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Abstract. In this work we identify the structure inherent in daily human behavior with 
models that can accurately analyze, predict and cluster multimodal data from individu-
als and groups. We represent this structure by the principal components of the complete 
behavioral dataset, a set of characteristic vectors we have termed eigenbehaviors. In 
our model, an individual’s behavior over a specific day can be approximated by a 
weighted sum of his or her primary eigenbehaviors. When these weights are calculated 
halfway through a day, they can be used to predict the day’s remaining behaviors with 
a 79% accuracy for our test subjects. Additionally, we show that users of a similar 
demographic can be clustered into a “behavior space” spanned by a set of their aggre-
gate eigenbehaviors. These behavior spaces make it possible to determine the behav-
ioral similarity between both individuals and groups, enabling 96% classification accu-
racy of group affiliations. This approach capitalizes on the large amount of rich data 
previously captured during the Reality Mining study from mobile phones continuously 
logging location, proximate people, and communication of 100 subjects at MIT over 
the course of nine months. 

1   Introduction 

While discrete observations of an individual’s idiosyncratic behavior can appear al-
most random, typically there are repeating and easily identifiable routines in every 
person's life. These patterns become more apparent when the behavior is temporally, 
spatially, and socially contextualized. However, building models of long-term human 
behavior has been hampered due to the lack of contextualized behavioral data. Addi-
tionally, traditional Markov models work well for specific set of behaviors, but have 
difficulty incorporating temporal patterns across different timescales [6]. We present 
a new methodology for identifying the repeating structures underlying typical human 
behavior. These structures are represented by eigenbehaviors, the principal compo-
nents of an individual’s behavioral dataset.  
 To capture these characteristic behaviors, we compute the principal components 
of an individual’s behavioral data. The principal components are a set of vectors that 
span a ‘behavior space’ and characterize the variation between each day in an indi-
vidual’s behavioral dataset. These eigenbehaviors are the eigenvectors of the covari-
ance matrix of behavior data; the largest ones represent a type of behavior, such as 

 



sleeping in late and going out on the town. A linear combination of an individual’s 
eigenbehaviors can accurately reconstruct the behavior from each day in the data. 
However, we show that our subjects’ behavior can be approximated with 90% accu-
racy using only the first six eigenbehaviors – the ones that have the largest eigenval-
ues and account for the largest amount of variance. By providing this type of behav-
ioral caricature, it is possible for the primary eigenbehaviors to be used to accurately 
predict an individual’s subsequent behavior. 
 In the Section 3 of this paper, we show how eigenbehaviors can be applied not 
only to individual behavior, but also be used to characterize the behavior of groups of 
people. Particular demographics can have their own collective ‘behavior space’ which 
corresponds to the common behaviors of the group. How well these behavior spaces 
approximate an individual’s behavior depends on how similar the individual is to the 
group. Measuring the Euclidean distance between an individual’s behavior and the 
behavior space of a specific demographic can be used to identify affiliations and 
behavioral similarity between people. 

1.1   Background work 

There has been an extensive number of research efforts focused around modeling 
individual and group behaviors. Due to the breath of these efforts, we will be limited 
here to providing only a sample of recent related research projects.  
 Some closely related work in the UIST and CSCW communities comes from 
Begole et al’s techniques for “rhythm modeling” within the workplace. Through 
analysis of the computer usage of workgroup members, Begole et al demonstrated the 
potential to extract patterns in behavior of both individuals and teams [4]. Although 
primarily used for location-based applications, electronic badges can also generate 
rich data on individual behavior within a workplace. The exposed manner in which 
they are worn allows line-of-sight sensors, such as infrared (IR), to detect face-to-face 
interactions. Some of the earlier badge work to sense human behavior was done in the 
80's and early 90's at EUROPARC and Olivetti Labs [20]. Recent developments in 
ultrasound tracking have greatly improved the ability to localize the badge, enabling a 
wide range of just-in-time information applications [18,1]. Fogarty et al. expands this 
work by using low level sensor data to establish extremely accurate estimates of hu-
man interruptibility [8].  

