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ABSTRACT

A complex stochastic process involving the human behaviors or the human group behaviors is compu-
tationally hard to model with a hidden Markov process. This is because the state space of such behaviors
is often a Cartesian product of a large number of constituent probability spaces, and is exponentially large.
A sample for those stochastic processes is normally composed of a large collection of hetrogeneous con-
stituent samples. How to combine those hetrogeneous constituent samples in a consistent and stable way
is another difficulty for the hidden Markov process modeling. A latent structure influence process models
the human behaviors and the human group behaviors by emulating the work of a team of experts. In such
a team, each expert concentrates on one constituent probability space, investigates one type of constituent
samples, and/or employ one type of technique. An expert improves his work by considering the results from
the other experts, instead of the raw data for them. Compared with the hidden Markov process, the latent
structure influence process is more expressive, more stable to outliers, and less likely to overfit. It can be
used to study the interaction of over 100 persons and get good results.

This thesis is organized in the following way. Chapter 0 reviews the notation and the background concepts
necessery to develop this thesis. Chapter 1 describes the intuition behind the latent strucutre influence
process and the situations where it outperforms the other dynamic models. In Chapter 2, we give the
inference algorithms based on two different interpretations of the influence model. Chapter 3 applies the
influence algorithms to various toy data sets and real-world data sets. We hope our demonstrations of the
influence modeling could serve as templates for the readers to develop other applications. In Chapter 4, we
conclude the rationale and the considerations of the influence modeling.

Thesis Supervisor: Alex (Sandy) Pentland
Title: Toshiba Professor of Media Arts and Sciences
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Chapter 0

Notation and Preliminaries

In this chapter, we collect together the concepts involved in this thesis, as well as the notation. We also
develop new insights with several examples. Those insights will be explored thouroughly In the succeeding
chapters. This chapter proceeds in the following order. We first define probability space, random variable,
random vector, and stochastic process. The we review Markov chain, hidden Markov process, and the in-
ference algorithms of a hidden Markov process. This is followed by a discussion of the computational time
complexity of the coupled hidden Markov process, and other complex latent variable dynamic processes.
We will describe briefly how the latent structure influence model cope with this time complexity issue by
mapping the original large number of “concepts” into only a few concepts while preserving most informa-
tion.

A probability space (Ω, F, P ) is a measure space with total measure one (P (Ω) = 1). The first term of
this 3-tuple, Ω, is a nonempty set, whose elements are call the outcomes (or states) of nature. The second
term of this 3-tuple, F , is a subset of the power set of Ω (F ⊆ 2Ω) and forms a σ-algebra. The set F is
called a set of events (σ-algebra over Ω). The 2-tuple (Ω, F ) forms a measurable space. The third term of
this 3-tuple, P : F → [0, 1], is a probability measure of the measurable space (Ω, F ).

A random variable X is a measurable function from a probability space (Ω,Pr) to some measurable
space R, normally a subset of real numbers or integers with Borel σ-algebra (X : Ω→ R). A function of a
random variable X is a measurable function f : X → Y . Since the composition of measurable functions
is a measurable function, a function of a random variable is another random variable. A random variable can
be characterized by its cumulative distribution function FX(x) = P (X ≤ x), or its probability density
function (or pdf) p(x) = ∂

∂xFX(x). A discrete random variable can also be characterized by its probability
mass function (or pmf) fX(x) = P (X = x). The cumulative distribution function, probability density
function, and the probability mass function are induced from the probability measure Pr of the original
probability space (Ω,Pr).

A random vector (or a multivariate random variable) is a vector of scalar random variables ~X =
(X1, X2, · · ·Xn).

Example 1. Let us consider the outcome of one flip of a coin. The outcomes are either heads or tails
(Ω = {H,T}). The set of events are (1) neither heads or tails, (2) heads, (3) tails, and (4) heads or tails
(F = {{}, {H}, {T}, {H,T}}). The tuple {Ω, F} forms a measurable space, since (1) the empty set {} is in
F , (2) for any set E in F , its complement F\E is also in F , and (3) the union of countably many sets in F is
also inF . We can define a probability measureP as the following, (1) the probability of getting neither heads
or tails is zero (P ({}) = 0), (2) the probability of getting heads is 0.5 (P ({H}) = 0.5), (3) the probability
of getting tails is 0.5 (P ({T}) = 0.5, and (4) the probability of getting heads or tails is 1 (P ({H,T}) = 1).
The function P is a measure since (1) the empty set has measure zero (P ({}) = 0), and (2) the measure
of the union of a countable number of pairwise disjoint events is the sum of the measure of the individual

11



12 CHAPTER 0. NOTATION AND PRELIMINARIES

events (P ({} ∪ {H}) = P ({}) + P ({H}),P ({} ∪ {T}) = P ({}) + P ({T}),P ({} ∪ {H,T}) = P ({}) +
P ({H,T}),P ({H}∪{T}) = P ({H})+P ({T}), and P ({}∪{H}∪{T}) = P ({})+P ({H})+P ({T})).
The function P is a probability measure since P (Ω) = P ({H,T}) = 1.

We define a random variable X over the probability space of the outcome of one flip of a coin as
the following. The random variable X can be either zero or one. The σ-algebra defined over X is
{{}, {0}, {1}, {0, 1}}. The tuple {{0, 1}, {{}, {0}, {1}, {0, 1}} forms a measurable set. The function from
the probability space of one flip of a coin to the measurable space {{0, 1}, {{}, {0}, {1}, {0, 1}} is defined
as the following: X(H) = 0, X(T ) = 1, X({}) = {},X({H}) = {0},X({T}) = {1}, and X({H,T}) =
{0, 1}. The function X is a measurable function since the preimage of every event in the σ-algebra of {0, 1}
is a σ-algebra of {H,T}. The random variable X can be characterized by its cumulative probability func-

tion FX(x) =





0 x < 0
.5 0 ≤ x < 1
1 1 ≤ x

,probability density function pX(x) = .5δ(x − 0) + .5δ(x − 1) (where δ

is the Dirac delta function), or probability mass function fX(0) =

{
.5 x = 0, 1
0 otherwise

. We can also define a

random vector ~X = (X1, X2, X3) of the outcome of three flips of a coin.

A stochastic process (or a random process) {Xi} can be regarded as an indexed collection of random
variables. Formally speaking, a stochastic process is a random function X : I → D, which maps an index
i ∈ I taken from the index set I , to a random variable Xi ∈ D defined over a probability space (Ω, P ).
A stochastic process is discrete when its index set is discrete. A stochastic process is continuous when its
index set is continuous.

In most common applications, the index set I is a time interval or a region of space, and the correspond-
ing index is either a time or a location. When the index set I is a time interval, the stochastic process is
called a time series. When the index set I is a region of space, the stochastic process is called a random
field.

A particular stochastic process can be characterized by the joint distributions of its random variables
pX[i1]X[i2]···X[iN ] (X[i1]X[i2] · · ·X[iN ]) corresponding to the indices i1, i2, · · · iN ∈ I for all natural num-
bers N . A time series is stationary if its distribution does not change with time

pX[i1]X[i2]···X[iN ] (X[i1]X[i2] · · ·X[iN ]) = pX[i1+τ ]X[i2+τ ]···X[iN+τ ] (X[i1 + τ ]X[i2 + τ ] · · ·X[iN + τ ])

Example 2. examples of stochastic processes. wide sense stationary process and state estimation to com-
pare with HMM

A discrete-time Markov process (or Markov chain) is a discrete stochastic process {Xn} with the
Markov property, i.e., the probability distribution of the future stateXn+1 is independent of the past states
Xi, i < n given the present state Xn,

P (Xn+1|X0 · · ·Xt) = P (Xn+1|Xn)

. A Markov chain can be characterized by its initial probability distribution P (X1) and its one-step tran-
sition probability P (Xn+1|Xn). The k-step transition probability of a Markov chain can be computed
as

P (Xn+k|Xn) =
∫
P (Xn+k|Xn+k−1) · · ·P (Xn+1|Xn)dXn+k−1 · · ·Xn+1

. The marginal distribution P (Xn) of a Markov chain can be expressed as

P (Xn) =
∫
P (X1)P (Xn|X1)dX1
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. If there exists a probability distribution π such that π =
∫
P (Xn+1|Xn)πdXn, then the distribution π is

called a stationary distribution of the Markov chain {Xn} and corresponds to eigenvalue 1. The ones-
step transition probability of a Markov chain with finite number of states can be expressed as a transition
matrix (Pi,j) = (P (Xn+1 = j|Xn = i)). This matrix is a Markov matrix since its rows sum up to one,∑

j Pi,j = 1.
A hidden Markov process {(Xn, Yn)} is composed of two stochastic processes: {Xn}, and {Yn}. The

latent state process {Xn} is a Markov chain with finite number of states. It is parameterized by the initial
probability distribution

~π =
(
P (X1 = 1) · · · P (X1 = M)

)
(1)

, and the state transition matrix

A =




P (Xn+1 = 1|Xn = 1) · · · P (Xn+1 = M |Xn = 1)
...

. . .
...

P (Xn+1 = 1|Xn = M) · · · P (Xn+1 = M |Xn = M)


 (2)

. The observation process {Yn} is coupled with the latent state process through a memoryless channel. In
other words, the probability distribution of Yn is independent of Xm,m 6= n given Xn, P (Yn|{Xn}) =
P (Yn|Xn). The types observation of our interest are finite alphabet, Gaussian, and mixture of Gaussians.
When the observation is finite alphabet, it can be parameterized by an observation matrix

θ =




P (Yn = 1|Xn = 1) · · · P (Yn = N |Xn = 1)
...

. . .
...

P (Yn = 1|Xn = M) · · · P (Yn = N |Xn = M)


 (3)

When the observation is Guassian, it can be parameterized by the means and variances corresponding to
individual latent states

θ = {P (Yn|Xn = 1) = N (Yn;µ1, σ
2
1), · · ·P (Yn|Xn = M) = N (Yn;µM , σ

2
M )} (4)

When the observation is mixture of Gaussians, it can be parameterized by the means and variances corre-
sponding to individual latent state – mixture identifier pairs.

θ =





P (Yn|Xn = 1, τ = 1) · · · P (Yn|Xn = 1, τ = C)
...

. . .
...

P (Yn|Xn = M, τ = 1) · · · P (Yn|Xn = M, τ = C)





=





N (Yn;µ11, σ
2
11) · · · N (Yn;µ1C , σ

2
1C)

...
. . .

...
N (Yn;µM1, σ

2
M1) · · · N (Yn;µMC , σ

2
MC)





(5)

The usage of hidden Markov processes often involves the following problems. (1) Given the character-
ization of the latent state process of an HMM, as well as the characterization of . (2) Given the characteri-
zation of the latent state process of an HMM ({π,A}) and an observation sequence generated by this HMM
({Yn}), infer the corresponding latent state distributions P (Xn|{Yn}). (3) Given an observation sequence
generated by an HMM, find the best parameters (in the maximum likelihood estimation sense) that accounts
for the observations sequence, and the corresponding latent state distributions.
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Given an HMM parameterized by (π,A, θ) and a realization of this HMM yn, the maximum likelihood
latent state distribution can be estimated using the forward-backward algorithm in terms of the forward
parameters αt(s), and the backward parameters βt(s). The statistics involved are:

αt(st) = P (st, y1 · · · yt)
βt(st) = P (yt+1 · · · yT |st)
γt(st) = P (st, y1 · · · yT )

ξt→t+1(st, st+1) = P (stst+1, y1 · · · yT )

The iteration is given as the following:

α1(s1) = π · P (y1|s1) (6)

αt>1(st) =
M∑

st−1=1

αt−1(st−1) · ast−1st · P (yt|st) (7)

βT (sT ) = 1 (8)

βt<T (st) =
M∑

st+1=1

astst+1βt+1(st+1) · P (yt+1|st+1) (9)

γt(st) = αt(st) · βt(st) (10)

ξt→t+1(st, st+1) =
∑

αt(st) · βt+1(st+1) · P (yt+1|st+1) (11)

The maximum latent state assignment can be computed using the viterbi algorithm

δ1(s1) = π1 · P (y1|s1)
ψ1(s1) = s1

δt(st) = max
st−1

δt−1(st−1) · P (st|st−1) · P (yt|st)

ψt(st) = argmaxst−1
δt−1(st−1) · P (st|st−1) · P (yt|st)

path(T ) = argmaxsT
δT (sT )

path(t < T ) = ψt+1(path(t+ 1))

Given the observations (yt)1≤t≤T , the maximum likelihood estimation of the parameters, as well as the
corresponding latent states (st)1≤t≤T can be computed via the EM algorithm. The EM algorithm works by
alternating between two steps:

E-step inference of latent state distributions from the parameters and the observations. The statistics to
be inferred are αt (st;π,A, p(yt|st)), βt (st;π,A, p(yt|st)), γt (st;π,A, p(yt|st)), ξt→t+1. We use
Equations 6-11 to infer the latent state distributions.

M-step maximization of the expected log likelihood E(st)1≤t≤T

(
log

(
(yt)1≤t≤T

∣∣ (st)1≤t≤T

))
with the

latent states inferred in the previous E-step and the observations.

The parameters related to the latent states are maximized in the following way:

πs = γ1(s)

Aij =
∑T−1

t=1 ξt→t+1(i, j)∑T−1
t=1 γt(i)
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The parameters related to finite observations are maximized in the following way:

P (y|s) =
∑T

t=1 γt(s) · δ(yt, y)∑T
t=1 γt(s)

where

δ(i, j) =

{
1 i = j

0 i 6= j

is the Kronecker delta function. The parameters related to Gaussian observations are maximized in the
following way:

~µs =
∑T

t=1 γt(s) · ~yt∑T
t=1 γt(s)

Σs =
∑T

t=1 γt(s) · ~yt · ~yTt∑T
t=1 γt(s)

− ~µs · ~µTs

where ~µs and ~yt are column vectors, AT means the transpose of matrixA.
We often formulate the EM algorithm in matrix form, since vectorized formulas are computationally

more efficient in Matlab or S/S+. Sometimes vectorized formulas are easier to understand. When we
formulate the statistics in matrix form,

~αt =
(
αt(st = 1) · · · αt(st = M)

)

~βt =




βt(st = 1)
...

βt(st = M)




~γt =
(
γt(st = 1) · · · γt(st = M)

)

θt =




P (yt|st = 1)
. . .

P (yt|st = M)




diag[
(
x1 · · · xM

)
]

4
=




x1

. . .
xM




the foward-backward algorithm can be expressed as the following matrix form:

~α1 = ~π · θ1
~αt>1 = ~αt−1 ·A · θt

~βT = 1
~βt<T = A · θt · ~βt+1

~γt = ~αt · diag[~βt]
ξt→t+1 = diag[~αt] ·A · diag[θt+1 · ~βt+1]

The joint latent state inference and parameter estimation is normally computed by the EM algorithm.
The parameter maximization step proceeds in the following way. The parameters involved with the latent
states can be computed as the following
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A = normalize[
T∑

t=2

ξt−1→t]

~π = normalize[~γ1]

The parameters related to finite observations can be re-estimated using the following fomulas:

p(~y|~s) = normalize[
∑

t

~γTt · ~δyt,~y]

The parameters related to Gaussian observations can be re-estimated using the following fomulas:

~µ =
∑

t ~yt · ~γTt∑
t
~1mc×1 · ~γTt

Σi =
∑

t γt(i) · ~yt · ~yTt∑
t
~1mc×1 · ~γTt

− ~µi · ~µTi

Example 3. We can use a hidden Markov model to fit the weather of a site. A =
(

.9 .1
.05 .95

)
, B =

(
.9 .1
.1 .9

)
, π =

Example 4. The speaking/non-speaking status of a person can be modeled as a hidden Markov process. The
latent states are whether this person is currently uttering a sentence. The observations are the indicators of
vowel utterances.

In the below, we train the HMM-based speaking/non-speaking classifier with the audio clip “well, happy
birthday, Juan Carlos”. Afterwards, we apply the trained model to the same audio clip, and find the latent
state distributions conditioned on the observations, as well as the most likely latent state sequence (the
Viterbi path).

The training clip looks like this:

[s,f,t]=spectrogram(aud,256,128,[],8000);

Well, happy birthday, Juan Carlos! (spectrogram)

well h ae p i b ir th d ay w an k ar l o s

Figure 1: The spectrogram of a training clip

The latent states are hand labeled in the following way:

stairs(s);
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well h ae p i b ir th day w an k ar l o s

non−speaking

speaking

Figure 2: The features for the training clip

The features1 (i.e., the observations of the hidden Markov process) we use looks like this:

feat = fast_voicing_features(aud,256,128,sum(aud.^2)/length(aud)/5);

well h ae p i b ir th day w an k ar l o s
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Figure 3: The features for the training clip

We proceed to train a hidden Markov model with mixture of Gaussians observations. The reason why we
use a hidden Markov model is that there are two discrete state in the system: speaking, and non-speaking.
Each of these two states moves to the next state with a relatively invariant transition probability. The reason

1A discussion of the three features can be found in Basu [1]
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why we use mixture of Gaussians model to fit the observations (i.e. the autio features) is that one Gaussian
is not powerful enough to fit the features well.

