
Our wearable data
collection system lets
users collect their
experiences into a
continually growing
and adapting
multimedia diary.
The system—called
inSense—uses the
patterns in sensor
readings from a
camera,
microphone, and
accelerometers to
classify the user’s
activities and
automatically collect
multimedia clips
when the user is in
an “interesting”
situation. 

I
n 1945 Vannevar Bush proposed the
Memex (short for memory extender) as a
device for storing first-person information
that’s automatically linked to a library,

able to display books and films from the library,
and automatically follow cross-references from
one work to another.1 This “enlarged intimate
supplement to memory”1 has spawned a variety
of modern projects such as the Remembrance
Agent,2 the Familiar,3,4 myLifeBits,5 Memories for
Life,6 and What Was I Thinking.7

Each of these more recent projects focuses on
organizing, categorizing, and searching a massive
store of relatively unedited personal data, such as
recorded video and audio. The techniques
employed for finding relevant items are mostly
speech and image recognition, sometimes in
combination with machine learning for data
mining. The problem is conceived as first record-
ing everything, then filtering the information to
find items relevant and interesting to the user.

In contrast, with our system inSense, we’ve
shifted the problem from the offline analysis of
collected data to the online evaluation of a user’s
current situation. We evaluate the user‘s context
in real time and then use variables like current
location, activity, and social interaction to pre-
dict moments of interest. Audio and video
recordings using a wearable device can then be
triggered specifically at those times, resulting in
more interest per recording. Some previous
examples of this approach are the Familiar and
iSensed systems,3,4,8 which structure multimedia
on the fly; the eyeBlog system,9 which records
video each time eye contact is established; and
the SenseCam,10 which records images and sound

whenever there’s a significant change in the user’s
environment or the user’s movement.

Several reasons exist for making the change
from record-and-analyze to annotate-on-the-fly.
First, real-time annotation of multimedia allows
real-time sharing between users: for example,
“Here, take look at this, it’s interesting!” Second,
online annotation means we don’t have to phys-
ically remove the data from a body to use it. This
is an important privacy consideration, especially
when systems such as these are to be used when
traveling or on vacation.

In this novel approach, we use a wearable sys-
tem with acceleration and audio sensing to per-
form real-time context recognition. Based on the
current context classification, inSense uses an
interest prediction algorithm to assess the current
situation. If the system detects a moment of inter-
est, it takes a picture and stores a short audio clip.

Hardware platform
The hardware platform used is based on low-

cost sensors and leverages off commodity hard-
ware. It consists of a personal digital assistant (a
Sharp Zaurus SL6000L PDA), two wireless
accelerometers, and the matching receiver.11 This
provides the following sensing layout: 

❚ a triaxial accelerometer on the left side of the
hip (~90 Hz, 10 bit);

❚ a triaxial accelerometer worn on the wrist of
the dominant hand (~90 Hz, 10 bit); 

❚ audio recorded from the wearer’s chest (8 KHz,
16 bit);

❚ images or video taken from the wearer’s chest
(for example, one image per minute at 480 ×
480 pixels); and

❚ a wireless frequency (WiFi) access point sniffing
with the PDA (every 100 seconds, for location).

We believe that this minimal set of sensors (see
Figure 1) is sufficient to classify many interesting
dimensions of context. This assumption is sup-
ported by previous work in wearable computing.12,13

Data collection and annotation
We chose four concurrent categories—loca-

tion, speech, posture, and activities—to represent
many diverse aspects of a user’s context (see
Table 1). The labels within each category are
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mutually exclusive and represent situations in
everyday life.

Subjects wear the system for several hours
without interacting with it. Audio and accelera-
tion signals are recorded continuously. The cam-
era takes pictures once a minute and WiFi access
points are logged to establish location. After the
recording session, the user employs an offline
annotation tool, which presents an image at a
time, the corresponding sound clip, and a list of
labels from which to choose. This naturalistic
approach reflects the statistics of a user’s every-
day life and, apart from the annotated data, also
lets us establish the conditional probabilities
between the subject’s activities. That is, this expe-
rience-sampling approach lets us learn, for
instance, that users never type while bicycling.