Outside the office, GPS has been used for location detection and classification 
[2,12,21], but the line-of-sight requirements prohibit it from working indoors. As an 
alternate approach, there has been a significant amount of literature regarding corre-
lating cell tower ID with a user's location [3,5,10]. Laasonen et al. describe a method 
of inferring the significant locations from the cell towers by calculating graph metrics 
from the adjacency matrix formed by proximate towers. They were able to show 
reasonable route recognition rates, and most importantly succeeded in running their 
algorithms directly on the mobile phone [11]. In the activity and pattern recognition 
communities, there has been a variety of work using techniques to estimate an indi-
vidual’s location and projected trajectory given a variety of sensor data such as GPS, 
wifi basestation positioning, and accelerometer data. Hightower and Borriello along 

 2



with Patterson et al., among others, have demonstrated the potential of particle filters 
for route recognition [9,12,13]. 
 In machine vision and computer graphics, eigenrepresentations have become one 
of the standard techniques for many tasks. While behavior is perhaps not as character-
istic of an individual as a face, many analogies hold between the analysis of an indi-
vidual’s behavior and his facial features.  Just as digital imaging created a wealth of 
data to train and test facial analysis tools, the explosive growth of mobile phones is 
beginning to enable much more comprehensive computational models of complex 
human behavior.  Eigendecomposition is used in face and object recognition [19], 
shape and motion description [14], and data interpolation [15], and computer anima-
tion [16].  More recently they have been used in a wide variety of robotic and control 
applications.    

2    Eigenbehavior Analysis 

In this section we begin with an overview of the publicly available Reality Mining 
data used in this paper. We then introduce our technique of eigendecomposition on 
this behavioral data set and describe how eigenbehaviors can be used for data analy-
sis, reconstruction and prediction. 

2.1   The Dataset 

To apply eigendecomposition for behavior analysis, clustering and prediction, a large 
repository of human behavioral data is necessary. In this paper we make use of the 
publicly available MIT Reality Mining dataset [7]. This dataset represents the behav-
ior of 100 subjects at MIT during the 2004-2005 academic year. Seventy-five of the 
users were either students or faculty in the same laboratory, while the remaining 
twenty-five were incoming students at the business school adjacent to the laboratory. 
Of the seventy-five students and staff at the lab, twenty were incoming masters stu-
dents and five were incoming freshman. The data was collected using one hundred 
Nokia 6600 smart phones pre-installed with a version of the Context application from 
the University of Helsinki [17]. The information collected included call logs, Blue-
tooth devices in proximity, cell tower IDs, application usage, and phone status (such 
as charging and idle). The study generated approximately 450,000 hours of data on 
users' location, proximity, communication and device usage behavior.  
 The collection of deeply personal behavioral data raises justifiable concerns over 
privacy. While these concerns are legitimate and should be explored, the dataset we 
are using was collected during a social science experiment, conducted with human 
subject approval and consent of the users. As the computational horsepower of mo-
bile phones continues to increase, it is only a matter of time before the algorithms we 
have developed can be implemented on a local device rather than a workstation. We 
therefore are using this paper to describe some of the potential inherent to data logged 
by mobile phones, rather than to present a system that can be deployed today outside 
the realm of research.  
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 Finally, this paper will not make the claim that the subjects in the Reality Mining 
study are a representative sample of society. However, regularity in behavior is not an 
exclusive trait of people at MIT. For many people, weekdays consist of leaving home 
in the morning, traveling to work, breaking for lunch, and returning home in the eve-
ning. People’s daily routines are typically coupled with routines across other temporal 
scales, such as going out on the town with friends on Saturday nights, or spending 
time with family during the December holidays. The remainder of this paper will be 
focusing on a particular technique to quantify these universal patterns in the behavior 
of both individuals and groups. 