The parameters corresponding to the latent states are the transition matrix A, and the intial sate dis-
tribution π. The initial state distribution π only affects the log likelihood slightly, and we normally use the
eigenvector corresponding to eigenvalue 1 of the state transiton matrixA. Since the latent states are already
given as St = st, the one-slice parameters γt(i) and the two-slice parameters ξt→t+1(i, j) can be solved
directly from the latent state assignment:

γt(i) = δ(st, i)
ξt→t+1(i, j) = δ(st, i) · δ(st+1, j)

>> A = full(sparse(s(1:end-1),s(2:end),ones(length(s)-1,1)));
>> A(1,2) = 1; % hack! add a transition from non-speaking to speaking
>> A = diag(1./sum(A,2))*A;
>> disp(A)

0.9999 0.0001
0.0001 0.9999

The parameters related to the observations are the mixture prior, and the means and covariance matrices
for the various Gaussian distributions. Suppose we use a mixture ofM Gaussian distributions to capture the
observations y corresponding to state s, and the means and covariance matrices are µi, and Σi for the i-th
Gaussian distribution in the mixture. Then the probability density of an observation Yt = yt conditioned
on a latent state St = st equals to the weighted sum of the probability densities for various Gaussian
distribution components. The weights are the prior probabilities that the observation yt is taken from the
i-the Gaussian distribution:

P (Yt = yt|St = st) =
∑

i

N (yt;µi,Σi) · P (Mt = i|St = st)

The mixture priors and the various Gaussian distribution parmeters are computed using the EM algorithm2.
The reason why the likelihoods decrease is that two mixtures are more than what we need for this training
clip. As a result, one component Gaussian distribution for each states cannot capture enough observations.

>> feat1 = feat(:,s(1:128:128*size(feat,2))==1);
>> [mu1,sigma1,prior1] = mixgauss_em(feat1,2,’cov_type’,’diag’,’thresh’,1e-4);

******likelihood decreased from 6.4552 to 3.8445!
>> feat2 = feat(:,s(1:128:128*size(feat,2))==2);
>> [mu2,sigma2,prior2] = mixgauss_em(feat2,2,’cov_type’,’diag’,’thresh’,1e-4);

******likelihood decreased from 2.2061 to 2.2042!

2The Matlab functions mixguass_em.m, mixgauss_prob.m, fwdback.m, and viterbi_path.m was written by Murphy [2].
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Thus, the trained parameters for the HMM-based speaking/non-speaking classifier are

A =
(
.9999 .0001
.0001 .9999

)

π =
(
.5 .5

)

P (Yt = y|St = 1) = N

y;µ1 =




.1090
29.6727
4.7067


 ,Σ1 =




.0105
1.6374

.0104







P (Yt = y|St = 2) = .0862 · N

y;µ1 =




.2551
20.1436
4.4968


 ,Σ1 =




.0105
1.6374

.0104





 +

.9138 · N

y;µ1 =




.6590
9.2836
3.9553


 ,Σ1 =




.0180
38.0866

.0224







Let us apply the trained HMM to the same features and find out the latent state probability distributions
conditioned on the given observation sequence. We first need to find out the observation likelihoods P (Yt =
yt|St), i.e., the probabilities of the obsevations Yt = yt conditioned on the latent states S1 = 1 and St = 2.

Bx = mixgauss_prob(feat,mu1,sigma1);
By = mixgauss_prob(feat,mu2,sigma2);
plot([prior1’*Bx;prior2’*By]’)

The observation likelihoods are plotted as the following:
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Figure 4: The features for the training clip

The forward parameters αt(st), backward parameters βt(st), one-slice parameters γt(st), and two-slice
parameters ξt→t+1(st, st+1) can be computed from π, A, P (Y = yt|St) in the following way:

[alpha,beta,gamma] = fwdback([.5 .5], [.9999 .0001;.0001 .9999],...
[prior1’*Bx;prior2’*By]);

obslik = [prior1’*Bx;prior2’*By];
for i=1:size(alpha,2)-1
xi(:,:,i) = [.9999 .0001;.0001 .9999].*...

(alpha(:,i)*(beta(:,i).*obslik(:,i))’);
xi(:,:,i) = xi(:,:,i)/sum(sum(xi(:,:,i)));

end
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The one-slice parameters are plotted as the following
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Figure 5: The features for the training clip

The viterbi path can be computed in the following way:

obslik = [prior1’*Bx;prior2’*By];
path = viterbi_path([.5 .5],[.9999 .0001;.0001 .9999],obslik);

An interesting theoretical issue with the hidden Markov model is about its representability. In other
words, what kinds of applications are suitable for hidden Markov modeling; What type of statistical charac-
teristics is captured by a hidden Markov model; If an application is suitable for hidden Markov modeling,
how many latent states are needed (the appropriate order of the modeling hidden Markov process); If an ap-
plication is suitable for hidden Markov modeling, and if we have the correct number of latent states, are we
guarenteed to compute the correct model when the length of the sample sequence tends to infinity. Accord-
ing to the understanding of the author, although there are many theoretical answers to the above questions
for Wiener filter / Kalman filters, only a few things are known for hidden Markov models.

Intuitively, the hidden Markov model is suitable for symbolically controlled processes. Examples of
such processes are: computer programs, a worker following a list of instructions, a diary of a human’s daily
life, an utterance of a sentence. Although those processes can present themselves as real vector sequences
(Xt)1≤t≤+∞, where X ∈ Rn, they are actually controlled by a discrete number of “states” and the proce-
dure to follow from one state to another state. The states for the above example processes are: the variables
in computer programs, the different situations on a work site, the schedule of a person, and the words in the
language. The procedures to follow for the above example processes are: the control structures in computer
programs, a description of what to do in different situations and what new situations to expect, the arrange-
ment of the schedule, and the grammar of the language. Since many human activities and human society
activities operate on the natural language, which is symbolic by nature, we would expect many applications
of the hidden Markov process in those areas.

For a symbolically controlled process, it is a good practice to investigate the data, and compare the intu-
itively figured out control structure with the computed control structure based on hidden Markov modeling.
For a simple symbolically controlled process, a human can normally understand the “control” of this process
by observing it, via the Occam’s razor principle (entities should not be multiplied beyond necessity). For a
complex symbolically controlled process, a human can normally find out ways to approximately understand
the control of this process by observing it. The computed control structures of those processes, based on the
maximum likelihood principle, normally resemble the intuitively figured out control structures.

Ephraim [3] reviewed the history, theory, algorithms of the hidden Markov process, as well as the exten-
sions of the original finite-state finite-alphabet hidden Markov process. In this review the extended models
were applied to speech recognition, communication theory, signal processing in audio, biomedical, and im-
age, fault detection, economics, and metrology. Cappe [4] reviewed the applications of the hidden Markov
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process from year 1989 to year 2000 in the following fields, with about 360 references: acoustics, bio-
sciences, climatology, control, communications, econometrics, handwriting and text recognition, image
processing and computer vision, signal processing, speech processing, and misc applications. The two re-
views give a comprehensive idea of what a hidden Markov model is, and what a hidden Markov model is
for.

Baum [5] proved the convergence of the maximum likelihood (ML) parameter estimation from an ob-
servation sequence of a hidden Markov process to the true parameters of the hidden Markov process, when
the length of the observation sequence tends to infinity. Baum [6] also gave the (iterative) expectation max-
imization (EM) algorithm for estimating the parameters of a hidden Markov process from an observation
sequence. The EM algorithm will attain a local maximum when the number of iterations tends to infinity.
However, it should be noted that the convergence of the EM algorithm to the true parameters of the hidden
Markov model is not guarenteed, even when the length of the observation sequence tends to infinity.

Anderson [7] gave a set of sufficient conditions for a finite-state finite-alphabet hidden Markov process
to be realizable, and derived a constructive solution to the realization problem under those conditions. The
problem under the discussion of [7] was: for a unknown hidden Markov process with finite number of states
and finite number of observation symbols, under what conditions can we reconstruct this hidden Markov
model from the probabilities of all finite-length output strings generated by it. The set of sufficient conditions
given in [7] are: 1) The unknown hidden Markov process is time-invariant, i.e., its parameters does not
change with time. 2) The state transition matrix of this unknown hidden Markov model is irreducible, i.e.,
all states of this unknown hidden Markov matrix can still be visited with a probability greater than some
positive constant after an infinite time. 3) The observation sequences of the unknown hidden Markov process
are long term independent, i.e., lim|w|→+∞

∑
w p(uwv) = p(u)p(v). 4) The observation sequences tend to

be independent exponentially fast with their distance (exponential forgetting), i.e., p(u|vw)
p(u|v) ∼ 1− O(e−|v|).

In 3) and 4), u, v, w are consecutive observation sequences, and u occurs earlier.
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Chapter 1

Introduction

The dynamics of a human related behavior normally involves a large probability space with sparsely dis-
tributed states. The latent structure influence process effectively compresses the state spaces of such behav-
iors and finds out the clusters by emulating the interaction of a group of humans/agents. When the latent
structure influence process is applied to non-human-related stochastic processes as a team-of-experts model,
there are pros and cons on whether a team of experts out-performs a single expert. In this chapter, we de-
scribe several data sets of either the human behaviors or the human group behaviors, and illustrate their
large and highly clustered state spaces. We also discuss the pros and cons of the team of experts approach
to general stochastic processes. We conclude this Chapter with a formal definition of the latent structure
influence process.

1.1 The Stochastic Processes of Human Behaviors

The stochastic processes under the discussion of this thesis are related to the human behaviors involving
multiple categories of concepts, or the human group behaviors. Those behaviors have the following two
properties. First, they normally involve large probability spaces, with sparsely distributed states. Second,
the behaviors do not change rapidly with time.

For the first property of human-related behaviors, a behavior is often encoded by an n-tuple. Each
position of this n-tuple takes one of a finite number of states, and represents a sub-behavior. As a result
of the encoding, the size of a behavior space is the multiplication of the sizes of its sub-behavior spaces.
The sub-behaviors are highly clustered, since they combine with each other in a very limited number of
ways. As a result, the behaviors can actually take a very limited number of states. For example, A human
group behavior can be encoded as: A is in his office while B is in his apartment. The behaviors of the
individuals (i.e., the sub-behaviors of a group behavior) can in principle combine freely to form group
behaviors. However, a human group normally show some structure, and some group behaviors appear very
rarely. In this example, it is very likely that most people are in their offices during the work hours, and in
their apartments in the midnights. For another example, a human behavior can be encoded as: I am sitting in
the restaurant, eating, and it is noisy around me. The locations, actions, and speaking/non-speaking status
of a person can in principle combine freely for form human behaviors. But some combinations appear much
more freqently than other combinations.

For the second property, the human-related behaviors are also smooth/continuous in the sense that the
knowledge of the behavior of a stochastic process at time t provides information in predicting the behavior of
the stochastic process at time t+4t for a small4t. In addition, the smaller the4t is, the more information
we have for predicting the behavior at t +4t. For example, given that A is in his office, A is very likely to
remain in his office one minute later, and A is even more likely to be in his office one second later.

23
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Of the two properties of human-related behaviors, the smoothness property can be exploited to denoise
the observation sequences and to gain a better understanding of the behavior sequences we are modeling.
The large probabilistic state space for describing the behaviors is unfavorable, since modeling a large number
of states often requires a large number of parameters, and results in overfitting. We can effectively compress
the large probabilistic state space by exploiting the fact that only a few states appear often. The latent
structure influence process explores the smoothness property. At the same time, it overcomes the difficulty
of overfitting by studying how the probability distributions of constituent behaviors (e.g. A is in his office,
B is in his office, I am in the restaurant, I am sitting) at a sample time t linearly combine to predict the
probability distributions of them at sample time t + 1, and how to update the probability distributions
of the constituent behaviors individually according to their respective observations. When the probability
distributions of the constituent behaviors are not linearly related, we adopt the feature trick to map the
old collection of constituent behaviors to a new collection of constituent behaviors with linearly related
probability distributions, and work on the new collection of constituent behaviors.

One such stochastic process is the cellphone usage data collected in the Reality Mining project. In this
project, Eagle and Pentland [8] recorded the cellphone usages of 81 participants from the MIT community
for over nine months. The recording includes the participants’ cellphone communications, their proximity
information, their locations, and their activities. These types of information are indicated by the participants’
voice/SMS conversations, cellphone Bluetooth scanning, cell tower usages, and cellphone on/off status. This
data set provides the ground truth to reconstruct the participants’ activities and communications, as well as
to answer questions such as, what are the participants’ relations, how their relations change over time, and
how the participants’ relations and their individual behaviors influence each other.

A dynamic modeling of such data sets answering the above questions involves a complex behavior space
in nature: Suppose our interest is in the interaction dynamics of the participants’ schedules, and we assign
only two latent states (out-of-office/in-office) to each participant in our analysis. Since the participants’
states can combine freely with each other, we will end up with 281 number of states for the whole system,
and this number of states is intractable. A dynamic model can cope with this large probability space by au-
tomatically factoring the 81 participants into several clusters, and placing the persons with similar schedules
into the same cluster. As a result, any two different clusters are almost unrelated, and they can be studies
indepdently. Each cluster requires only two latent states, and can be studied easily.

The data set is also noisy, and the noises can be filtered out by exploiting the smoothness property of
human-related behaviors. Examples of such noises are: a user might run out of his flash memory/battery and
cause data loss, he might leave his cellphone in his office/home thus the cellphone recording no longer re-
flects his behaviors, the Bluetooth device might fail to record proximity information, or record the proximity
of people at the other side of certain types of walls. Thus a dynamic algorithm considering the participants’
past behaviors and the participants’ relations with each other will definitely remove certain types of noises
and result in better performance.

The data sets collected by the Life-Wear system [9] provide another example of the complex stochastic
process involved with the human behaviors. In a Life-Wear system, data is collected in real-time from sev-
eral accelerometers, microphones, cameras, and a GPS, all attached to different parts of a soldiers’ clothing.
Inference of soldier state is made in real-time, and data automatically shared among different soldiers wear-
ing the Life-Wear systems based on the pattern of activity shown among the group of soldiers. In an early
Life-Wear system [10], we were required to infer 8 locations (office, home, outdoors, indoors, restaurant,
car, street, and shop) , 6 speaking/non-speaking status (no speech, I-speaking, other-speaker, distant voices,
loud crowd, and laughter), 7 postures (unknown, lie, sit, stand, walk, run, and bike), and 8 events (no-event,
eating, typing, shaking-hands, clapping-hands, driving, brushing teeth, and doing the dishes). There were
8× 6× 7× 8 = 2688 number of different combinatorial states.

Similar to the Reality Mining project, we have a large behavior space involving 2688 number of com-
bined behaviors. This means that a carelessly constructed model need to characterize all 2688 behaviors,
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and the probabilities that the user of a Life-Wear system move from one of the 2688 number of behaviors
to another. This is not necessary, since a concept from one category does not change the characteristics
of another concept in a different category, although the former bias the latter. As a result, we can study
different categories of concepts independently, and bias the probability distributions among the concepts in
a category with the probability distributions among the concepts in another category. For example, we sit in
the same posture no matter whether we are indoors or outdoors. However, we are more likely to be sitting
when we are indoors than when we are outdoors.

The data sets are noisy, and sensor failures are unavoidable due to insufficient power supply, sensor
faults, connection errors, or other unpredictable causes. This means that an inference algorithm for soldier
state must be robust against sensor noises and sensor failures.

The latent structure influence model copes with this problem by simultaneous learning the structure of
multi-agent interaction and applying the learned structural information in combining past evidence. We
believe that our latent structure influence model is an efficient, robust method for modeling the dynamics
of interacting processes. It is in the tradition of N-heads dynamic programming on coupled hidden Markov
models [11], the observable structure influence model [12], and the partially observable influence model
[13], but extends these previous models by providing greater generality, accuracy, and efficiency.

1.2 Dynamic Team-of-experts Modeling

A dynamic team-of-experts model emulates the way a group of persons monitor a complex stochastic pro-
cess and influence each other. This model is an abstraction of the human-related behaviors and should fits
them well. There are pros and cons on whether it should be applied to a non-human-related stochastic
process. In the same fashion, a group of persons are not guarenteed to out-perform an individual in general.

The dynamic team-of-experts approach can have the following benefits. (1) When the evidence is com-
posed of several hetrogeneous types of features, it is generally not a good idea to assume that the feature
vector consisting of different types of features obeys a Gaussian distribution, or a mixture of Gaussian dis-
tributions. A better idea is to assign different types of features or different combinations of them to different
experts, and let the experts ajust their models according to the conclusions of each other. The final con-
clusions comes by combining the the conclusions of different experts. For example, when we classify the
accelerometer recording from a person into different postures, the features we consider might include: the
short window spectrograms, the number of peaks and the maximum value of the peak amplitudes in a short
window, the mean and variance. It is normally better to inspect those different features individually, and
combine the computation results from those features. (2) When a classification problem or a data mining
problem is too complex to be solved by any single method/expert, the performance of a combination of
different methods is at least as good as any single method, if we know the performances of different experts
in different situations. (3) The experts can compare their results and adjust their models, so that their results
with polarize towards / away from the results of each other. (4) The result of a team of experts is generally
less sensitive to errors of a single expert, since the errors of any expert is restricted by their influence.