While annotating the user’s minute-by-minute
activities and context, we also asked each user to
rate how interesting the collected images and
audio were. These ratings help us learn an interest
operator, relating the user’s context and activity to
how interesting the collected images and sound
are. For instance, using this approach we can learn
that images and sound collected while shaking
hands with someone are very interesting, where-
as images collected during the sixth continuous
minute of typing are almost never interesting.

One obvious shortcoming is the one-minute
granularity. A purely naturalistic protocol will
not capture sufficient samples of short duration
activities like shaking or clapping hands.

For these activities, we use seminaturalistic
training in which naturally occurring activity is
purposefully captured and annotated. Currently,
the database for this work is 24 hours of data
from 11 sessions, which reflects a fair sample of
the everyday life of a student.

Classification architecture
We rely on acceleration for the posture and

activities categories, audio for speech classes, and
audio and WiFi for location classes. As Figure 2
shows, an initial preclassification step uses four
separate classifiers to determine probabilities p(i, j)
for each state i within each category j, assuming
equal priors for each state independent of the
probabilities in other categories. Then, in a final
classification step, a common-sense model com-
bines the probabilities from the four category
classifiers to output a final, joint probability esti-
mate p∗ (i, j) for all the states in all the categories
by incorporating the conditional probability rela-
tionships p(i, j | k, l) that have been observed

between all the states (i, k) in the different cate-
gories (j, l). For example, p∗ (i, j) = 1/m p(i, j) ∑ p(i,
j | k, l) p(k, l), where the summation is over all k,l
and m is the number of categories. The wearer’s
current state is then taken to be the set of maxi-
mum probability states in each category.
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Table 1. Four classification categories with labels.

Location Speech Posture Activities  
Office No speech Unknown No activity  

Home User speaking Lying Eating  

Outdoors Other speaker Sitting Typing  

Indoors Distant voices Standing Shaking hands  

Restaurant Loud crowd Walking Clapping hands  

Car Laughter Running Driving  

Street  Biking Brushing teeth  

Shop   Doing the dishes
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For preclassification, we evaluated several clas-
sifiers and feature sets. In view of the selected
architecture and considering that the system is
to be run in real time on small, low-power plat-
forms, we focused the preclassifiers not on reach-
ing the highest-possible accuracy for each
category, but rather on speed, storage require-
ments, and flexibility. Because of the limited pro-
gram memory, we deemed approaches that rely
on saved test data—such as k-nearest-neighbors
or histogram-based Bayes classifiers—as unsuit-
able for this application.

The classification methods we studied were

❚ a naive Bayes classifier using a Gaussian model,

❚ a naive Bayes classifier using mixtures of
Gaussians, 

❚ C4.5 decision trees, and

❚ hidden Markov models (HMMs).

The highest overall accuracies were reached using
the C4.5 algorithm. However, the decision trees’
large size and the comparatively low class aver-
age accuracies made it apparent that the algo-
rithm was overfitting the data. We tested HMMs
mainly for activity classification. The results for
ergodic two-state HMMs were good, with accura-
cy being 76.8 percent overall and 85.4 percent
being the class average. However, comparable
results were reached with a naive Bayes classifier
using a mixture of three Gaussians, which is
much faster to compute. For the categories pos-
ture and speech, we selected naive Bayes and a
single Gaussian due to simplicity, speed, and the
immunity to overfitting. Thus, for the preclassi-

fication step, all of the categories employed a
naive Bayes classifier using Gaussian probability
distributions.