2.2.   An Introduction to Eigenbehaviors 

While we have successfully applied our eigenbehavior technique to a wide range of 
multimodal data, for purposes of clarity in this section we will only focus on temporal 
location data. For this example, we characterize person I by data shown in Figure 1 as 
B(x,y), a two-dimensional D by 24 array of location information, where D is the total 
number of days that person I has been in the study. B contains n labels corresponding 
to behavior, where in our case these labels are {Home, Elsewhere, Work, No Signal, 
Off}. It has been previously shown that these labels were generated with a conditioned 
Hidden Markov Model with over 95% accuracy [7], and while there still is noise in 
the signal, for our purposes we’ll take them as ground truth. To perform the analysis, 
we transform B into B', a D by H (where H is 24*n) array of binary values, shown in 
Figure 1. A row vector of B' represents an individual’s behavior over a single day and 
can be represented by a point in an H-dimensional space. A set of D days can then be 
described as a collection of points in this large space. 
 
 

   
Fig 1. Transformation from B to B' . The plot on the left corresponds to the subject’s behavior 
over the course of 113 days for 5 situations. The same data can be represented as a binary 
matrix of 113 days (D) by 120 (H, which is 24 multiplied by the 5 possible situations). 
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Due to the significant amount of similar structure in most people’s lives, days are not 
distributed randomly though this large space. Rather, they are clustered, allowing the 
individual to be described by a relatively low dimensional ‘behavior space’. This 
space is defined by a subset of vectors of dimension H that can best characterize the 
distribution of behaviors and are referred to as the primary eigenbehaviors. The top 
three eigenbehaviors that characterize the individual shown in Figure 1 are plotted in 
Figure 2. The first eigenbehavior corresponds to either a normal day or a day spent 
traveling (depending on whether the associated weight is positive or negative). The 
second eigenbehavior has a corresponding weight that is positive on weekends and 
negative on weekdays, analogous to the characteristic behavior of sleeping in and 
spending that night out in a location besides home or work. The third eigenbehavior is 
emphasized when the user is in locations with poor phone reception. 

 

Fig 2. The top three eigenbehaviors, , for Subject 4. The first eigenbehavior (repre-
sented with the first column of three figures) corresponds to whether it is a normal day, or 
whether the individual is traveling. If the first weight is positive, then this eigenbehavior shows 
that the subject’s typical pattern of behavior consists of midnight to 9:00 at home, 10:00 to 
20:00 at work, and then the subject returns home at approximately 21:00. The second eigenbe-
havior (and similarly the middle column of three figures) corresponds to typical weekend be-
havior. It is highly likely the subject will remain at home past 10:00 in the morning and will be 
out on the town (‘elsewhere’) later that evening. The third eigenbehavior is most active when 
the user is in locations where the phone has no signal. 

1 2 3[ , , ]u u u

 
For each subject, the Reality Mining data set provides us with a set of days’ behav-
iors, , ,1Γ 2Γ 3Γ ... DΓ , for a total of D days, where an individual day’s behavior vec-
tor, , has H dimensions.  Following the same notation as Turk and Pentland [19], iΓ
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the average behavior of the individual is 
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which best describes the distribution of the set of behavior data when linearly com-
bined with their respective scalar values, 

u

λ .  These vectors and their corresponding 
scalars are the eigenvectors and eigenvalues of the covariance matrix of , the set's 
deviation from the mean. 

Φ

1

1 H T
n nn

T

C
H
AA

=
= Φ Φ

=

∑  

 
where the matrix [ ]1 2 3, , ,... MA = Φ Φ Φ Φ  .  Each eigenbehavior can be ranked by the 
total amount of variance it accounts for in the data, which is essentially the associated 
eigenvalue. The vectors with the highest eigenvalues are considered an individual’s 
primary eigenbehaviors. The next section to discuss how these primary eigenbehav-
iors can be used to for behavioral data reconstruction and prediction.  

 

2.3  Eigenbehaviors for Reconstruction and Prediction 

An individual’s primary eigenbehaviors represent a space upon which all of his days 
can be projected with differing levels of accuracy. Figure 3 shows the projection of 
each day onto spaces created using an increasing number of these primary eigenbe-
haviors. It can be seen that while the reconstruction of each day using 40 eigenbehav-
iors for this particular subject nearly perfectly matches the original data, six eigenbe-
haviors captures a significant portion of the variance in the individual’s behavior. 
Figure 4 shows the accuracy of representing behavior using a varying number of 
eigenbehaviors for the three different groups of subjects in the Reality Mining study. 
It is interesting to note that the space formed by the six primary eigenbehaviors de-
scribes business school students with 90% reconstruction accuracy, but the senior lab 
students with 96% accuracy. 
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Fig 3. Behavior approximation of 115 days using a varying number of eigenbehaviors. The 
left-most figure corresponds to behavioral approximation using only one eigenbehavior. The 
approximation accuracy increases with the number of eigenbehaviors. 
 