However, the dynamic team-of-experts approach can have the following drawbacks. (1) When we assign
heterogeneous types of features or combinations of them to different experts, we generally do not know a
priori what combinations of different features is enough for an expert to come to a conclusion. As a result,
some experts may end up inconclusive due to the lack of information. (2) Sometimes the conclusions of
the experts are very different, and the performances of them may be hard to evaluate or quantify. In this
situation, combining the conclusions of the experts is not much easier than working directly on the feature
vectors.

A striking characteristic of group learning is the group polarization phenomenon. This phenomenon
was first presented by Stoner [14], who observed that after a group of persons discussed their individual
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decisions on a imaginary life-or-death issue, and put their arguments together, the group decision as a whole
tend to be more risky than the average of the individual decisions. In our latent structure influence process
modeling, the group polarization phenonemon results in the following feedback process and reduces the
overall entropy of the team-of-experts. When the experts compare their conclusions with each other, they
tend to favor those experts (including themselves) who agree with them, will adjust their models to coincide
with those of the favorable experts, and will be willing to take move influence from them. The adjusted
models and influence coefficients will in turn make the favorable experts even more favorable. As a result,
group polarization occurs.

1.3 The Latent Structure Influence Process

The latent structure influence process models the dynamics of human-related behaviors by simulating the
interaction of a group of humans/agents. It compresses the large probability space of the sample sequences
by clustering/polarizing different perspectives of the human-related behaviors. In the below, we use the
Life-Wear example to motivate the latent structure influence process approach, compares and contrasts the
influence approach with other state-space approaches, and give a formal definition of the latent structure
influence process.

The four state-space models under our comparison are: the latent structure influence process, the coupled
hidden Markov process, the hidden Markov process, and the dynamic Bayesian network. The Life-Wear
system is an early prototype of the more complex DARPA ASSIST system [9]. The Life-Wear system
samples its wearer’s behavior with an accelerometer at his right hip, another accelerometer at his left wrist,
a microphone at his chest, and a camera at his chest. Based on the sampled data sequences, the Life-
Wear system understands the behavior of its user by inferring the probability distributions among eight
locations, six speaking / non-speaking status, seven postures, and eight events at each sample time (i.e.,
where the user is, whether he is speaking, what he is doing, and whether something interesting is taking
place). The inference algorithms for the four state-space models have a similar form: they all work by
alternating between the time update step, and the measure update step. In the time update step, the Life-Wear
system computes the probability distributions at the next sample time from the probability distributions at the
current sample time. In the measure update step, the Life-Wear system adjusts the probability distributions
by the new evidence collected with the accelerometers, the microphone, and the camera. In other words,
the time update step finds the best guess of the behavior of the Life-Wear user based on the model and
the past evidence, and the measure update step adjusts the guess with new evidence. Beyond this seemingly
similar form of their inference algorithms, the four models work with the probability distributions in different
measure spaces, and execute the time/measure update steps differently. As a result, they have different
computational performances.

• The latent structure influence process works with the marginal probability distributions of the loca-
tions, the speaking/non-speaking status, the postures, and the events, respectively. The time update
step computes the marginal probability distributions at the next sample time by linearly combining the
marginal probability distributions at the current sample time. When we write the marginal probability
distributions into a row vector, the influence matrix that is used to update the marginal probability dis-
tributions is learned and plotted in Figure 3.3. The measure update step incorporates the new evidence
into the marginal probability distributions just computed.

• The coupled hidden Markov process works with the joint probability distribution of the joint states.
Each joint state consists of one of the eight locations, one of the six speaking/non-speaking status, one
of the seven postures, and one of the eight events. As a result, the latent state space has 8×6×7×8 =
2688 number of states, and the state transition matrix for time updating is a 2688×2688 square matrix.
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The state transition matrix is unnecessarily sparse and can be largely compressed (while preserving
its eigen-behavior).

• We can use a single hidden Markov process with several states to model the stochastic process sam-
pled by the Life Wear system and involving a combination of locations, speaking/non-speaking status,
postures, and events. However, a single hidden Markov process with several states is not expressive
enough for the transitions of the combined states, and the compression of the 2688× 2688 state tran-
sition matrix of the coupled hidden Markov process involves a more complicated procedure than just
adopting a single hidden Markov process. Alternatively, we can use four hidden Markov processes to
model the transitions of locations, speaking/non-speaking status, postures, and events, respectively.
In this way, we have simplified the coupled hidden Markov process with the cost of a less accurate
understanding of a Life-Wear user’s behavior. The latter model can be considered as a latent struc-
ture influence process with no influence among different perspectives. When we write the marginal
probability distributions into a row vector, the influence matrix in this case is the matrix in Figure 3.3
whose off-diagonal sub-matrices are all zero.

• When we use a dynamic Bayesian network to model a Life-Wear user’s behavior, we first need to
define a set of random variables and analyse the conditional (in)dependence among those random
variables. We then represent the conditional (in)dependence with a graph, and use the message passing
algorithm to infer the probability distributions at the sample times. For this approach, constructing
the graph representation of a stochastic process is a non-trivial task, the message passing algorithm
might be computationally prohibiting depending on the clique size, and manually constructed graph
representations do not scale with the modifications of the problem.

Based on the above comparison, we comment that the latent structure influence process models a complex
stochastic process in terms of how different perspectives of this stochastic process influence each other lin-
early and cluster/polarize. With this linearity assumption, we can effectively control the model complexity,
and capture useful structural information inherent in the stochastic process at the same time.

In the definition below, the random variable S(c)
t = {1, · · · ,mc} represents the perspective c at sample

time t, and the random variable Y (c)
t represents the evidence sampled at time t for the adjustment of S(c)

t . We
assume that the (marginal) random variables S(c)

t can be updated marginally according to their influences
without involving the combined random variable S(S(1)

t · · ·S(C)
t ), as shown in the equations (1.1, 1.2)

below.

Definition 1. A latent structure influence process is a stochastic process {S(1)
t , · · · , S(C)

t , Y
(1)
t , · · · , Y (C)

t }t∈N .
In this process, the latent variables S(1)

t , · · · , S(C)
t are finite-state S(c)

t ∈ {1, · · · ,mc} and their (marginal)
probability mass functions are defined as the following:

P (S(c)
1 = s) = π(c)

s (1.1)

P (S(c)
t+1 = s

(c)
t+1|S(1)

t = s
(1)
t · · ·S(1)

t = s
(1)
t ) =

C∑

c1=1

h
(c1,c)

s
(c1)
t ,s

(c)
t+1

(1.2)

where 1 ≤ s ≤ mc, h(c1,c)
s1,s = d(c1,c) · a(c1,c)

s1,s ,
∑

c d
(c1,c) = 1, and

∑mc
j=1 a

(c1,c)
i,j = 1. The observations

~Yt = {Y (1)
t , · · · , Y (C)

t } are coupled with the latent states ~St = {S(1)
t , · · · , S(C)

t } through a memoryless
channel:

Y
(c)
t ∼ P (Y (c)

t |S(c)
t ) (1.3)
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Several comments concerning this definition are listed below.

• The restriction
∑

c d
(c1,c) = 1, and

∑mc
j=1 a

(c1,c)
i,j = 1 in the definition is necessary to guarentee that

the influence of of any state S(c)
t at time t on the states S(c1)

t+1 at time t+ 1 sum up to 1. The definition

also implicitly gives the formula for P (S(c1)
t+1 ) as a function of

(
P (S(c)

t )
)1≤c≤C

:

P (S(c)
t+1 = s

(c)
t+1)

=
∑

s
(1)
t ···s(C)

t

P (S(c)
t+1 = s

(c)
t+1|S(1)

t · · ·S(C)
t = s

(1)
t · · · s(C)

t ) · P (S(1)
t · · ·S(C)

t = s
(1)
t · · · s(C)

t )

=
∑

s
(1)
t ···s(C)

t

(∑

c1

d(c1,c)a
(c1,c)

s
(c1)
t s

(c)
t+1

)
· P (S(1)

t · · ·S(C)
t = s

(1)
t · · · s(C)

t )

=
∑

c1

∑

s
(c1)
t

d(c1,c)


a(c1,c)

s
(c1)
t s

(c)
t+1

·
∑

fix s
(c1)
t

P (S(1)
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


=
∑

c1

∑

s
(c1)
t

d(c1,c)a
(c1,c)

s
(c1)
t s

(c)
t+1

· P (s(c1)
t )

In the same way, any row of the state transition matrix of a hidden Markov process sums up to one
( see equation 2), and the state transition matrix also implicitly gives the formula for P (St+1) as a
function of P (St).

• For a latent structure influence process, we can characterize its state transition with an influence
matrix :

A(c1,c2) =




a
(c1,c2)
1,1 · · · a

(c1,c2)
1,mc2

...
. . .

...
a

(c1,c2)
mc1 ,1 · · · a

(c1,c2)
mc1 ,mc2




H =




d(1,1)A(1,1) · · · d(1,C)A(1,C)

...
. . .

...
d(C,1)A(C,1) · · · d(C,C)A(1,C)




(
P (S(1)

t+1 = 1) · · ·P (S(1)
t+1 = m1) · · ·P (S(C)

t+1 = 1) · · ·P (S(C)
t+1 = mC)

)

=
(
P (S(1)

t = 1) · · ·P (S(1)
t = m1) · · ·P (S(C)

t = 1) · · ·P (S(C)
t = mC)

)
·H

In comparison, for a hidden Markov model, we have

(P (St+1 = 1) · · ·P (St+1 = m)) = (P (St = 1) · · ·P (St = m)) ·A

• The definition does not completely characterize a latent structure influence process ! The definition
gives the time-update formula to estimate P (S(c)

t+1|~y1≤t1≤t) from P (S(c1)
t |~y1≤t1≤t). However, it says

nothing about the measure-update formula that incorporates new evidence into the latent state esti-
mates P (S(c)

t+1|~y1≤t1≤t+1). In chapter 2, we will consider the latent structure influence process with
two different ways to incorporate new evidence.
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The latent structure influence process are used to fit given observations sequences involving human-related
behaviors. The influence d(c1,c2) reflects how one sequence c1 agrees with the other c2 . The tasks involved
with a latent structure influence model are generally

• latent state inference, i.e., to infer the latent states
(
S

(c)
t

)c={1,··· ,C}

t={1,··· ,T}
from the observations

(
Y

(c)
t

)c={1,··· ,C}

t={1,··· ,T}

and model parameters
(
π

(c)

s(c)

)c={1,··· ,C}

s(c)={1,··· ,mc}
,
(
d(c1,c2)

)c1,c2={1,··· ,C}
,
(
a

(c1,c2)

s(c1)s(c2)

)c1,c2={1,··· ,C}

s(c1)={1,···mc1},s(c2)={1,··· ,mc2}
,

and P (Y (c)
t |S(c)

t ).

• parameter estimation, i.e., to infer the parameters given the latent states and the observations.

• joint latent state inference and parameter estimation. In this case, we are only given the observa-
tions, and we are required to find out the parameters, as well as the latent states, that best fits the
observations.

To conclude this chapter, we point out that the human-related behaviors have normally strongly clus-
tered/polarized perspectives. The latent structure influence process models these behaviors by emulating
the interaction of a group of humans/agents, and computing how different perspectives of the human-related
behaviors coincide with each other. When the influence modeling are applied to a general complex stochas-
tic processes, there are pros and cons concerning whether it outperforms the other models. In the following
chapters, we will derive the algorithms of the latent structure influence process, and inspect its performance
in modeling various data sets.
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Chapter 2

Inference algorithms for the influence model

When we model the dynamics of a multi-agent stochastic process, we often need to cope with a large
probability space, whose states are comprised of the states for the individual agents. This fact has the
consequence that we need an exploding number of training samples and need to fix an exploding number
of parameters. This is in general not necessery, since the behaviors of any two agents are normally either
in agreement with other, or totally unrelated. The latent structure influence process fits such a multi-agent
process by emulating how a group of agents influence each other. In this chapter, we present two different
ways to incorporate new evidence into the latent states of a latent structure influence process, and derive the
inference algorithms for the influence modeling.

2.1 The Linear Approach to the Influence Modeling

The influence model is a tractable approximation of the intractable hidden Markov modeling of multiple
interacting dynamic processes. While the number of states for the hidden Markov model is the multiplica-
tion of the number of states for individual processes, the number of states for the corresponding influence
model is the summation of the number of states for individual processes. The influence model attains this
tractability by linearly combining the contributions of the latent state distributions of individual processes at
time t to get the latent state distributions of individual processes at time t+ 1.

To illustrate the difficulties of the hidden Markov modeling of a system of multiple interacting processes,
and to motivate the influence model approximation, let us consider a system of C interacting processes. In
this system, the latent state for process c at time t is denoted as s(c)t and has a multinomial distribution
over {1, · · · ,mc}. The latent state for the whole system at time t is denoted as st = s

(1)
t · · · s(C)

t and
has a multivariate multinomial distribution over {1 · · · 1︸ ︷︷ ︸

C

, · · · ,m1 · · ·mC︸ ︷︷ ︸
C

} . The state transition matrix G

propagates the system latent state distribution vector (P (st)) at time t to the system latent state distribution
vector (p(st+1)) at time t+ 1:

(P (st))
4
= (P (st = 1 · · · 1︸ ︷︷ ︸

C

) · · ·P (st = m1 · · ·mC︸ ︷︷ ︸
C

))

(P (st+1)) = (P (st)) ·G
(P (st=1)) = π

The hidden Markov modeling of the whole system has the “curse of dimensionality” and needs to be
regularized, since the size of G (which is

∏
cmc) grows exponentially with the number of dynamic pro-

cesses in the system, while the size of training data only grow polynomially with the number of dynamic

31
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processes. To cope with this issue, we introduce the system event matrix (B) and its Penrose-Moore pseu-
doinverse (B+) , and compute in a space related to the system’s influence matrix H = B+ · G · B, which
is logarithmically smaller, and preserves the eigen-structure of G. In doing so, we confine ourselves to a
much restricted space G0 = B ·H ·B+ = BB+ ·G ·BB+, whose expressive complexity grows 2nd-order
polynomial with the number of processes in the system. The event matrix for the system under discussing
has

∏
cmc number of rows and

∑
cmc number of columns. it can be constructed in two steps: (1) sorting

all possible values the system latent state can take, and (2) filling the rows of the event matrix sequentially
by the “one hot” encodings of the corresponding latent state values. The event matrix transforms the system
latent state distribution vector (P (st)) to the system’s marginal latent state distribution vector

(
P (s(c)t )

)
:

(
P (s(c)t )

) 4
= (P (s(1)

t = 1), · · · , P (s(1)
t = m1)︸ ︷︷ ︸

m1

, · · · ,

P (s(C)
t = 1), · · · , P (s(C)

t = mC)︸ ︷︷ ︸
mC

)

(
P (s(c)t )

)
= (P (st)) ·B

H = B+ ·G ·B

By introducing the above approximation, the latent state propagation from time t to time t+ 1 becomes,

(P (st+1)) = (P (st)) ·BB+ ·G ·BB+

(P (st=1)) = π ·BB+

(
P (s(c)t+1)

)
= (P (st+1)) ·B
= (P (st)) ·BB+ ·G ·BB+ ·B
=

(
P (s(c)t )

)
·H

(
P (s(c)t=1)

)
= π ·B

The connection between (P (st)) and
(
P (s(c)t )

)
by the event matrix B, and the connection between(

P (s(c)t+1)
)

and
(
P (s(c)t )

)
by the influence matrix H is shown in Figure 2.1. The influence matrix H =

B+ · G · B can always be expressed as the Kronecker product of a transposed stochastic matrix D with a
collection of stochastic matrices

(
A(c1,c2)

)
:

H =




d1,1 ·A(1,1) · · · d1,C ·A(1,C)

...
. . .

...
dC,1 ·A(C,1) · · · dC,C ·A(C,C)




In terms of this property, the marginal state distribution for process c2 at time t + 1 is a weighted sum of
the “influences” of the marginal state distributions for processes 1 ≤ c1 ≤ C at time t, where the influence
from process c1 to process c2 is computed by right-multiplying the marginal latent state distribution of c1 at
time t with the stochastic matrix A(c1,c2).

In both the hidden Markov modeling of system dynamics and its latent structure influence model ap-
proximation, the observation o(c)t of a process c at time t probabilistically depends and only depends on the
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Figure 2.1: (a) The event matrix B produces marginal distributions from joint distributions. (b) The influ-
ence matrix H linearly combines the marginal latent state distribution at time t to generate the marginal
latent state distribution at time t+ 1.

latent state s(c)t of process c at time t.

