x is 
indicative of the state corresponding to column y. The eight 
observers (for the eight speaker/functional-class combinations) 
tend to vote for a neutral state on a speaker’s functional role, with 
regard to their decisions at the next observation time. The 
observers also model the interaction of the different functional 
roles among the speakers in the training phase, and use the model 
for classification.   
What is striking about this influence matrix is its modularity. The 
influence on each speaker is similar to that of all the other 
speakers. This means that we should be able to generalize the 
influence model to groups with different numbers of participants 
by replicating the appropriate portions of the influence matrix. 

 

Figure 4: Interaction of social/task roles among speakers. An 
entry at row x and column y indicates how large the state 

corresponding to row x is indicative of the state corresponding 
to column y (red means more indicative, and blue means less 

indicative).  

Turning to the hidden Markov model, we trained eight hidden 
Markov models for the four speakers’ social/task roles. Without 
the information about the other participants’ functional roles, 
HHM typically yields 60% accuracy for task roles, 70% accuracy 
for social roles, and 65% overall accuracy. This is similar to the 
accuracy of the SVM approach. The typical confusion matrices 
for task/social roles are given in Table 3 and 4.  

Table 3: Confusion matrix between the ground truth and the 
typical classification result for task roles with one hidden 

Markov model per speaker (G=giver, N=neutral, O=orienteer, 
S=seeker) 

HMM per speaker classification on test data  

Giver Neutra
l 

Oriente
er 

Seeker Total 

G 7126 3637 1370 2643 14776 

N 4728 23740 809 3963 33240 

O 1212 310 195 474 2191 

S 505 677 42 81 1305 

G
round truth 

Tot
al 13571 28364 2416 7161 51512 

 

Table 4: Confusion matrix between the ground truth and the 
typical classification result for socio-emotional roles with one 
hidden Markov model per speaker (A=attacker, N=neutral, 

P=protagonist, and S=supporter) 
HMM per speaker classification on test data 

 A N P S Total 

A 54 91 40 0 185 

N 20 30874 3017 4560 38471 

P 0 2825 4695 1860 9380 

S 50 1596 296 1534 3476 

G
round truth 

Total 124 35386 8048 7954 51512 

 
Putting these results together, it can be seen that by including the 
influence modeling to capture connections between speaker roles, 
we can achieve approximately 10% increase in accuracy, to about 
75% overall accuracy. This is similar to the inter-rater accuracy of 
the human labeling of this corpus, and therefore may be close to 
an upper limit for modeling accuracy without risking overfitting. 
The macro precision and the macro recall of the Influence Model 
are 40% and 39% for Task area roles. The performance is better 
for Socio-Emotional area roles: the macro precision is 41% and 
the macro recall 50%. By comparing the confusion matrices for 
the influence model and the hidden Markov models, one can see 
that most of the improvements are in the majority classes, and are 
due to the fact that influence modeling uses the functional roles of 
other speakers. However, for the Socio-Emotional area roles the 
macro precision (52%) and the macro recall (51%) of the hidden 
Markov model are better than the macro precision (41%) and 
macro recall (50%) of the Influence Model. These results of the 
Influence Model are due to two different reasons: the high number 



of false positives in the Attacker role classification and the not 
good performance at classifying the Supporter role.  

Table 5: Confusion matrix between the ground truth and the 
typical classification result for task roles with influence 
modeling speaker (G=giver, N=neutral, O=orienteer, 

S=seeker) 
Influence model classification on test data  

Giver Neutra
l 

Oriente
er 

Seeke
r 

Total 

G 8059 4225 1858 634 14776 

N 2535 29362 406 937 33240 

O 1304 500 320 67 2191 

S 526 714 64 1 1305 

G
round truth 

Total 12424 34801 2648 1639 51512 

 

Table 5: Confusion matrix between the ground truth and the 
typical classification result for socio-emotional roles with 

influence modeling (A=attacker, N=neutral, P=protagonist, 
and S=supporter) 

Influence model classification on test data 
 A N P S Total 

A 74 72 19 20 185 

N 341 32767 3521 1842 38471 

P 269 2536 5290 1285 9380 

S 127 1281 1455 613 3476 

G
round truth 

Total 811 36656 10285 3760 51512 

6. CONCLUSION  
In this paper, we have used the Influence Model for recognizing 
group functional roles played during meetings. In previous works 
we used Support Vector Machines with Gaussian RBF kernel and 
sliding windows. Both approaches produce a similar, medium 
level of classification accuracy (roughly 65%) when using only 
features from one individual.  
When using features from all participants, the SVM approach 
obtains higher recognition accuracy (Pianesi et al., in press), but 
suffered from two problems related to generalization capability: 
(a) the curse of dimensionality (if we make use of the 
observations/features of other speakers for our classification task, 
the length of the observation/feature vector grows linearly with a 
large multiplication constant); (b) overfitting (the Gaussian RBF 
kernel might have infinite VC-dimension). 
The Influence Model is a good technique to deal with these 
weaknesses. In fact, the latent structure influence modeling of 
interacting processes avoids the curse of dimensionality problem 
using the “team of observers” approach. In this approach, the 
individual observers only look at the latent states of the other 
related observers, which best summarize the observations from 
the perspectives of the latter, thus are less likely to suffer from 
overfitting and lack of generalization. 

The performance obtained using Influence Model for recognizing 
group functional roles is comparable to the inter-rater reliability 
on this corpus of data: we can generally get 75% accuracy in 
classifying both the Task area roles and the Socio-Emotional area 
roles. 
One interesting observation is that the Influence Model seems to 
be generalizable to different numbers of participants in the group, 
since the influence between participants was very similar for all 
subjects and all experiments. The ability to automatically adapt to 
different sized groups without retraining would allow a great 
increase in the flexibility and applicability of automatic role 
classification technology. 
One important area for future work is that current training 
algorithm for the influence model does not do well at classifying 
the low-frequency classes (Orienteer/Seeker for Task area roles, 
and Attacker/Supporter for Socio-Emotional area roles). A 
direction for improvement is adding more features, and 
hierarchical training. In the future works, we plan to add some 
novel features starting from vocal energy, 3D postures and focus 
of attention. 
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