 
Fig 4. Approximation error (y-axis) for the different subject groups as a function of the number 
of eigenbehaviors used (x-axis) with the states off and no signal removed. 
 
While there are many techniques for creating predictive models that can generate a 
sequence of future data given training, eigendecomposition differentiates itself in an 
important way. Although many of life’s patterns can be modeled as a Markov proc-
ess, whereby the future state depends on the current state and observational data, 
these types of models have difficulty capturing correlations that span beyond several 
time slices. For many users, sleeping late in the morning is coupled in the same ei-
genbehavior with going out that evening – a hard pattern to recognize when using 
traditional models, but one that is highlighted when generating a user’s characteristic 
behavior spaces. 
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 Figure 4 shows that the top six primary eigenbehaviors provide a characteristic 
behavior space from which an individual deviates less than 10% of the time. When 
these six eigenbehaviors are calculated for a user, it becomes possible to infer the 
projection of an entire day using only information from a portion of that day. We use 
these approximations to develop predictions of an individual’s subsequent behavior. 
To test this concept, for each subject we calculated a behavior space using the indi-
vidual’s six primary eigenbehaviors and weights generated from the first twelve hours 
of a subject’s day. Through the linear combination of these weights and the subject’s 
primary eigenbehaviors, a 12-element vector is created containing one of three loca-
tion states (home, work, elsewhere). Each element in the vector corresponds to the 
predicted location of the subject for the subsequent hours from noon to midnight. 
When the sequence of 12 hours is compared with the subject's actual location over the 
same 12 hours, an average of 79% accuracy is obtained. 
 

  
Fig 5. Behavior prediction accuracy for behaviors from noon to midnight given the previous 12 
hours of behavioral data and the six primary eigenbehaviors for each subject. 

3   Eigenbehaviors of Complex Social Systems 

In the previous section we have demonstrated that we can use data from Bluetooth-
enabled mobile phones to discover a great deal about a user’s patterns of activities by 
reducing these complex behaviors to a set of principal components characteristic of 
the individual.  In this section we will extend this base of user modeling to groups of 
people.  
 The mathematics behind applying the eigenbehavior technique to a group of M 
people is identical to that described in Section 2, with the exception that several of the 
variables have different interruptions. We now use a matrix B with each row corre-
sponding to the average behavior of a particular individual in the group. After a simi-
lar transformation to B’, a matrix of M by H, it becomes possible to generate eigenbe-
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haviors of the group as a whole. The primary eigenbehaviors correspond to the 
group’s characteristic behaviors. 
 While we will show results in Figure 10 that incorporate a variety of data includ-
ing location, phone usage and people in proximity into the group behavior space, for 
explanative purposes, we will show data related to solely Bluetooth proximity events 
for the three main groups of subjects: incoming business school students, incoming 
lab students, and senior lab students. Figure 6 shows the mean behaviors for each 
group, , while Figure 7 depicts the top three eigenbehaviors of each 
group. 

jΨ 1 2 3[ , , ]j j ju u u

 
Fig 6. The average number of Bluetooth devices seen, jΨ , for the senior lab students, incom-
ing lab students, and incoming business school students. The values in these plots correspond 
to the total number of devices discovered in each hour of scanning over the course of a day 
(with time of day on the x-axis).   

 
Fig 7. The top three eigenbehaviors  for each group, j, comprised of the incoming 
business school students, incoming lab students and senior lab students. The business school 

1 2 3[ , , ]j j ju u u
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coffee break at 10:30 is highlighted in their first eigenbehavior. Comparing the second eigen-
behaviors for the Media Lab students, it can be seen that the incoming students have developed 
a routine of staying later in lab than the more senior students. 
 