P (ot|st) =
∏
c

P (o(c)t |s(c)t )

(P (ot|st))
4
= (P (ot|st = 1 · · · 1︸ ︷︷ ︸

C

) · · ·

P (ot|st = m1 · · ·mC︸ ︷︷ ︸
C

))

The observations o(c)t for process c at time t can be either multinomial or Gaussian. When the observations
for process c are multinomial, we use nc to represent the number of possible observation symbols: o(c)t ∈
[1 . . . nc]. We define B(c) = (b(c)i,j ), where b(c)i,j = p(o(c) = j|s(c) = i), as the observation matrix. When
the observations for process c are Gaussian, we use nc to represent the dimensionality of the mc number of
Gaussian distributions corresponding to each latent state s(c) ∈ [1 . . .mc]: o(c) ∼ N (µ(c)

s(c) , σ
(c)

s(c)).

2.1.1 The marginaling operator B and its inverse B+

In this section, we formulate the marginalizing operator that maps a joint probability mass function to
several marginal probability mass functions. We also derive the best linear estimator (the linear inverse
marginalizing operator) that maps several marginal probability mass functions to a joint probability mass
function. These two operators are essential to this thesis, since one task of this thesis is to get a good
estimate of a joint probability mass function by operate only on the marginal probability mass functions that
are logarithmically smaller.

Before we proceed formally, let us image how the marginalizing operator and the (linear) inverse
marginalizing operator look like. The marginalization operator is linear, since we only need to sum over
the joint probability mass function of those joint states that has a particular marginal state realization to get
the marginal probability mass function of this marginal state realization. For example, if we want to know
the probability that a power plant fails in a network of power plants, we can add up all probabilities of the
network that says this particular power plant fails.

We normally cannot recover the exact joint probability mass function from several marginal probability
functions, since the joint probability mass function contains more information than the marginal probability
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mass functions. To be more specific, the information that relates different marginal probability mass func-
tions is not given by a list of probability mass functions. Intuitively, in order to estimate the joint probability
mass function by using a linear combination of the marginal probability mass functions, we would assume
that all marginal probabilities have equal contribution, and that the joint probability mass function for a joint
state is proportional to the sum of the marginal probability mass functions of the constituent states. For
example, if we want to know the probability that all power plants in a network are normal, we can assume
that each power plant has equal contribution to the fact of their joint state. As a result, we can first add up
the probabilities that the individual power plants are normal, then normalize the sum to estimate the joint
probability. This intuition is correct, as we will show below.

The rest of this subsection proceeds in the following way. First, we define the marginalizing oper-
ator formally. Then, we derive the linear inverse marginalizing operator, and explain the mathematical
intuition. Based on our knowledge of the marginalizing operator and its inverse, we will discuss several
matrices: B+GB and BHB+. The matrix B is a marginalizing operator, B+ and BT are the pseudoin-
verse and transpose of B, respectively. The matrix G is a Markov matrix corresponding to a joint state
S

((
S(1) · · · S(C)

))
, and the matrix H is an influence matrix corresponding to the marginal states

S(1), · · · , S(C). We will show that those matrix operations map between influence matrice and Markov ma-
trices. The computations have intuitive interpretations. The analysis is important, since we need to search
for those matrices to maximize some likelihood functions.

Let us begin with an example of the matrix B.

Example 5. Let us imagine that we have a network of four power plants numbered 1, 2, 3, 4 respectively.
Each power plant takes two states: normal and failed, and the state of the network is a 4-tuple of the states
for the individual power plants. By this description, the (joint) states of the network form a probability space
{Ω, P}, and the (marginal) states for individual power plants form probability spaces {Ω(c), P (c)}, where
c = 1, 2, 3, 4. We use the random variables S(c) to describe the probability spaces {Ω(c), P (c)}, where

S(c) =

{
1 power plant c normal
2 power plant c failed

. We also use the row vectors

(
P (c)(S(c))

)
S(c)={1,2}

=
(
P (c)(S(c) = 1) P (S(c) = 2)

)

(
P (c)(S(c))

)c={1,2,3,4}

S(c)={1,2}
=

(
P (1)(S(1) = 1) P (1)(S(1) = 2) P (2)(S(2) = 1) P (2)(S(2) = 2)

P (3)(S(3) = 1) P (3)(S(3) = 2) P (4)(S(4) = 1) P (4)(S(4) = 2)
)

to denote the probability mass function for one random variable S(c), and a concatenation of the probability
mass functions for random variables, respectively. In the same fashion, we use the random vector

(
S(c)

)
1≤c≤4

=
(
S(1) S(2) S(3) S(4)

)
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to describe the probability space {Ω, P}, and we use the row vector
(
P

((
S(c)

)
1≤c≤4

))
=

(
P

((
S(c)

)
=

(
1 1 1 1

))
P

((
S(c)

)
=

(
1 1 1 2

))

P
((
S(c)

)
=

(
1 1 2 1

))
P

((
S(c)

)
=

(
1 1 2 2

))

P
((
S(c)

)
=

(
1 1 1 1

))
P

((
S(c)

)
=

(
1 1 1 2

))

P
((
S(c)

)
=

(
1 1 2 1

))
P

((
S(c)

)
=

(
1 1 2 2

))

P
((
S(c)

)
=

(
1 2 1 1

))
P

((
S(c)

)
=

(
1 2 1 2

))

P
((
S(c)

)
=

(
1 2 2 1

))
P

((
S(c)

)
=

(
1 2 2 2

))

P
((
S(c)

)
=

(
2 2 1 1

))
P

((
S(c)

)
=

(
2 2 1 2

))

P
((
S(c)

)
=

(
2 2 2 1

))
P

((
S(c)

)
=

(
2 2 2 2

)) )

to describe the probability mass function for the random vector
(
S(c)

)
1≤c≤4

. Alternatively, we use the
random function

S

((
s(c)

)
1≤c≤4

)
= s(1) + 2 · s(2) + 4 · s(3) + 8 · s(4)

to describe the probability space {Ω, P}, and we have

P

(
S

((
S(c)

)
1≤c≤4

))
= P

((
S(c)

)
1≤c≤4

)

A marginalizing operator that maps the joint probability mass function
(
P

((
S(c)

)
1≤c≤4

))
to the

marginal probability mass functions
(
P

(
S(c)

))c={1,2,3,4}
S(c)={1,2} is

B =




1 0 1 0 1 0 1 0
1 0 1 0 1 0 0 1
1 0 1 0 0 1 1 0
1 0 1 0 0 1 0 1
1 0 0 1 1 0 1 0
1 0 0 1 1 0 0 1
1 0 0 1 0 1 1 0
1 0 0 1 0 1 0 1
0 1 1 0 1 0 1 0
0 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0
0 1 1 0 0 1 0 1
0 1 0 1 1 0 1 0
0 1 0 1 1 0 0 1
0 1 0 1 0 1 1 0
0 1 0 1 0 1 0 1




(
P

(
S(c)

))c={1,2,3,4}

S(c)={1,2}
=

(
P

((
S(c)

)
1≤c≤4

))
·B

This marginalizing operator gets P (c)
(
s(c)

)
by summing over all joint probability mass functions

P
((

S(1) S(2) S(3) S(4)
))

for all states such that S(c) = s(c)
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Let us suppose we haveC random variables S(1), S(2), · · · , S(C). Each random variable S(c), where 1 ≤
c ≤ C, can take mc number of states S(c) = {1, 2, · · · ,mc}. Let the random function S

((
s(c)

)
1≤c≤C

)
=

∑C
c=1 s

(c)·
(∏c−1

c1=1mc1

)
be the joint state. The marginalizing operator is a matrix that maps from (P (S))S=1..

Q
mc

to
(
P

(
S(c)

))c=1..C

S(c)=1..mc
.

Definition 2. The marginalizing operator

B
(
(mc)1≤c≤C

)
= B

((
m1 m2 · · · mC

))

is a
(∏C

c=1mc

)
×

(∑C
c=1mc

)
matrix, where

Bi,j ← c = argmaxc1i−
c1∑

c2=1

mc > 0,

s = j −
c∑

c1=1

mc

Bi,j =

{
1 , if s ≡ floor

(
iQc

c1=1 mc

)
modmc+1

0 otherwise

The best estimatorB+ that maps the marginal pmf’s to the joint pmf is the “inverse” of the marginalizing
matrix B. Since the matrix B is not full-ranked, its inverse does not exist. As a result, we attempt to find
the best matrix that takes the effect of inversing (Moore-Penrose pseudoinverse). Let us take a digression
and inspect the Bayesian interpretation of pseudoinverse before we give the inverse of the marginalizing
operator.

The problem involved with the pseudoinverse operator is solving linear systems A · ~x = ~b, where we
know the matrix A and the vector ~b, and need to find the vector ~x to satisfy this equation. When the
matrix A has full rank and is not ill-conditioned, i.e., when ‖A‖ · ‖A−1‖ is relatively small, the systems
A · ~x = ~b have unique solutions and are not interesting to us. In situations when linear systems do not
have numerically stable solutions, do not have solutions, or do not have unique solutions, we would think
that the information provided by the linear systems are not enough, and provide more information to the
linear system in order to solve it. One way to provide information is to assume that ~x and ~b have Gaussian
random noises: ~x ∼ N (0, σ2

xI), and~b ∼ N (0, σ2
b · I). The best linear estimator (in the sense that it has the

minimum mean-square error ‖~b − A · ~x‖2 + (σ2
b/σ

2
x) · ‖~x‖2) is thus ~x =

(
ATA+ (σ2

b/σ
2
x) · I)−1

AT~b =(
ATA+ α2 · I)−1

AT~b. The Moore-Penrose pseudoinverse of matrixA is defined asA+ = limα2→0(ATA+
α2I)−1AT = limα2→0A

T(ATA+ α2I)−1.

Definition 3. The pseudoinverse A+of a matrix A is the unique matrix that satisfies the following criteria:

1. AA+A = A

2. A+AA+ = A+, A+ is a weak inverse for the multiplicative semigroup

3. (AA+)∗ = AA+, AA+ is Hermitian

4. (A+A)∗ = A+A, A+A is Hermitian

Alternatively, A+ can be defined by the following limiting process:

A+ = lim
α2→0

(ATA+ α2I)−1AT = lim
α2→0

AT(ATA+ α2I)−1
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The pseudoinverse B+ of a marginalizing operator B
((

m1 m2 · · · mC

))
has a simple form:

B+ = c1 ·BT + c2, where c1 and c2 are constants determined by m1, · · · ,mC .

Theorem 1. Given a system of C interacting processes, and mc number of possible values for the latent
state s(c) for process 1 ≤ c ≤ C, we have,

B+ =
1∑

c

∏
k 6=c

mk
· (D1 ·BT +D2 · 1P

c
mc×

Q
c

mc
)

D1 = diag[
∑

k

m1

mk
, · · · ,

∑

k

m1

mk
︸ ︷︷ ︸

m1

, · · · ,
∑

k

mC

mk
, · · · ,

∑

k

mC

mk
︸ ︷︷ ︸

mC

]

D2 = diag[−
∑

k 6=1

1
mk

, · · · ,−
∑

k 6=1

1
mk

︸ ︷︷ ︸
m1

, · · · ,−
∑

k 6=C

1
mk

, · · · ,−
∑

k 6=C

1
mk

︸ ︷︷ ︸
mC

]

where BT represents the transpose of B.

Proof. In order to prove that B+ is the pseudoinverse of B, we need to show four things: BB+B = B,
B+BB+ = B+, (BB+)T = BB+, and (B+B)T = B+B. Below, we use A[c1, c2, i, j] to represent
the element at the ith row, jth column in the sub-matrix index by (c1, c2) of the matrix A (whose size is∑
mc ×

∑
mc).

(BTB)[c1, c2, i, j] =





∏
k 6=c1

mk , c1 = c2, i = j

0 , c1 = c2, i 6= j∏
k 6=c1,c2

mk , c1 6= c2

(
∑

c

∏

k 6=c

mk) · (B+B)[c1, c2, i, j]

=





∑
c

∏
k 6=cmk −

∑
c 6=c1

∏
k 6=c,c1

mk c1 = c2, i = j

−∑
c6=c1

∏
k 6=c,c1

mk c1 = c2, i 6= j∏
k 6=c1,c2

mk c1 6= c2

It follows that (B+B)T = B+B, BB+B = B, and B+BB+ = B+.
To show (BB+)T = BB+, we notice

1∑
c

∏
k 6=c

mk
· (BB+)T

= (BD1B
T +BD21P

c
mc×

Q
c

mc
)T

= BD1B
T + 1Q

c
mc×

P
c

mc
D2B

= BD1B
T − (

∑
c

1
mc

) · 1Q
c

mc×
P
c

mc

= BD1B
T +BD21P

c
mc×

Q
c

mc

= BB+
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The computation of B+ has a very intuitive interpretation. Suppose S(1), · · · , S(C) are C random
variables. Each variable takes finite number of values: S(c) = {1, · · ·mc}, where 1 ≤ c ≤ C. The random
function S

((
S(1) · · · S(C)

))
“encodes” the individual random variables. Let us look at howB+ maps

a joint probability mass function to several marginal probability mass functions. Let us first naively sum up
all marginal probability distributions P (S(c)), where 1 ≤ c ≤ C, to get the joint probability distribution
P

(
S

((
S(1) · · · S(C)

)))
. In other words, we use the following formula

(
P̃

(
S

((
S(1) · · · S(C)

))))
=

(
P

(
S

(
S(c)

)))1≤c≤C

1≤S(c)≤mc

·BT

In the formula for P̃ , the marginal probability mass function corresponding to S(c) = s(c) is summed up for∏
c16=cmc1 times in the joint probability mass function for all possible realizations.

P̃
(
S

((
S(1) · · · S(c) = s(c) · · · S(C)

)))

As a result, we need cancel this effect by scaling the contribution of S(c) by P (S(c))Q
c16=c mc1

. This operation is

reflected by the matrix D1. The computation of P̃ is also biased, since the information
∑

s(c) P (s(c)) = 1 is

not useful for P̃ . As a result, we need to cancel the effect by substracting P (S(c))Q
c16=c mc1

by

∑
k 6=c

1
mk

(
∏

k mk)
(∑

k
1

mk

)

The operation of removing the bias is reflected by the matrix D2. To further illustrate the effect of re-
moving the bias, we can compare the joint probability mass function P via 1Q

c

P
k 6=c mk

(
D1 ·BT +D2 · 1

)

and the probability function P̃ via 1Q
c

P
k 6=c mk

D1 · BT. P might have negative values, while P̃ is always

positive. Let us suppose that P is all positive thus a true probability mass function. In this case, we get P̃ by
adding a constant to all values of P . From our knowledge of information theory, we lose information from
P to P̃ . On the other hand, the matrixD2 ·1 tries to extract more information from the marginal distributions
P (S(c)), where 1 ≤ c ≤ C.

With the knowledge of B and B+, we can compute the analytic form of B+GB and BHB+, where G
is a Markov matrix, and H is an influence matrix. We need to point out that B+GB (with restriction on G)
is an influence matrices, while BHB+ is a Markov matrices.

Theorem 2. Let 1 ≤ S(c) ≤ mc, where 1 ≤ c ≤ C, are random variables, S
((
S(c)

)1≤c≤C
)

be the

random function, B
((

m1 · · · mC

))
, B+, H , G be respectively the marginalizing matrix, the inverse

of the marginalizing matrix, a influence matrix, and a Markov matrix related to S(c), where 1 ≤ c ≤ C, and
S. We have the following relations:

• The analytical form of B+GB. Each row of the (c1, c2)-th submatrix sum up to 1/mc1P
c 1/mc

.
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(
B+GB

)
(c1, c2, i, j) =

1∏
c 6=c1mc

·
∑

s(c1)=i
t(c2)=j

s(c6=c1)

t(c6=c2)

G
(
s(1) · · · s(C), t(1) · · · t(C)

)
−

∑
c 6=c1

1
mc

(
∏

cmc) ·
(∑

c
1

mc

) ·
∑

s(1≤c≤C)

t(c2)=j

t(c6=c2)

G
(
s(1) · · · s(C), t(1) · · · t(C)

)

∑

j

(
B+GB

)
(c1, c2, i, j) =

1
mc1
· 1∑

c
1

mc∑

c1

∑

j

(
B+GB

) (
c1, c2, s(c1), j

)
= 1

• The analytical form related to BHB+. Each row of BHB+ sums up to 1.

(
BHB+

) (
s(1) · · · s(C), t(1) · · · t(C)

)
=

∑

c1,c2

i=s(c1)

j=t(c2)

(
H (c1, c2, i, j) · 1∏

c 6=c2mc

)
− C − 1

(
∏

cmc)

∑

t(1)···t(C)

(
BHB+

) (
s(1) · · · s(C), t(1) · · · t(C)

)
= 1

• The constant matrices 1(
P

mc)×(
P

mc) and 1(
Q

mc)×(
Q

mc) .