The selected acceleration features were the
means and variances of the X, Y, and Z axes of
both accelerometers over a window of 4.4 sec-
onds. Speech classification is based on the fea-
tures’ formant frequency, spectral entropy,
energy maximum, and number of autocorrela-
tion peaks, which we compute at 62.5 hertz (Hz).
Again, the means and variances are taken over a
4.8-second window. We implemented the system
in C++ and based it on the MIThril 2003 software
architecture.14

The preclassification results are refined by a
final classification step that combines the pre-
classification activity probabilities p(i, j) in each
category with the interactivity conditional proba-
bilities p(i, j | k, l) to establish a final classification
for each of the activity categories. These common-
sense relationships—for example, that driving
implies that you are in a car—are captured by
computing the pairwise conditional probabilities
between all of the states in the activity, location,
posture, and speech categories. In cases where
there was too little data to establish the condi-
tional probability, it was taken to be p = 0.05.

Classification results
Tables 2 through 4 show the classification

accuracies for the activity, speech, and posture
categories. We omitted the results for the loca-
tion category because this is simply taken to be
the nearest WiFi access point.

Interesting moments
Obviously, not all 24 hours of a person’s day

are equally interesting. About a third of our time

Table 2. Activities confusion matrix.

Classification  A B C D E F G H Accuracy 
(Percentage)  

A = no activity 5,585 497 1,005 5 1 173 11 23 77  

B = eating 84 490 95 0 0 0 0 1 73  

C = typing 177 46 1,676 0 0 1 0 0 88  

D = shaking hands 8 0 0 48 1 0 0 1 83  

E = clapping hands 1 1 0 2 41 0 0 0 91  

F = driving 41 1 4 0 0 198 0 0 81  

G = brushing teeth 5 2 0 0 0 0 48 0 87  

H = doing dishes 43 0 2 0 0 0 0 41 48  

Class average         78.5  

Overall average         78.5



we’re sleeping, the vast part of our day is often
spent at an office desk and long periods of time
can be spent driving, sitting on a bus, reading a
book, or watching TV. These activities can of
course be interesting and should be part of a diary.
However, memorable things usually happen when
these recurring patterns are interrupted.

In this study we found that the user’s notion
of interesting moments could be captured by a
rule-based system based on the user’s context
and activity. These rules include the following: 

❚ A context such as typing, driving, or lying
down is uninteresting.

❚ A context such as speech, a restaurant, or eat-
ing is moderately interesting.

❚ A context such as laughter, shaking hands,
and clapping hands is extremely interesting.

❚ Long stretches of uninteresting context—like
a 15-minute bike ride—need only be captured
once, because numerous images won’t
increase the amount of information.

❚ Changes in context indicate possibly interest-
ing interruptions or new activities.

Different users assign different weights and
parameters for the rules. However, we can figure
out these weights and parameters from the user’s
annotations of what they consider interesting.

Interest prediction algorithm
We implemented an algorithm that calculates

the current level of interest based on the context
classification. If that level exceeds a certain interest

threshold, the system detects a moment of inter-
est. It will capture an image (or video) and store it
together with the current context information.

The algorithm combines three measures:

❚ accumulated static interest, based on the
interest assigned to each user state;

❚ interest bonus for state transitions; and

❚ time since the last moment of interest.

The static interest is the sum of interest points
that correspond to the current classification of
location, speech, posture, and activities. The
interest map in Table 5 (next page) shows the
mapping between labels and interest points for
the first author.

By default the interest threshold is set to 5. This
means that as soon as a very interesting activity is
detected—for example, shaking hands—the sys-
tem takes a picture. To detect context transitions,
the system stores classifications over the last 1
minute and computes the mode state. The mode
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Table 4. Posture confusion matrix.

Classification  A B C D E F G Accuracy 
(Percentage)  

A = unknown 53 1 5 2 0 0 0 87  

B = lying 1 89 2 0 0 0 0 97  

C = sitting 22 3 6,241 174 2 0 27 96 

D = standing 8 0 304 924 43 1 100 67  

E = walking 0 0 6 16 182 0 6 87  

F = running 0 0 0 0 1 22 0 96  

G = biking 0 0 6 17 2 0 547 96  

Class average        89.3  

Overall accuracy        91.5 

Table 3. Speech confusion matrix. 