As expected, the top eigenvector in each of the groups closely corresponds to the 
mean. For business school students, there is particular emphasis during the school’s 
coffee breaks at 10:30.  Besides this emphasis, the other pattern is simply reflective of 
the standard course times (nine until noon, a lunch break, and the subsequently after-
noon courses). The lab students have less of an enforced structure on their day. While 
the entire group of incoming lab students is taking courses, along with approximately 
half of the senior students, these courses can be selected by the students from any-
where in the institution and typically are not attended by many other subjects. How-
ever, each of the lab students has an office within the lab and typically works from 
there when not in class. While the two groups of lab students share virtually identical 
principal eigenbehavior, the secondary eigenbehaviors are more telling about the 
differences. It is common knowledge around the lab that incoming students tend to 
get overwhelmed by over-commitments to coursework and research leading to late 
nights at the workplace. This characteristic is emphasized from the group’s second 
and third eigenbehaviors with an emphasis from 20:00 to 2:00.  

4.1 Comparing Members of a Group 

When a group’s behavior space is created from the aggregate behavior of its indi-
viduals, it becomes possible to determine the similarity of group members by identify-
ing how accurately their behavior can be approximated by the group’s primary eigen-
behaviors. Because the Reality Mining dataset contains data for both incoming and 
senior students, it is possible to verify the onset of concordance between the incoming 
lab students and the rest of the laboratory. Likewise it is possible to distinguish be-
tween different groups of behavior, such as business school students and engineering 
students. An individual's behavior (Γ ) can be projected onto the j group's behavior 
space through the following transformation. 

( )j j
k k juω = Γ −Ψ  

for =1,..., H and  is the mean behavior of the group. k jΨ jΨ for Bluetooth encoun-
ters of senior lab students, incoming lab students, and business school students is 
shown in Figure 6.   
 
These weights form a vector 1 2 3 ', , ,...T j j j j

j ω ω ω ωM⎡ ⎤Ω = ⎣ ⎦  which is the optimal weight-
ing scheme to get the new behavior as close as possible to the behavior space. Each 
element in the vector gives a scalar value corresponding to the amount of emphasis to 
place on its respective eigenbehavior when reconstructing the original behavior . 
By treating the eigenbehaviors as a set of basis behaviors, the vector  , can be 
used to determine which person k  the individual is most similar to in a particular 
group,  j. We follow the method of Turk and Pentland [19] by using Euclideian dis-
tance as our metric for describing similarity. 

Γ
TΩ
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k

j j
j kε = Ω −Ω  

where  are the reconstruction weights for the kth person in group j. Figure 8 
shows values for 

j
kΩ

jε , the distance between one business school student and other 
subjects. This method can also be applied to data from a single individual to deter-
mine which days are most like the ongoing one.  
 

 
Fig 8. Values corresponding to jε , the Euclidian distance between each subject and a single 
business school student. The distance between two individuals reflects the similarity of their 
behavior. 

4.2 Identifying Group Affiliation 

Instead of comparing one individual to another, it is also possible to determine how 
much an individual 'fits in' with the group as a whole by determining the distance ε as 
the difference between the individual’s projection onto the behavior space of a group 
and the individual’s original behavior. We again use Euclidian distance to calculate 
the difference between the mean-adjusted behavior, jjΦ = Γ − Ψ  and its projection 
onto the group's behavior space '

1
jMj j j

b ii
uω

=
Φ =∑ i . 

22 j j
j bε = Φ −Φ  

When determining the affiliation of an individual, there can be four possible out-
comes, as shown on Figure 9. The dark gray plane represents the group behavior 
space, containing any set of behaviors that would constitute being part of the group. 
The first option has the input behavior on the behavior space as well as proximate to 
other individuals, 

3j
Ω , within the behavior space. The second example can be ap-
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proximated accurately by the behavior space, but there are no other individuals in the 
same area of the space.  Input three appears to have something in common with some 
members in the group's behavior space, however contains behavioral elements that 
cannot be reconciled within the behavior space. Lastly, four is a disparate input nei-
ther near the behavior space nor any individual in the space. 
 