B1(
P

mc)×(
P

mc)B
+ = 1(

Q
mc)×(

Q
mc)

B+1(
Q

mc)×(
Q

mc)B = 1(
P

mc)×(
P

mc)

Instead of giving a derivation of the above equalities, we trace the computation and describe infor-
mally how we make a best linear estimation of the influence matrix corresponding to a Markov matrix,
and how we make a best linear estimation of the Markov matrix corresponding to an influence matrix. In
order to compute the entry corresponding to S(c1)

1 = s
(c1)
1 , S(c2)

2 = s
(c2)
2 from the matrix B+GB (i.e.,

(B+GB)
(
c1, c2, s

(c1)
1 , s

(c2)
2

)
), we sum up all entries of G that are compatible with the fact S(c1)

1 = s
(c1)
1

and S(c2)
2 = s

(c2)
2 , and there are

(∏
c6=c1

mc

)
×

(∏
c 6=c2

mc

)
number of summands. Since we sum up∏

c 6=c1
mc number of items involving c1, we need to scale this sum by1/

∏
c6=c1

mc. This leads to

1∏
c6=c1mc

·
mc2∑

j=1

∑

s(c1)=i

∑

t(c2)=j

G
(
s(1) · · · s(C), t(1) · · · t(C)

)
= 1

Now the rows of (c1, c2)-th submatrices all sum up to 1. In comparison, we want to extract one arbitrary
row from the (c1, c2)-th matrix for all 1 ≤ c1 ≤ C and sum those rows to 1. Since the contribution of each
S(c1) to S(c2) , where 1 ≤ c1 ≤ C, is inverse proportional to the number of states mc, we need to offset
the quantity 1Q

c6=c1 mc

∑
s(c1)=i

∑
t(c2)=j G

(
s(1) · · · s(C), t(1) · · · t(C)

)
by

P
c6=c1 1/mcP

c 1/mc
of the likelihood that

S(c2) = t(c2). Notice that the sum of all entries of the Markov matrix G sum up to
∏

cmc

1
(
∏

cmc)
·
∑

s(c1)

∑

t(c2)

G
(
s(1) · · · s(C), t(1) · · · t(C)

)
= 1
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In order to compute the entry of (BHB+)
((
s(c)

)1≤c≤C
,
(
t(c)

)1≤c≤C
)

, we sum up all entries in H

compatible with s(c), and t(c). There are (
∑
mc)× (

∑
mc) summands in total. Since each t(c2) contributes

toBHB+ for
∏

c6=c2mc number of times asH(s(c1), t(c2)) for some s(c1) , we need to scale the contribution
of t(c2) down by 1Q

c6=c2
mc

. This leads to

∑

c1,c2

i=s(c1)

j=t(c2)

t(1)···t(C)

(
H (c1, c2, i, j) · 1∏

c6=c2mc

)
= C

Each S(c) contributes a quantity of 1 to each row of BHB+ , and all of the C marginal random variables
S(c), where 1 ≤ c ≤ C, have a total contribution of C to each row of BHB+. As a result, we want to
down-shift the values obtained by C − 1 and distribute this quantity among all

∏
cmc entries. This gives

the offset.
We compute below the matrices B+, and BHB+ related to the network of four power plants.

Example 6. Let us compute the pseudoinverse B+ of the marginalizing operator

B
((

m1 m2 m3 m4

))
= B

((
2 2 2 2

))

for the network of four power plants (Example ) as well as other interesting objects.
The constants 1P

c

Q
k 6=c

mk
,
∑

k
mc
mk

, and −∑
k 6=c

1
mk

are computed as follows:

1∑
c

∏
k 6=c

mk
=

1
m2 ×m3 ×m4 +m1 ×m3 ×m4 +m1 ×m2 ×m4 +m1 ×m2 ×m3

=
1

2× 2× 2 + 2× 2× 2 + 2× 2× 2 + 2× 2× 2

=
1
32∑

k

mc

mk
= 4, c = 1, 2, 3, 4

−
∑

k 6=c

1
mk

= −3
2
, c = 1, 2, 3, 4

The matrix 1P
c

Q
k 6=c mk

·D1 is computed as:

1∑
c

∏
k 6=cmk

·D1 =




1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8



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The matrix 1P
c

Q
k 6=c mk

·D2 is computed as:

1∑
c

∏
k 6=cmk

·D2 =




− 3
64
− 3

64
− 3

64
− 3

64
− 3

64
− 3

64
− 3

64
− 3

64




The matrix 1(
P

c mc)×(
Q

c mc) is

1(
P

c mc)×(
Q

c mc) =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




The pseudoinverse B+ is thus:

B+

=
1∑

c

∏
k 6=cmk

·
(
D1 ·BT +D2 · 1(

P
c mc)×(

Q
c mc)

)

=
1
64
·




+5 +5 +5 +5 +5 +5 +5 +5 −3 −3 −3 −3 −3 −3 −3 −3
−3 −3 −3 −3 −3 −3 −3 −3 +5 +5 +5 +5 +5 +5 +5 +5
+5 +5 +5 +5 −3 −3 −3 −3 +5 +5 +5 +5 −3 −3 −3 −3
−3 −3 −3 −3 +5 +5 +5 +5 −3 −3 −3 −3 +5 +5 +5 +5
+5 +5 −3 −3 +5 +5 −3 −3 +5 +5 −3 −3 +5 +5 −3 −3
−3 −3 +5 +5 −3 −3 +5 +5 −3 −3 +5 +5 −3 −3 +5 +5
+5 −3 +5 −3 +5 −3 +5 −3 +5 −3 +5 −3 +5 −3 +5 −3
−3 +5 −3 +5 −3 +5 −3 +5 −3 +5 −3 +5 −3 +5 −3 +5




The constants
∑

c

∏
k 6=cmk,

∑
c6=c1

∏
k 6=c,c1

mk,
∏

k 6=c1,c2
mk for computing B+B are:

∑
c

∏

k 6=c

mk = m2 ×m3 ×m4 +m1 ×m3 ×m4 +m1 ×m2 ×m4 +m1 ×m2 ×m3

= 32∑

c 6=c1

∏

k 6=c,c1

mk = 16, c1 = 1, 2, 3, 4

∏

k 6=c1,c2

= 4, c1, c2 = 1, 2, 3, 4
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The matrix B+B is

B+B =
1
32
·




20 −12 4 4 4 4 4 4
−12 20 4 4 4 4 4 4
4 4 20 −12 4 4 4 4
4 4 −12 20 4 4 4 4
4 4 4 4 20 −12 4 4
4 4 4 4 −12 20 4 4
4 4 4 4 4 4 20 −12
4 4 4 4 4 4 −12 20




This is the best matrix we can get from the marginalizing matrixB and any other matrix A that most resem-
bles the identity matrix.

Let matrixH =
(
h

(c1,c2)

s(c1),s(c2)

)c1,c2={1,2,3,4}

s(c1),s(c2)={1,2}
be the influence matrix of the network of four power plants.

In this matrix, h(c1,c2)

s(c1),s(c2) represents the “influence” from state s(c1) of power plant c1 to state s(c2) of power

plant c2, and h(c1,c2)

s(c1),s(c2) is the
(
s(c1), s(c2)

)
-th element in the (c1, c2)-th submatrix of H . Let matrix G

be the Markov matrix of the hidden Markov process model of the network, corresponding to the latent
structure influence process model. Let the random variable S

((
S(1)S(2)S(3)S(4)

))
be the state of the

network, “encoded” by the states of the individual power plants, and

S
((
s(1)s(2)s(3)s(4)

))
= 8 · s(1) + 8 · s(2) + 8 · s(3) + 8 · s(4)

With this notation,

B ·H ·B+[S
((

s
(1)
1 · · · s

(2)
1

))
, S

((
s
(1)
2 · · · s

(2)
2

))
]

=
(
h

(1,1)

s
(1)
1 ,s

(1)
2

+ h
(2,1)

s
(2)
1 ,s

(1)
2

+ h
(3,1)

s
(3)
1 ,s

(1)
2

+ h
(4,1)

s
(4)
1 ,s

(1)
2

)
· 1
m2 ×m3 ×m4

+
(
h

(1,2)

s
(1)
1 ,s

(2)
2

+ h
(2,2)

s
(2)
1 ,s

(2)
2

+ h
(3,2)

s
(3)
1 ,s

(2)
2

+ h
(4,2)

s
(4)
1 ,s

(2)
2

)
· 1
m1 ×m3 ×m4

+
(
h

(1,3)

s
(1)
1 ,s

(3)
2

+ h
(2,3)

s
(2)
1 ,s

(3)
2

+ h
(3,3)

s
(3)
1 ,s

(3)
2

+ h
(4,3)

s
(4)
1 ,s

(3)
2

)
· 1
m1 ×m2 ×m4

+
(
h

(1,4)

s
(1)
1 ,s

(4)
2

+ h
(2,4)

s
(2)
1 ,s

(4)
2

+ h
(3,4)

s
(3)
1 ,s

(4)
2

+ h
(4,4)

s
(4)
1 ,s

(4)
2

)
· 1
m1 ×m2 ×m3

−
4− 1

m1 ×m2 ×m3 ×m4

The expression for B+GB
(
c1, c2, s

(1), s(2)
)

has too many terms, we do not write an explicit expression
here.

Example 7. In the LifeWear system, we have four categories: location, speaking/non-speaking, posture,
and event. The locations the LifeWear system identifies are: office, home, outdoors, indoors, car, street,
and shop. The speaking/non-speaking status the LifeWear system identifies are: no speech, me-speaking,
other-speaker, distant voices, loud crowd, and laughter. The postures the LifeWear identifies are: unknown,
lie, sit, stand, walk, run, and bike. The events the LifeWear system identifies are: no-event, eating, typing,
shaking-hands, clapping-hands, driving, brushing teeth, and doing the dishes.

The marginalizing operator for LifeWear is The state transition matrix for LifeWear is. . The inverse of
the marginalizating operator is . The influence matrix is .
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2.1.2 Estimation of Forward and Backward Parameters

For hidden Markov models whose latent variable S can take hundreds or even thousands of values, its
influence modeling is rather intuitive: We attempt to find another set of latent variables S(c), where 1 ≤
c ≤ C, and establish the connection between S(c) and S, as well as the connection between S(c) and
the observations Y . The inferences involved with S(c) can be computationally much cheaper and more
stable than the inferences involved with S. In this section, we show that if the latent variable S of the
original hidden Markov model can be mapped linearly from a set of variables S(c), and if for each random
variable S(c), we know the conditional probability P (Y (c)|S(c)) for the observation Y (c), then the inferences
with S(c) is much cheaper and more stable. And our understanding of the original random variable S
can come from the mapping from S(c) to S. This section proceeds in the following order. We first state
how the conditional probability of an observation conditioned on the random variable S be mapped to the
conditional probability of this observvation conditioned on the random variables S(c). Then we give the
forward-backward algorithm of the influence modeling based on linear mapping. Last, we state how to
connect the probabilities involved with S and the probabilities involved with S(c).

Let us first review the forward-backward algorithm in matrix form, and inspect how we reduce a complex
hidden Markov model inference problem involved with a large number of latent states to a much simpler
one via the influence modeling. The matrix form of the forward-backward algorithm is the most natural
form for this formulation.

In the below, we let S(c)
t , where 1 ≤ c ≤ C, be random variables, ~St =

(
S

(c)
t

)1≤c≤C
be a random vec-

tor, and the S
((

S
(c)
t

)1≤c≤C
)

be the index of
(
S

(c)
t

)1≤c≤C
. The index random variable S can take

∏
cmc

number of different values. Let
{(

St,
(
Y

(c)
t

)1≤c≤C
)}

be a hidden Markov process characterized by the

initial state distribution πs = P (S1 = s) , the state transition probability P (St+1|St), and the emission

probability P
((

Y
(c)
t

)1≤c≤C ∣∣St

)
=

∏
c P (Y (c)

t |S(c)
t ). Given

(
Y

(c)
t

)1≤c≤C

1≤t≤T
, the statistical values αt(st),

βt(st), γt(st), and ξt→t+1(st, st+1) are the forward parameters, the backward parameters, the one-slice
parameters, and the two-slice parameters respectively:

αt(st) = P

(
st,

(
y

(c)
t1

)1≤c≤C

1≤t1≤t

)

βt(st) = P

((
y

(c)
t1

)1≤c≤C

t+1≤t1≤T

∣∣st

)

γt(st) = P

(
st,

(
y

(c)
t1

)1≤c≤C

1≤t1≤T

)

ξt→t+1(st, st+1) = P

(
st, st+1,

(
y

(c)
t1

)1≤c≤C

1≤t1≤T

)

. Let
{(
S

(1)
t , · · · , S(C)

t , Y
(1)
t , · · · , Y (C)

t

)}
be a latent state influence model characterized by the marginal

initial state distributions π(c)
s = P (S(c)

1 = s), the marginal state transition probabilitiesP (s(c)t+1|s(1)
t · · · s(C)

t ) =
∑C

c1=1 h
(c1,c)

s
(c1)
t ,s

(c)
t+1

, and the emission probabilities P (Y (c)
t |S(c)

t ). Given
(
Y

(c)
t

)1≤c≤C

1≤t≤T
, the statistical values

α
(c)
t (st), β

(c)
t (st), γ

(c)
t (st), and ξ(c1,c2)

t→t+1(s
(c1)
t , s

(c2)
t+1) are the marginal forward parameters, the marginal back-
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ward parameters, the marginal one-slice parameters, and the marginal two-slice parameters respectively:

α
(c)
t (s(c)t ) = P

(
s
(c)
t ,

(
y

(c)
t1

)1≤c≤C

1≤t1≤t

)

β
(c)
t (s(c)t ) = P

((
y

(c)
t1

)1≤c≤C

t+1≤t1≤T

∣∣s(c)t

)

γ
(c)
t (s(c)t ) = P

(
s
(c)
t ,

(
y

(c)
t1

)1≤c≤C

1≤t1≤T

)

ξ
(c1,c2)
t→t+1(s

(c1)
t , s

(c2)
t+1) = P

(
s
(c1)
t , s

(c2)
t+1 ,

(
y

(c)
t1

)1≤c≤C

1≤t1≤T

)

We express the above parameters and the statistics related to the hidden Markov model with the following
matrix form:

(π) =
(
π1 · · · πQ

c mc

)

(αt) =
(
αt(1) · · · αt(

∏
cmc)

)

(βt) =




βt(1)
...

βt(
∏

cmc)




(p (yt|st)) =




P (y(1)
t · · · y(C)

t |S = 1)
. . .

P (y(1)
t · · · y(C)

t |S =
∏

cmc)




We express the above parameters and the statistics related to the latent structure influence model with the
following matrix form:

(
π(c)

)
=

(
π

(1)
1 · · · π

(1)
m1︸ ︷︷ ︸

m1

· · · π
(C)
1 · · · π

(C)
mC︸ ︷︷ ︸

mC

)

(
α

(c)
t

)
=

(
α

(1)
t (1) · · · α

(1)
t (m1)︸ ︷︷ ︸

m1

· · · α
(C)
t (1) · · · π

(C)
t (mC)︸ ︷︷ ︸

mC

)

(
β

(c)
t

)
=




β
(1)
t (1)

...
β

(1)
t (m1)




m1

...
β

(C)
t (1)

...
β

(C)
t (mC)




mC




(
P (y(c)|s(c))

)
= diag

( P (y(1)
t |S(1)

t = 1) · · · P (y(1)
t |S(1)

t = m1)︸ ︷︷ ︸
m1

· · ·

P (y(C)
t |S(C)

t = 1) · · · P (y(C)
t |S(C)

t = mC)︸ ︷︷ ︸
mC

)
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With this notation, we can verify that the statistical parameters for a hidden Markov model can be
expressed in the following non-recursive form

(αt) = (π) · (P (y1|s1)) ·G · (P (y2|s2)) · · ·G · (P (yt|st))
(βt) = G · (P (ot+1|s)) · · ·G · (P (oT |s)) · 1Q

c mc×1

(γt) = (αt) . ∗ (βt)
(ξt→t+1) = G. ∗ ((βt) · (αt))

P (y1 · · · yt) = (αT ) · 1(Qc mc)×1 = 1 · (β1) = αt · βt

The forward and backward parameters (αt) and (βt) can also be expressed in the following recursive form:

(αt=1) = (π) · (P (y1|s1))
(αt+1) = (αt) ·G · (P (yt|s))
(βt=T ) = 1Q

c mc×1

(βt) = G · (P (yt+1|s)) · (βt+1)

Since we have assumed that the probability mass functions for S(c)
t and the probability mass functions

for St can be mapped to each other with the marginalizing operator B and its inverse B+, the space of valid
probability mass functions are restricted, and the transition matrix has the restriction thatG = BB+GBB+.
With ths assumption, we can recombine the terms and write the marginal forward parameters

(
α

(c)
t

)
as the

following:

(αt) = π ·BB+ · (P (y1|s1)) ·BB+ ·G ·BB+ · · ·BB+ ·G ·BB+ · (P (yt|st))(
α

(c)
t

) 4
= (αt) ·B
= (π ·B) · (B+ · (P (y1|s1)) ·B

) ·H · · · ·H · (B+ · (P (yt|st)) ·B
)

We can also recombine the terms and write the marginal backward parameters
(
β

(c)
t

)
as the following:

(βt) = BB+ ·G ·BB+ · (P (yt+1|st)) · · ·BB+ ·G ·BB+ · (P (yT |sT )) · 1Q
c mc×1(

β
(c)
t

) 4
= H · (B+ · (P (yt+1|st+1)) ·B

) · · ·H ·
(
B+ · (P (yT |sT )) · 1Q

c mc×1

)

= H · (B+ · (P (yt+1|st+1)) ·B
) · · ·H · (B+ · (P (yT |sT )) ·B) · (B+ · 1Q

c mc×1)

= H · (B+ · (P (yt+1|st+1)) ·B
) · · ·H · (B+ · (P (yT |sT )) ·B) · 1

P
mc×1∑
mc

(βt) = B ·
(
β

(c)
t

)

The likelihood of observing sequence y1 · · · yT can be expressed as

P (y1 · · · yT ) =
(
α

(c)
t

)
·
(
β

(c)
t

)

The recursive formulas for the marginal forward and backward parameters are thus:(
α

(c)
t=1

)
=

(
π(c)

)
· (B+ · (P (y1|s)) ·B)

(
α

(c)
t+1

)
=

(
α

(c)
t

)
·H · (B+ · (P (yt+1|s)) ·B)

(
β

(c)
t=T

)
=

1∑
mc
· 1Pmc×1

(
β

(c)
t

)
= H · (B+ · (P (yt+1|st+1)) ·B

) ·
(
β

(c)
t+1

)
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As a result, if we can compute (B+ · (P (yt|st)) ·B) in terms of S(c)
t , we can make the inference without

involving St. This is actually true, as we will demonstrate below.

Theorem 3. Let 1 ≤ S(c) ≤ mc, where 1 ≤ c ≤ C, be random variables, and the random variable

S

((
S

(c)
t

)1≤c≤C
)

be the index of
(
S

(c)
t

)1≤c≤C
. The random variables S(c) are independent:

P

(
S

((
s(c)

)1≤c≤C
))

=
∏
c

P
(
s(c)

)

. Let B
((

m1 · · · mC

))
and B+ be the marginalizing matrix and its inverse, and

obslik = B+ ·




P (S = 1)
. . .

P (S =
∏

cmc)


 ·B

We have

obslik (c1, c2, i, j) = −
∑

k 6=c1
1

mk

(
∏

k mk) ·
(∑

k
1

mk

) · P (S(c2) = j) +





1Q
k 6=c1

mk
P (S(c1) = i) · P (S(c2) = j) , c1 6= c2

1Q
k 6=c1

mk
P (S(c1) = i) , c1 = c2, i = j

0 , c1 = c2, i 6= j

2.1.3 Parameter Estimation

In this section, we give the likelihood function for a latent state influence model, with the assumption that the
marginal probability mass functions can be mapped linearly to a joint probability mass function. We con-

sider two situations: the latent states
(
S

(c)
t

)1≤c≤C

1≤t≤T
are known exactly, and only a probabilistic estimate of

(
S

(c)
t

)1≤c≤C

1≤t≤T
are known. Based on the likelihood function, we derive the parameter re-estimation formula

for the latent state influence model. It should be noticed that the correlations of
(
S

(c)
t

)1≤c≤C
within the same

time slice t are not captured by the influence matrix. They are provided by the observations, when we com-
bine the evidence from new observations P (~yt|~st) with the estimation from old observations P (~st|~y1···t−1).

The influence matrix only captures the correlations between
(
S

(c)
t−1

)1≤c≤C
and

(
S

(c)
t

)1≤c≤C
.

When we know the latent states exactly,
(
S

(c)
t

)1≤c≤C

1≤t≤T
=

(
s
(c)
t

)1≤c≤C

1≤t≤T
corresponding to the observations

(
Y

(c)
t

)1≤c≤C

1≤t≤T
=

(
y

(c)
t

)1≤c≤C

1≤t≤T
, the likelihood function can be computed as follows:

p

((
y

(c)
t

)1≤c≤C

1≤t≤T

)
= p(~s1) ·

(
T−1∏

t=1

p(~st+1|~st)

)
·
(

T∏

t=1

p(~yt|~st)

)

=

(∏
c

p(π(c)

s
(c)
1

)

)
·
(

T−1∏

t=1

C∑

c1=1

C∑

c2=1

h
(c1,c2)

s
(c1)
t s

(c2)
t+1

)(
T∏

t=1

C∏

c=1

p(y(c)
t |s(c)t )

)
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We can find a new estimate of the parameters to try to maximize the log likelihood function:

log p
((

y
(c)
t

)1≤c≤C

1≤t≤T

)

=
C∑

c=1

p(π(c)

s
(c)
1

) +
T−1∑

t=1

log
C∑

c1=1

C∑

c2=1

h
(c1,c2)

s
(c1)
t s

(c2)
t+1

+
T∑

t=1

C∑

c=1

log p(y(c)
t |s(c)t )

≥
C∑

c=1

p(π(c)

s
(c)
1

) +
T−1∑

t=1

C∑

c1=1

C∑

c2=1

log h(c1,c2)

s
(c1)
t s

(c2)
t+1

+
T∑

t=1

C∑

c=1

log p(y(c)
t |s(c)t ) (2.1)

=
C∑

c=1

mc∑

i=1

δ(s(c)1 , i) · log π(c)
i +

T−1∑

t=1

C∑

c=1

C∑

c1=1

mc1∑

i=1

mc2∑

j=1

δ(s(c1)
t , i) · δ(s(c2)

t+1 , j) · log h(c1,c2)
i,j +

T∑

t=1

C∑

c=1

mc∑

i=1

δ(s(c)t , i) · log p(y(c)
t |i)

4
=

C∑

c=1

mc∑

i=1

π̃
(c)
i · log π(c)

i +

C∑

c=1

C∑

c1=1

mc1∑

i=1

mc2∑

j=1

ξ̃(c1,c2)(i, j) · log h(c1,c2)
i,j +

C∑

c=1

mc∑

i=1

γ̃(c)(i) · log p(y(c)
t |i)

where the step 2.1 is according to the Jensen’s inequality, the function

δ(i, j) =

{
1 i = j

0 i 6= j

is the Kronecker delta function, and

π̃
(c)
i = δ(s(c)1 , i)

ξ̃(c1,c2)(i, j) =
T−1∑

t=1

δ(s(c1)
t , i) · δ(s(c2)

t+1 , j)

γ̃(c)(i) =
T∑

t=1

δ(s(c)t , i)

are the sufficient statistics for π(c)
i , h(c1,c2)

i,j , and p(y(c)
t |i) respectively. We can maximize the parameters

involved in the influence matrix H by equaling them to the corresponding sufficient statistics:

π
(c)
i = π̃

(c)
i (2.2)

h
(c1,c2)
i,j =

1
C
· ξ̃

(c1,c2)
i,j∑mc2

j=1 ξ̃
(c1,c2)
i,j

(2.3)

We can maximize the parameters that map from the latent states to the observations in the same way as in
an ordinary hidden Markov model.
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When the latent states at time t = 1..T are not known. We can choose parameters that maximize the
expected log likelihood function:

E~s1···~sT

[
log p

((
y

(c)
t

)1≤c≤C

1≤t≤T

)]

= E~s1···~sT

[
C∑

c=1

log π(c)

s
(c)
1

+
T∑

t=1

log
C∑

c1=1

C∑

c2=1

h
(c1,c2)

s
(c1)
t ,s

(c2)
t+1

+
T∑

t=1

C∑

c=1

log p(y(c)
t |s(c)t )

]

≥ E~s1···~sT

[
C∑

c=1

log π(c)

s
(c)
1

+
T∑

t=1

C∑

c2=1

C∑

c1=1

log h(c1,c2)

s
(c1)
t ,s

(c2)
t+1

+
T∑

t=1

C∑

c=1

log p(y(c)
t |s(c)t )

]

=
C∑

c=1

mc∑

i=1

E
s
(c)
1

[
δ(s(c)1 , i)

]
· log π(c)

i +

C∑

c=1

C∑

c1=1

mc1∑

i=1

mc2∑

j=1

T−1∑

t=1

E
s
(c1)
t s

(c2)
t+1

[
δ(s(c1)

t , i) · δ(s(c2)
t+1 , j)

]
· log h(c1,c2)

i,j +

C∑

c=1

mc∑

i=1

T∑

t=1

E
s
(c)
t

[
δ(s(c)t , i)

]
· log p(y(c)

t |i)

4
=

C∑

c=1

mc∑

i=1

π̃
(c)
i · log π(c)

i +

C∑

c=1

C∑

c1=1

mc1∑

i=1

mc2∑

j=1

ξ̃(c1,c2)(i, j) · log h(c1,c2)
i,j +

C∑

c=1

mc∑

i=1

γ̃(c)(i) · log p(y(c)
t |i)

According to the attributes of the expectation operator and the Kronecker delta operator, the sufficient statis-
tics are given in the following way, and the parameters related to the state transitions are maximized by
Eqations 2.2 and 2.3:

π̃
(c)
i = γ

(c)
i

ξ̃(c1,c2)(i, j) =
T=1∑

t=1

ξ
(c1,c2)
t→t+1(i, j)

γ̃(c)(i) =
T∑

t=1

γ
(c)
t (i)

We summarize the EM algorithm for the latent structure influence model in Algorithm 1.

2.2 The Non-linear Approach to the Influence Modeling

We need to notice that the probability space of a joint random variable S
((
S(c)

)
1≤c≤C

)
is exponentially

larger than the probability spaces of its constituent random variables, and there are many mappings between
the probability space of the joint random variable and the marginal random variables. In Section 2.1, we
defined a class of linear mappings between the joint random variable and the marginal random varialbles,
formulated the latent structure influence model based on this mapping, and showed that the inference algo-
rithms for an latent structure influence model is equivalent to the inference algorithms for the corresponding
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Algorithm 1 The EM algorithm for the latent structure influence model (linear)
E-Step

(
α

(c)
t

)
=

{(
π(c)

) ·B+ (p (~y1|~s1))B t = 1(
α

(c)
t−1

)
·H ·B+ (p (~yt−1|~st−1))B t > 1

(
β

(c)
t

)
=





1P
c mc

~1Pmc×1 t = T

H ·B+ (p (~yt−1|~st−1))B ·
(
β

(c)
t+1

)
t < T

(
γ

(c)
t

)
=

(
α

(c)
t

)
· diag[

(
β

(c)
t

)
]

ξt−1→t = diag[
(
α

(c)
t−1

)
] ·H ·B+ (p (~yt−1|~st−1))B · diag[

(
β

(c)
t

)
]

p(~y) =
(
α

(c)
t

)
·
(
β

(c)
t

)

M-step

• Parameters related to the latent state transitions

Aij = normalize[
T∑

t=2

ξ
(i,j)
t−1→t]

S =



~11×m1

...
~11×mC




dij = normalize[S
T∑

t=2

ξt−1→tS
T]

~π(c) = normalize[~γ(c)
1 ]

Parameters related to multinomial observations

p(c)(~o(c)|~s(c)) = normalize[
∑

t

~γ
(c) T
t · ~δyt,~o(c) ]

Parameters related to Gaussian observations

µ(c) =
∑

t ~γ
(c) T
t · ~y(c)

t∑
t ~γ

(c)
t ·~1mc×1

Σ(c) 2
i =

∑
t γ

(c)
t,i ~y

(c)
t ~y

(c) T
t∑

t ~γ
(c)
t ·~1mc×1

− ~µ(c)
i · ~µ(c) T

i
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hidden Markov model. In this section, we show that a non-linear mapping from the marginal ranadom vari-
ables to the joint random variable also exists (the mapping from the joint random varible to the marginal
random variables is always linear). We also formulate the latent structure influence model based on the non-
linear mapping, and derive the inference algorithms. We will see shortly why we need to map the marginal
probability distributions to the joint probability distribution, and why we call it non-linear.In the non-linear
case, the forward-backward algorithm for an influence model is an approximation to the forward-backward
algorithm for the corresponding hidden Markov model.

In the following paragraphs, we describe the influence parameters, the evolution of the marginal latent
state distributions for individual processes, and the observations for individual processes as probabilistic
functions of the latent states. The usage with an influence model is generally: inference of latent states given
parameters and observations, estimation of parameters given latent states and observations, or simultaneous
latent state inference and parameter estimation from observations. A graphical model representation of the
influence model is plotted in Figure 2.2. In this figure, the left column represents basis step, and the right
column represents the induction step. Shadowed squares are observable, while un-shadowed squares are
unobservable. Our task is to learn the parameters and latent states from observations. The two-column
convention is adopted from Murphy [2].

Let us assume that we have C interacting stochastic processes and mc(1 ≤ c ≤ C) number of latent
states corresponding to process c in the system’s behavior space. Following Asavathiratham [12] we use
DC×C as the network (influence) matrix, whose columns each add up to 1, and A(c1,c2)(1 ≤ c1, c2 ≤ C)
as the inter-process state transition matrix, whose rows adds up to 1. The influence matrix is defined as the
Kronecker product H = D ⊗ A = (dc1,c2A

(c1,c2)) = (h(c1,c2)
i,j ), where H is a block matrix whose sub-

matrix at row c1 and column c2 is dc1,c2A
(c1,c2). The influence matrix is used to generate the marginal latent

state distributions for individual processes at time t + 1 from the marginal latent state distributions at time
t. The marginal latent state distributions for individual processes c at time 1 is given as ~π(c) = (p(s(c)1 =
1), . . . , p(s(c)1 = mc)) , (π(c)

1 , . . . , π
(c)
mc), and we concatenate the row vectors ~π(c) into a longer row vector

~π = (~π(1), . . . , ~π(C)).
We express the marginal probabilistic distributions of states s(c)t for processes c at time t as a row vector

~p(s(c)t ) = (p(s(c)t = 1), p(s(c)t = 2), . . . , p(s(c)t = mc)), where 1 ≤ c ≤ C,
∑

j p(s
(c)
t = j) = 1, and

concatenate these row vectors together into a longer row vector: ~p(~st) = (~p(s(1)
t ), ~p(s(2)

t ), . . . , ~p(s(C)
t )).

Using this notation, the influence marginal latent state distributions for individual interacting processes are
evolved as

p(~st+1) = p(~st) ·H
p(~s1) = ~π

There are many ways to establish the equivalence relation between an influence process represented by the
influence matrix H and a Markov process represented by the state transition matrix G. We follow Asavathi-
ratham’s formulation in [12] Section 5.11: G = (gi,j), where g~st,~st+1

=
∏

c

∑
c1
h

(c1,c)

s
(c1)
t ,s

(c)
t+1

. Intuitively, this

means that we can linearly combine the marginal latent state distributions at time t to get the marginal latent
state distributions at time t+ 1, and that a joint latent state distribution for a system can be factored into the
product of the marginal latent state distributions of individual processes for this system.

The observations o(c)t for process c at sample times 1 ≤ t ≤ +∞ can be either finite symbolic or
Gaussian and are statistically determined by the corresponding latent state s(c)t . When the observations for
process c are symbolic, we use nc to represent the number of observation symbols o(c)t ∈ [1 . . . nc]. We
define B(c) = (b(c)i,j ), where b(c)i,j = p(o(c) = j|s(c) = i), as the observation matrix. When the observa-
tions for process c are Gaussian, we use nc to represent the dimensionality of the mc number of Gaussian
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p(~s
(1)
t=1) = ~π(1) p(~s

(1)
t+1) =

∑
i p(~s

(i)
t ) · di,1 · A

(i,1)

p(~o
(1)
t=1) = p(~s

(1)
t=1) · p(~o

(1)
t=1|~s

(1)
t=1) p(~o

(1)
t+1) = p(~s

(1)
t+1)P (~o

(1)
t+1|~s

(1)
t+1)

p(~s
(2)
t=1) = ~π(2) p(~s

(2)
t+1) =

∑
i p(~s

(i)
t )di,2A

(i,2)

p(~o
(2)
t=1) = p(~s

(2)
t=1) · p(~o

(2)
t=1|~s

(2)
t=1) p(~o

(2)
t+1) = p(~o

(2)
t+1)P (~o

(2)
t+1|~s

(2)
t+1)

...
...

p(~s
(C)
t=1) = ~π(C) p(~s

(C)
t+1) =

∑
i p(~s

(i)
t )di,CA(i,C)

p(~o
(C)
t=1) = p(~s

(C)
t=1)p(~o

(C)
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Figure 2.2: A graphical model representation of the influence model.

distributions corresponding to each latent state s(c) ∈ [1 . . .mc]: o(c) ∼ N (µ(c)

s(c) , σ
(c)

s(c)).