 
 

2

1

3 4

2j
u  

Group j Behavior Space 

2j
u

1j
Ω  

2j
u

2j
Ω  

2j
u

3j
Ω  

4j
ε  

 
Fig 9. A toy example of group behavior space. Individuals 1 and 2 are on the behavior space 
and can be affiliated with the group. Individual 1 can also be affiliated with the particular 

clique, 
3j

Ω . There is much more distance between 3 and 4 and the behavior space, and there-

fore their projections onto the behavior space do not yield an accurate representation of the two 
people. 
 
Until now, we have been focusing on analysis of Bluetooth or location data inde-
pendently, but this technique enables us to aggregate multimodal datasets. Instead of 
limiting a group to only one behavior space, for our affiliation classification we gen-
erate a set of primary eigenbehaviors for each type of data captured. This enables us 
to determine every group’s Bluetooth, location and phone usage behavior space. 
When these spaces are computed, it is subsequently possible to calculate each indi-
vidual’s Euclidian distance from each space. Figure 10 shows the distances for each 
subject from the three business school behavior spaces. We used cross validation to 
prevent the test subject’s data from contributing to the generated behavior space, and 
were able to classify whether each subject was a Business school or Engineering 
student with 96% accuracy.  
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Fig 10. The cross-validated distance jε between the three groups of students and the Blue-
tooth, Location and Phone Usage business school behavior spaces.  

5   Future Work 

We have shown that eigenbehaviors can be used effectively to extract the underlying 
structure in the daily patterns of human behavior, infer group affiliations, and predict 
subsequent user behavior. We are currently building applications that leverage this 
new technique in two main realms.  

 
Usage and Behavior-based Clustering. Currently handset manufacturers sell the 
same mobile phone to every demographic, from pre-teen to power-executive, to 
grandmother. If the phones came with preset behavior spaces corresponding to differ-
ent demographics, with only a limited amount of usage data, the phone would have 
the ability to approximate the distance from the user to a given behavior space. By 
classifying the user into a particular space such as "texting teenager", the phone can 
harness a much greater set of knowledge than what could have been gleaned from 
only a few days of standalone behavioral analysis, no matter how sophisticated. With 
this type of information about the user, the phone should be able to adjust its interface 
and functionality accordingly [22].  
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Data Interpolation. A significant problem that occurs when building models from 
many human subjects is missing data. The Reality Mining logs account for 
approximately 85.3% of the time since the phones have been deployed. 
Approximately 5% of this is due to data corruption, while the majority of the missing 
14.7% is due to the phones being turned off. However, with a set of these 
characteristic eigenbehaviors defined for each user, it becomes possible to generate a 
rich synthetic dataset from the approximations of the user's eigenvalues over a 
particular time window of interest. Using the behavior space generated from a user’s 
six primary eigenbehaviors, we have shown we can generate a 12-hour chunk of data 
with 79% accuracy. If we incorporated the user’s future behavioral data as well as the 
past, this accuracy should continue to increase.  

6   Conclusion 

It is inevitable that mobile devices of tomorrow will become both more powerful and 
more curious about their user and his or her context. The behavioral data generated 
from these new devices will require fundamentally new techniques for analysis. To 
analyze data of such magnitude, eigendecompositions are useful because they provide 
a low-dimensional characterization of complex phenomena. This is because the first 
few eigenvectors of the decomposition typically account for a very large percentage 
of the overall variance in the signal. Because only few parameters are required, it 
becomes easier to analyze the individual and group behavior, and thus possible to 
predict the behavior of the individual elements as well as the behavior of the system 
as a whole.  
 These unique properties make eigenbehaviors ideal as a representation of peoples’ 
daily movements, interactions, and their communication behaviors.  The low dimen-
sional representation provided by the eigendecomposition will allow us to character-
ize people quickly, match them to similar people, and predict their behavior in the 
near future.   These capabilities will in turn allow us to build interfaces that can accu-
rately guess the users’ preferences, social connections, and their daily plans. 
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