2.2.1 Latent State Inference

In the inference algorithm below with a non-linear mapping interpretation of H, the computation of the for-
ward parameters needs special care. be the conditional marginal probability for s(c)t given the observations
y

(c1)
t1

, where 1 ≤ c1 ≤ C and time 1 ≤ t1 ≤ t. Let the marginal backward parameters be the conditional

probability of
(
y

(c1)
t1

)1≤c1≤C

t+1≤t1≤T
given s(c)t

Theorem 4. Let the marginal forward parameters α(c)
t (s(c)t ), the marginal backward parameters β(c)

t (s(c)t ),
the marginal one-slice parameters γ(c)

t (s(c)t ), the marginal two-slice parameters ξ(c1,c2)
t→t+1(s

(c1)
t , s

(c2)
t+1) of a

latent structure influence model be

α
(c)
t (s(c)t ) = p

(
s
(c)
t ,

(
y

(c1)
t1

)1≤c1≤C

1≤t1≤t

)

β
(c)
t (s(c)t ) = P

((
y

(c1)
t1

)1≤c1≤C

t+1≤t1≤T

∣∣s(c)t

)

γ
(c)
t (s(c)t ) = P

(
s
(c)
t

∣∣
(
y

(c1)
t1

)1≤c1≤C

1≤t1≤T

)

ξ
(c1,c2)
t→t+1(s

(c1)
t , s

(c2)
t+1) = P

(
s
(c1)
t s

(c2)
t+1

∣∣
(
y

(c1)
t1

)1≤c1≤C

1≤t1≤T

)
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They can be computed recursively in the following way:

α
(c)
1 (s(c)1 ) = p

((
y

(c)
t

)1≤c≤C
|s(c)1

)
· π(c)

s
(c)
1

α
(c)
t (s(c)2≤t) = p

((
y

(c)
t

)1≤c≤C
|s(c)t

) ∑

c1,s
(c1)
t−1

α(s(c1)
t−1)h(c1,c)

s
(c1)
t−1 s

(c)
t

β
(c)
T (s(c)T ) = 1

β
(c)
t<T (s(c)t ) =

1
C
·

C∑

c1=1

mc1∑

s
(c1)
t+1 =1

h
(c,c1)

s
(c)
t ,s

(c1)
t+1

· P
((

y
(c)
t+1

)1≤c≤C ∣∣s(c1)
t+1

)
β

(c)
t+1(s

(c)
t+1)

γ
(c)
t (s(c)t ) = α

(c)
t (s(c)t ) · β(c)

t (s(c)t )

ξ
(c1,c2)
t→t+1(s

(c1)
t , s

(c2)
t+1) = α

(c1)
t (s(c1)

t ) · h(c1,c2)

s
(c1)
t ,s

(c2)
t+1

· β(c2)
t+1 (s(c2)

t+1) · P
((

y
(c)
t+1

)1≤c≤C ∣∣s(c2)t+1

)

Proof. In the following, we demonstrate that we can solve for the marginal forward parameters without first
solving the joint marginal forward parameters.

• Basis Step

α(s(c)1 )

= p

(
s
(c)
t ,

(
y

(c1)
1

)1≤c1≤C
)

= p

((
y

(c1)
1

)1≤c1≤C
|s(c)1

)
· p

(
s
(c)
1

)

= p

((
y

(c1)
1

)1≤c1≤C
|s(c)1

)
· π(c)

s
(c)
1

• Induction Step

α(s(c)t≥2)

= p

(
s
(c)
t ,

(
y

(c1)
t1

)1≤c1≤C

1≤t1≤t

)

= p

((
y

(c1)
t

)1≤c1≤C
|s(c)t

)
· p

(
s
(c)
t ,

(
y

(c1)
t1

)1≤c1≤C

1≤t1≤t−1

)

= p

((
y

(c1)
t

)1≤c1≤C
|s(c)t

)
·

C∑

c1=1

mc1∑

s
(c1)
t−1 =1

p

(
s
(c1)
t−1 ,

(
y

(c1)
t1

)1≤c1≤C

1≤t1≤t−1

)
· h(c1,c)

s
(c1)
t−1 s

(c)
t

= p

((
y

(c1)
t

)1≤c1≤C
|s(c)t

)
·




C∑

c1=1

mc1∑

s
(c1)
t−1 =1

α(s(c1)
t−1) · h(c1,c)

s
(c1)
t−1 s

(c)
t




In the following, we show that we can get the marginal backward parameters without the knowledge of the
joint backward parameters.
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• Basis Step. We have β(s(c)T ) = 1 trivially, and

mc∑

s
(c)
T =1

α(s(c)T ) · β(s(c)T ) =
mc∑

s
(c)
T =1

p

(
s
(c)
T ,

(
y

(c1)
t1

)1≤c1≤C

1≤t1≤T

)

= p

((
y

(c1)
t1

)1≤c1≤C

1≤t1≤T

)

1
C
·

C∑

c=1

mc∑

s
(c)
T =1

α(s(c)T ) · β(s(c)T ) = p

((
y

(c1)
t1

)1≤c1≤C

1≤t1≤T

)

• Induction Step

β(s(c)t<T )

= p

((
y

(c1)
t1

)1≤c1≤C

t+1≤t1≤T

∣∣s(c)t

)

=
mC∑

s
(c1)
t+1 =1

p

(
s
(c1)
t+1 ,

(
y

(c1)
t1

)1≤c1≤C

t+1≤t1≤T

∣∣s(c)t

)
, 1 ≤ c1 ≤ C

=
1
C
·

C∑

c1=1

mC∑

s
(c1)
t+1 =1

p

(
s
(c1)
t+1 ,

(
y

(c1)
t1

)1≤c1≤C

t+1≤t1≤T

∣∣s(c)t

)

=
1
C
·

C∑

c1=1

mC∑

s
(c1)
t+1 =1

p

((
y

(c1)
t1

)1≤c1≤C

t+1≤t1≤T

∣∣s(c1)
t+1

)
· p(s(c1)

t+1 |s(c)t )

=
1
C
·

C∑

c1=1

mC∑

s
(c1)
t+1 =1

p

((
y

(c1)
t1

)1≤c1≤C

t+2≤t1≤T

∣∣s(c1)
t+1

)
· p

((
y

(c1)
t+1

)1≤c1≤C ∣∣s(c1)
t+1

)
· p(s(c1)

t+1 |s(c)t )

=
1
C
·

C∑

c1=1

mc1∑

s
(c1)
t+1 =1

β(s(c1)
t+1) · h(c1,c)

s
(c)
t s

(c1)
t+1

· p
((

y
(c1)
t

)1≤c1≤C
|s(c1)

t+1

)

The one-slice parameters γ(c)
t (s(c)t ) can be computed from the marginal forward parameters and the marginal

backward parameters

γ
(c)
t (s(c)t ) = P

(
s
(c)
t ,

(
y

(c1)
t1

)1≤c1≤C

1≤t1≤T

)

= P

(
s
(c)
t ,

(
y

(c1)
t1

)1≤c1≤C

1≤t1≤t

)
P

((
y

(c1)
t1

)1≤c1≤C

t+1≤t1≤T

∣∣s(c)t

)

= α
(c)
t (s(c)t ) · β(c)

t (s(c)t )

The two-slice parameters ξ(c1,c2)
t→t+1(s

(c1)
t , s

(c2)
t+1) can also be computed from the marginal forward parameters
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α
(c)
t (s(c)t ) and the marginal backward parameters β(c)

t (s(c)t ):

ξ
(c1,c2)
t→t+1(s

(c1)
t , s

(c2)
t+1) = P

(
s
(c1)
t s

(c2)
t+1 ,

(
y

(c1)
t1

)1≤c1≤C

1≤t1≤T

)

= P

(
s
(c1)
t

(
y

(c1)
t1

)1≤c1≤C

1≤t1≤t

)
· P

(
s
(c2
t+1|s(c1)

t

)
·

P

((
y

(c1)
t+1

)1≤c1≤C ∣∣s(c2)
t+1

)
· P

((
y

(c1)
t1

)1≤c1≤C

t+2≤t1≤T

∣∣s(c2)
t+1

)

= α
(c1)
t · h(c1,c2)

s
(c1)
t s

(c2)
t+1

· P
((

y
(c1)
t+1

)1≤c1≤C ∣∣s(c2)
t+1

)
· β(c2)

t+1

2.2.2 Parameter Estimation

Suppose the latent states at time t = 1..T is already known St = s
(1)
t · · · s(C)

t . The likelihood function is

p

((
y

(c)
t

)1≤c≤C

1≤t≤T

)

= π~S1
·
(

T−1∏

t=1

g~st→ ~st+1

)
·
(

T∏

t=1

p(~yt|~st)

)

=

(
C∏

c=1

π
(c)

s
(c)
1

)
·
(

T∏

t=1

C∏

c2=1

C∑

c1=1

h
(c1,c2)

s
(c1)
t ,s

(c2)
t+1

)
·
(

T∏

t=1

C∏

c=1

p(y(c)
t |s(c)t )

)

We can find new parameters and try to maximize the log likelihood function:

log p
((

y
(c)
t

)1≤c≤C

1≤t≤T

)

=
C∑

c=1

log π(c)

s
(c)
1

+
T∑

t=1

C∑

c2=1

log
C∑

c1=1

h
(c1,c2)

s
(c1)
t ,s

(c2)
t+1

+
T∑

t=1

C∑

c=1

log p(y(c)
t |s(c)t )

≥
C∑

c=1

log π(c)

s
(c)
1

+
T∑

t=1

C∑

c2=1

C∑

c1=1

log h(c1,c2)

s
(c1)
t ,s

(c2)
t+1

+
T∑

t=1

C∑

c=1

log p(y(c)
t |s(c)t ) (2.4)

=
C∑

c=1

mc∑

i=1

δ(s(c)1 , i) · log π(c)
i + (2.5)

T−1∑

t=1

C∑

c=1

C∑

c1=1

mc1∑

i=1

mc2∑

j=1

δ(s(c1)
t , i) · δ(s(c2)

t+1 , j) · log h(c1,c2)
i,j +

T∑

t=1

C∑

c=1

mc∑

i=1

δ(s(c)t , i) · log p(y(c)
t |i)

4
=

C∑

c=1

mc∑

i=1

π̃
(c)
i · log π(c)

i +

C∑

c=1

C∑

c1=1

mc1∑

i=1

mc2∑

j=1

ξ̃(c1,c2)(i, j) · log h(c1,c2)
i,j +

C∑

c=1

mc∑

i=1

γ̃(c)(i) · log p(y(c)
t |i)

where the step 2.4 is according to the Jensen’s inequality, and the function δ(i, j) =

{
1 i = j

0 i 6= j
is the Kro-

necker delta function. From 2.5, we know that π̃(c)
i = δ(s(c)1 , i), ξ̃(c1,c2)(i, j) =

∑T−1
t=1 δ(s(c1)

t , i)·δ(s(c2)
t+1 , j),
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and γ̃(c)(i) =
∑T

t=1 δ(s
(c)
t , i) are the sufficient statistics for π(c)

i , h(c1,c2)
i,j , and p(y(c)

t |i) respectively. We can
maximize the parameters involved in the influence matrix H by equaling them to the corresponding suffi-
cient statistics:

π
(c)
i = π̃

(c)
i (2.6)

h
(c1,c2)
i,j =

1
C
· ξ̃

(c1,c2)
i,j∑mc2

j=1 ξ̃
(c1,c2)
i,j

(2.7)

We can maximize the parameters that map the latent states to the observations in the same way as in an
ordinary hidden Markov model.

When the latent states at time t = 1..T are not known. We can choose parameters that maximize the
expected log likelihood function:

E~s1···~sT

[
log p

((
y

(c)
t

)1≤c≤C

1≤t≤T

)]

= E~s1···~sT

[
C∑

c=1

log π(c)

s
(c)
1

+
T∑

t=1

C∑

c2=1

log
C∑

c1=1

h
(c1,c2)

s
(c1)
t ,s

(c2)
t+1

+
T∑

t=1

C∑

c=1

log p(y(c)
t |s(c)t )

]

≥ E~s1···~sT

[
C∑

c=1

log π(c)

s
(c)
1

+
T∑

t=1

C∑

c2=1

C∑

c1=1

log h(c1,c2)

s
(c1)
t ,s

(c2)
t+1

+
T∑

t=1

C∑

c=1

log p(y(c)
t |s(c)t )

]

=
C∑

c=1

mc∑

i=1

E
s
(c)
1

[
δ(s(c)1 , i)

]
· log π(c)

i +

C∑

c=1

C∑

c1=1

mc1∑

i=1

mc2∑

j=1

T−1∑

t=1

E
s
(c1)
t s

(c2)
t+1

[
δ(s(c1)

t , i) · δ(s(c2)
t+1 , j)

]
· log h(c1,c2)

i,j +

C∑

c=1

mc∑

i=1

T∑

t=1

E
s
(c)
t

[
δ(s(c)t , i)

]
· log p(y(c)

t |i)

4
=

C∑

c=1

mc∑

i=1

π̃
(c)
i · log π(c)

i +

C∑

c=1

C∑

c1=1

mc1∑

i=1

mc2∑

j=1

ξ̃(c1,c2)(i, j) · log h(c1,c2)
i,j +

C∑

c=1

mc∑

i=1

γ̃(c)(i) · log p(y(c)
t |i)

According to the attributes of the expectation operator and the Kronecker delta operator, the sufficient statis-
tics are given in the following way, and the parameters related to the state transitons are maximized by
Equations 2.6 and 2.7:

π̃
(c)
i = γ

(c)
i

ξ̃(c1,c2)(i, j) =
T=1∑

t=1

ξ
(c1,c2)
t→t+1(i, j)

γ̃(c)(i) =
T∑

t=1

γ
(c)
t (i)

The parameters are re-estimated in the same way as in the known latent state case.
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Algorithm 2 The EM algorithm for the latent structure influence model
E-Step

~α∗t =

{
~π1×Pmc

t = 1
~αt−1 ·H · diag[~bt] t > 1

Nt =




1
m1P
i=1

~α
∗(1)
t,i

...
1

mCP
i=1

~α
∗(C)
t,i




~αt = ~α∗t · Nt

~βt =

{
~1Pmc×1 t = T

H · diag[~bt]Nt+1
~βt+1 t < T

~γt = ~αt · diag[~βt]
ξt−1→t = diag[~αt−1] ·H · diag[~bt] · Nt · diag[~βt]

p(~o) =
∏
t,c

(
mc∑

i=1

~α
∗(c)
t,i )

M-step

• Parameters related to the latent state transitions

Aij = normalize[
T∑

t=2

ξ
(i,j)
t−1→t]

S =



~11×m1

...
~11×mC




dij = normalize[S
T∑

t=2

ξt−1→tS
T]

~π(c) = normalize[~γ(c)
1 ]

Parameters related to multinomial observations

p(c)(~o(c)|~s(c)) = normalize[
∑

t

~γ
(c) T
t · ~δyt,~o(c) ]

Parameters related to Gaussian observations

µ(c) =
∑

t ~γ
(c) T
t · ~y(c)

t∑
t ~γ

(c)
t ·~1mc×1

Σ(c) 2
i =

∑
t γ

(c)
t,i ~y

(c)
t ~y

(c) T
t∑

t ~γ
(c)
t ·~1mc×1

− ~µ(c)
i · ~µ(c) T

i
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2.2.3 Viterbi-decoding of the Influence Modeling

Theorem 5. Finding a Viterbi path for an influence process is NP-complete

Proof. We prove this theorem in 2 steps. We first show that given a hard

assignment for all latent variables on all processes at time t+ 1 (i.e. s(c)t+1, i, 1 ≤ c ≤ C, 1 ≤ i ≤ mc is

either 0 or 1), finding a hard assignment for all latent variables on all processes at time t (i.e. s(c)t, i, 1 ≤ c ≤
C, 1 ≤ i ≤ mc is either 0 or 1) is NP-complete. We then show that we have output observations together
with output matrices that fix ~st+1 while do not fix ~st.

(Given ~st+1, finding ~st to maximize p(~st+1|~st) is NP-complete) We reduce from the SATISFIABILITY
problem to an influence process with 2 time steps (step t, and step t + 1), such that when the conjuction
normal form under consideration is satisfiable, we have a path ~st~st+1, where s

(c)
t+1 = 2 from some unknown

start state ~st to a specific state ~st+1 with probability greater than 0 for the constructed influence process.
Following the notation of [15] A9.1[L01] SATISFIABILITY, we have SetU = {u1, .., uM} of variables,

collectionC = {{ũi1 , ũi2 , .., ũim}i=1..N} of clauses over U, where ũmeans u or or its negation ū. We know
that the SATISFIABILITY problem in general is NP-complete.

We construct the influence process H = D ⊗ A = (dijAij) as follows: H has max(M,N) chains,
where M is the number of boolean variables and N is the number of clauses. Each dijAij is a 2× 2 matrix.
The evaluation of each boolean variable uito true or false is represented by selecting either the first row or
the second row of dijAij . After we have chosen one row for each i , we sum the rows together and get a row
matrix. Then we choose one entry for each j ,and multiply the entries together. The result is the probability
([12] (5.11)). We arrange the influence matrix in the following way such that when the conjunction normal
form is satisfiable, we have a path through: When the number clauses is less than the number of variables,
i.e., M > N , we fill all entries in dijAij with positive values, such that evaluation of boolean variables
won’t “block” the path. When variable ui does not appear in clause cj , we put 0 into dijAij such that
evaluation of variable ui does not provide a path through. when ūi appears in caluse cj , we set dijAij to be

dij

(
0 1
1 0

)
, dij > 0 ,such that the evaluation ui = 0 provides a path through.when ui appears in caluse

cj , we set dijAij to be dij ·
(

1 0
0 1

)
, dij > 0 ,such that the evaluation ui = 1 provides a path through.

To show that there exists an non-determinstic polynomial solution, we note that we can solve all p(~st+1|~st)
for all ~st and get the maximum of these joint probabilities.

(We can provide observations ~ot, ~ot+1, and output matrix B(c) to fix the latent state ~st+1 while leaving

~st undetermined) We set the output matrix B(c) =
(

1 0
.5 .5

)
. That is to say, if s(c) = 1, then o(c) = 1. If

s(c) = 2, then there is a 50% chance that o(c) = 1, and a 50% chance that o(c) = 2. To look it in another
way, if o(c) = 2, then s(c) = 2. If o(c) = 1, then there is a 67% chance that s(c) = 1, and 33% chances that
s(c) = 2. Now we stipulate that o(c)t = 1, o(c)t+1 = 2.

We use the following example to illustrate how the corresponding influence matrix for a given conjuction
normal form is constructed.

Example 8. Let U = {u1, u2, u3, u4} , and C = {{u1 ∨ ū2 ∨ u3}, {ū1}, {u2 ∨ ū2}, }
. The constructed influence matrix looks like this:
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H =




1
3 1 1

4
1
4

1
3 1 1

4
1
4

1
3

1
2

1
2

1
4

1
4

1
3

1
2

1
2

1
4

1
4

1
3

1
4

1
4

1
3

1
4

1
4

1
4

1
4

1
4

1
4




.

Let’s set ~s1 = [1 0|0 1|0 1|0 1] , i.e. we set u1 = 0, u2 = 1, u3 = 1, u4 = 1 , after we add the
corresponding rows together, we have

∑
i=1,4,6,8Hi,∗ = [13

2
3 |0 1|12 1

2 |1 1] . This evaluation satisfies C
since ~s2 = [0 1|0 1|0 1|0 1] is a solution. When we set ~s1 = [0 1|0 1|0 1|0 1] , we have

∑
i=1,4,6,8Hi,∗ =

[13
2
3 |1 0|12 1

2 |1 1] , we know it is not a solution since s(2)(2) = 0 .



Chapter 3

Experimental Results

In this section, we illustrate how an influence model can capture the correlations among different dynamic
processes and thus improve the overall dynamic inference performance. We give three examples. In the
example of interacting processes with noisy observations, we illustrate the structure that an influence model
tries to capture, and how an influence model can be used to improve classification precision. We then extend
the noisy body sensor net example and compare the training errors and the testing errors of different dynamic
models. In the social network example, we illustrate how the cell phone usage information can be used to
recover geographical information as well as the social structure of the cellphone users.

3.1 Interacting Processes with Noisy Observations

Let us suppose that we have six stochastic processes, and we sample these six processes with six sensors.
Each process can be either signaled (one) or non-signaled (zero) at any time, and the corresponding sensor
has approximately 10% of its samples flipped. The interaction of the six stochastic processes behind the
scene looks like this: processes one through three tend to have the same states; processes four through six
tend to have the same states; the processes are more likely to be non-signaled than to be signaled; and
the processes tend to stick to their states for a stretch of time. The parameters of the model are given as the

following and are going to be estimated: Aij =
(
.99 .01
.08 .92

)
, 1 ≤ i, j ≤ 6,Bi =

(
.9 .1
.1 .9

)
, 1 ≤ i ≤ 6,

dij = .33, 1 ≤ i, j ≤ 3, and dij = .33, 4 ≤ i, j ≤ 6.
In Figure 3.1, (a) shows the sampled latent state sequences, (b) shows the corresponding observation

sequences, (c) shows the influence matrix reconstructed from sampled observation sequences, and (d) shows
the reconstructed latent state sequences after 300 observations. The (i, j)th entry of the (c1, c2)th sub-matrix
of an influence matrix determines how likely that process c1 is in state i at time t and process c2 is in state j
at time t+ 1. It can be seen from Figure 3.1 (c) that the influence model computation recovers the structure
of the interaction.
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Figure 3.1: Inference from observations of interacting dynamic processes.
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Figure 3.2: Comparison of dynamic models.

The influence model can normally attain around 95% accuracy in predicting the latent states for each
process. The reconstructed influence matrix has only 9% relative differences with the original one. Using
only observations of other chains we can predict a missing chain’s state with 87% accuracy.

We then constructed a more complex experimental setting to compare the performances of different
types of hidden Markov models. In this setting, we have a Markov process with 2C , where C = 10,
number of states and a randomly generated state transition matrix. Each system state ~st is encoded into
a binary s(1)

t · · · s(C)
t . Each of the mc = 2 evaluations of “bit” s(c)t corresponds a different 1-d Gaussian

observation o(c)t : Digit s(c)t = 1 corresponds to o(c)t ∼ N [µ1 = 0, σ2
1 = 1] ; Digit s(c)t = 2 corresponds

to o(c)t ∼ N [µ2 = 1, σ2
2 = 1] . Figure 3.2 compares the performances of several dynamic latent structure

models applicable to multi-sensor systems. Of the 1000 samples (~ot)1≤t≤100 , we use the first 250 for
training and all 1000 for validation.

There are two interesting points. First, the logarithmically scaled number of parameters of the influence
model allows us to attain high accuracy based on a relatively small number of observations. This is because
the eigenvectors of the master Markov model we want to approximate are either mapped to the eigenvectors
of the corresponding influence model, or mapped to the null space of the corresponding event matrix thus
is not observable from the influence model, and that in addition the eigenvector with the largest eigenvalue
(i.e., 1) is mapped to the eigenvector with the largest eigenvalue of the influence matrix [12]. Secondly, both
the influence model and the hidden Markov model applied to individual processes are relatively immune
to over-fitting, at the cost of low convergence rates. This situation is intuitively the same as the numerical
analysis wisdom that a faster algorithm is more likely to converge to a local extremum or to diverge.

3.2 Real-time Context Recognition

An early version of the Groupwear real-time context recognition system was developed by Blum [10], and
is comprised of a Sharp Zaurus PDA, an ambient audio recorder, and two accelerometers, worn on hip and
wrist. This system is designed to classify in real time eight locations, six speaking/non-speaking status, six
postures, and eight activities. The classification is carried out in two steps: A pre-classifier (single Gaussian,
mixture of Gaussians, or C4.5) is first invoked on the audio and accelerometer features to get a moderate
pre-classification result of the above four categories.

The pre-classification result of different categories is then fed into an influence model to learn inter-
sensor structure, and then this learned structure is used to generate an improved post-classification result. In
this example the influence model learns the conditional probabilities that relate the four categories (location,
audio, posture, and activity) and then uses this learned influence matrix to improve the overall performance.
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Figure 3.3: Influence matrix learned by the EM algorithm.

For example, given that the Groupwear user is typing, we can inspect the row of the influence matrix cor-
responding to “typing” and see that this person is very likely to be either in the office or at home, to not
be speaking, and to be sitting. As a result, the action of typing can play a critical role to disambiguating
confusions between sitting and standing, or between speaking vs not-speaking, but not between office and
home.

By combining evidence across different categories using the influence model, the classification errors
for locations, speaking/non-speaking, postures, and activities decreased by an average of 23%, from 38%,
22%, 8% and 27% to 28%, 19%, 8%, and 17% respectively. The post-classification for postures does not
show significant improvement because of two reasons: (1) it is already precise enough considering that we
have labeling imprecision in our training data and testing data, and (2) it is the driving force for improving
the other categories, and no other categories are more certain than the posture category.

3.3 Speaker identification of a group meeting

Automatic speaker identification is important for documenting the meeting audio recordings. When com-
bined with the speech recognition techniqe, we can generate automatic meeting reviews.

The speaker identification algorithm to be discussed in this section uses the audio recordings for indi-
vidual meeting participants. It assumes that a meeting proceeds as a finite state Markov chain involving its
interacting participants, and each state describes a different configuration of who is speaking. The Markov
chain is latent and to be inferred. It also assumes that the energy distributions for the audio recordings are
random variables conditioned on the latent states of the Markov chain.

The specification of the latent Markov chain needs careful consideration, since the number of states for
even a moderate-sized meeting can be very large. For example, let us assume that we have n participants
in a meeting, and each participants can only be in two states: speaking, and non-speaking. The number of
possible states for the meeting is then 2n. On the other hand, we noticed that human interactions such as in
a meeting is highly structured: there are normally one person speaking in a meeting session. The situations
where all people speak are rare and normally unimportant. Thus, instead of working with a hidden Markov
process with all 2n possible sates, we work with a dual latent structure influence process with only n + 1
number of states: one for each speaker and the rest for all other situations.

The meeting data we are going to analysis was recorded from a rather casual group meeting in 12/21/2004.
It lasts for 44 minutes, from a clapping at the beginning of the meeting to another clapping at the end of
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the meeting. More than 99% of the meeting time was occupied by seven persons: one advisor (labeled
as sandy1221), and six students (labeled as msung1221, ron1221, wen1221, juan, jon, and anmol). We
assigned the four micro-phones to the following people: msung1221, ron1221, sandy1221, and wen1221,
and recorded the meeting from their angle. When one of the four persons was speaking, we would expect
his microphone to pick up a louder voice than the other three microphones. When one of the other three
speakers was speaking, we would expect different energy distributions among the four microphones due to
the relative positions of the three speakers and the four microphones.

The speaking/non-speaking status of different persons are hand-labeled and illustrated in Figure 3.4. The
normalized energy distributions among the four audio channels in one- second-window bins (the features
we use) are plotted in Figure 3.5. Our goal in this section is only to illustrate an application of the latent state
influence model. The readers can choose more advanced features, such as the pitches for different speakers,
in other similar applications to attain better accuracy.
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Figure 3.4: The ground truth of the speaking/non-speaking status of different persons in a meeting.
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Figure 3.5: The features used to identify the speakers.

This section proceeds in the following order. First, we discuss and compare different approaches to
align the audio sequences. Then, we segment the meeting by speakers with various unsupervised methods
(k-means, mixture of Gaussians, hidden Markov modeling, and the influence modeling). The influence
model out-performs the other models, since it better captures the structure of the speaker identification
problem. Next, we segment the meeting by speakers with various supervised methods (mixture of Gaussians,
hidden Markov modeling, and the influence modeling). Again, the influence model out-performs the other
models. We conclude this section by a discussion of why the influence modeling fits the structure of meeting
interactions better than the other models used in this section.

In situations where the signal sequences have a common reference point (such as a global time stamp),
and the signal sequences do not have jitters, the sequence alignment issue is simple. However, in many
interesting applications, we do not have such a global time stamp for us to precisely and trivially alignment
data. For example, the signal sequences collected by embedded devices are often not synchronized, due
to the simplicity requirement of those devices. In such scenarios, we need to consider the cross-sequence
statistical characteristics to design an aligning algorithm.

We assume that the sound signals picked up by different microphones are linear combinations of the
sound sources (the persons). The weights of the sound sources are different from microphone to micro-
phone, due to the different relative positions of the sound sources and the micriphones. We segment each
of the four sequences into five-minute segments, and shift corresponding segments to attain maximum cross
correlations. The cross correlation of either the low-pass filtered sound waves or the spectrogram amplitudes
of the sound waves are used. We attain very close results in both approaches. The aligned wav sequences
are then overlapped (summed) together and played back to judge the quality of the alignment. They are
aligned very well and we cannot hear discrepancies in the 44 minutes span.

We first show how to seperate the four speakers wearing microphones using unsupervised learning tech-
niques. The assumption is that when one/none of the four speakers who wore a microphone was speaking,
the energy distributions among the four audio channels were significantly different to reveal who was speak-
ing. The speaking/non-speaking classifier can work in the following way. The samples were first captured
with five (number of speakers who wore microphones + 1) clusters. A cluster can then be assigned to a
speaker if the channel corresponding to this speaker has the most energy statistically.

The (unsupervised) classification results with the k-means algorithm, the Gaussian mixture models, the
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hidden Markov model for all audio channles, one hidden Markov model per audio channel, and the latent
state influence model are respectively plotted in Figures 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11.

00:00
01:00
02:00
03:00
04:00
05:00
06:00
07:00
08:00
09:00
10:00
11:00
12:00
13:00
14:00
15:00
16:00
17:00
18:00
19:00
20:00
21:00
22:00
23:00
24:00
25:00
26:00
27:00
28:00
29:00
30:00
31:00
32:00
33:00
34:00
35:00
36:00
37:00
38:00
39:00
40:00
41:00
42:00
43:00
44:00

seperating the speakers with the K−means algorithm

msung1221.wav

ron1221.wav

sandy1221.wav

wen1221.wav

Figure 3.6: Unsupervised speaking/non-speaking classification result with the k-means algorithm
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Figure 3.7: Unsupervised speaking/non-speaking classification for all speakers with the k-means algorithm.
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Figure 3.8: Unsupervised speaking/non-speaking classification result with the Gaussian mixture model
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Figure 3.11: Unsupervised speaking/non-speaking classification result with the latent state influence process
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Figure 3.9: Unsupervised speaking/non-speaking classification result with one hidden Markov process
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Figure 3.10: Unsupervised speaking/non-speaking classification with one HMP per speaker

The (supervised) classification results are plotted in Figure 3.12 and 3.13.
In order to understand why the influence model based classifier out-performs the other classifiers, it is

important to notice that the influence model combines the evidence from different channels in the “concept”
level, i.e., when speaker A is speaking, speaker B is very likely to be non-speaking. In comparison, the
other classifiers either combine the evidence from different channels in the feature level or do not combine
evidence from different channels at all.
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Figure 3.12: Supervised speaking/non-speaking classification result with the GMM algorithm
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Figure 3.13: Supervised speaking/non-speaking classification result with the influence model

3.4 Social Network Example

The social network example demonstrates reconstructing the social structure of a set of subjects from
their cellphone-collected data [8]. In this data 81 subjects wore Bluetooth-enabled mobile telephones that
recorded which cell towers were visible to the telephone, thus allowing coarse estimation of the wearers’
location, and which Bluetooth devices are nearby, thus allowing inference of proximity to other subjects.
Note that Bluetooth signals include a unique identifier, and are typically detectable at a range of only a
few meters. In this study fixed Bluetooth beacons were also employed, allowing fairly precise estimation
of subjects location even within buildings. Over the nine months of the study 350,000 hours of data were
recorded.
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Figure 3.14: Finding social structures from cellphone-collected data. (a) New students and faculty are
outliers in the influence matrix, appearing as red dots due to large self-influence values. (b) Most People
follow regular patterns (red: in office, green: out of office, blue: no data), (c) clustering influence values
recovers workgroup affiliation with high accuracy (labels show name of group).

The temporal evolution of these observations were analyzed using the influence model with 81 chains,
corresponding to the 81 subjects. Each subjects’ chain was constrained to have two latent states (“work”,
“home”) but with no restriction on social network connectivity.

In our first experiment with this data the observation vector for each chain was restricted to the cell tower
visibility of each subjects’ 10 most commonly seen cell towers. In the resulting model the two states for each
subject corresponded accurately to ‘in the office’ and ‘at home’, with other locations being misclassified.
The resulting influence matrix, shown in Figure 3.14 (a), demonstrated that most people follow very regular
patterns of movement and interpersonal association, and consequently we can predict their actions with
substantial accuracy from observations of the other subjects. A few of the chains were highly independent
and thus not predictable. These chains corresponded to new students, who had not yet picked up the rhythm
of the community, and the faculty advisers, whose patterns are shown to determine the patterns of other
students.

In another setup, we used the Bluetooth proximity distribution as our observations. Again, the latent
states accurately reflect whether a person is at home of in office. However with this data the resulting
influence matrix shows precisely the social and geometrical structure of the subjects. The dendrogram from
the proximity influence matrix shown in Figure 3.14 (b) captures the actual organization of the laboratory,
clustering people into their actual work groups with only three errors. For comparison, a clustering based
on direct correlations in the data has six errors.
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Chapter 4

Conclusions

In this thesis, I have presented the formulation of a latent structure influence model, given the parameter
learning and latent state estimation algorithms, and demonstrated the latent structure influence model’s
superior performance in understanding the dynamics of interacting agents.
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