Classification  A B C D E F  Accuracy 
(Percentage)  

A = no speech 785 4 21 4 8 3 95  

B = user speaking 7 104 65 0 9 2 56  

C = other speaking 26 6 493 10 21 0 89  

D = distant voices  76 0 41 6 2 0 5  

E = loud crowd 16 1 6 1 46 2 64  

F = laughter 3 4 6 0 3 37 70  

Class average       63.0  

Overall accuracy       80.9 
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state for each category corresponds to the label,
which was classified most frequently during the
minute. Each time there is a change in mode
state in any context category, a transition bonus
of 0.5 points is added. 

Finally, to make sure pictures are taken every
once in a while even when the interest level is
below its threshold, the time since the last picture
is taken into account. Every second, 1/120 of a
point is added to the interest score, the equivalent
to one point every 2 minutes or five points, and
thus the system takes a picture every 10 minutes.

Each time the interest threshold is exceeded
and an image and sound clip records, the system
resets to zero the two counters for transition
bonuses and time elapsed since the last picture.
Additionally, we impose a hold-off period of 5
seconds after an image is taken so that there
won’t be large numbers of images taken during
periods such as continuous laughter. 

The most obvious result of this algorithm is
the fact that pictures are taken at a low frequency

when the user isn’t engaged in anything inter-
esting over a long period of time and a higher fre-
quency during interesting activities. The numeric
values were chosen such that in a typical record-
ing, the average frequency of images taken is
approximately one every 2 minutes. This varies,
as mentioned, from one picture every 10 minutes
for a user working on his computer in the office
to several pictures per minute during a discussion
in a restaurant over lunch.

Experimental results
A three-hour session was recorded with run-

ning classifiers to assess the generalizability of the
interest algorithm across different people. This is
important, because if we hope to share media
between people based on how interesting it is,
then the notion of what’s interesting must be
similar between different people. The subject
(Mark Blum) started off with working at his desk.
Then he met some friends at a restaurant for
lunch. After lunch he took his bike to the super-
market for some shopping and brought the food
home. On the bike ride back to the lab he
stopped briefly at a shop. At the lab work con-
tinued for close to an hour. Then he lay down for
a few minutes for a nap. At the end he was
involved in a short discussion.

The result was two sets of images. Set A contains
the interesting pictures that were initiated by the
described algorithm. Set B includes pictures that
were taken once every minute. The system took a
total of 114 pictures for set A, and 178 for set B. 

Two examples 
The first example covers a time period of 15

minutes, in which the wearer was shopping for
food at the local supermarket, bicycled home, and
then unpacked his groceries. In the supermarket
the wearer paid for the groceries and packed his
bags, activities that were accompanied by con-
versation with the checkout person, then spent 4
minutes of biking to the porch of his house, went
upstairs, and unpacked the groceries. 

Table 5. Assignment of interest points.

Location Interest Points Posture Interest Points  
Office 0 Unknown 0  

Home 0 Lying 0  

Outdoors 1 Sitting 0  

Indoors 1 Standing 1  

Restaurant 1 Walking 1  

Car 0 Running 3  

Street 1 Biking 0  

Shop 1 

Speech Interest Points Activities Interest Points  
No speech 0 No activity 0  

User speaking 2 Eating 2 

Other speaker 2 Typing 0  

Distant voices 1 Shaking hands 5  

Loud crowd 2 Clapping hands 5  

Laughter 5 Driving 0 

Brushing teeth 0    

Doing the dishes 0 

Figure 3. Images

captured from set A,

using the interest

algorithm. These

images reflect the

subject’s trip to the

supermarket, carrying

the groceries home, and

unpacking the

groceries. 
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In set A (see Figure 3), which used the interest
algorithm, two images were captured at the
checkout counter, triggered by conversation and
frequent small hand motions. A third image was
captured on the exit from the supermarket, as the
wearer began walking and transitioning from
inside to outside. 

No images of the bike trip home were cap-
tured, because this exit transition image reset all
of the interest counters. The following 4 minutes
of biking (2 points), plus the transition from the
street via walking and biking (0.5 points), and
the static interest of the street and outdoors (1
point) weren’t enough to pass the media collec-
tion interest threshold.

Upon arriving home, the transition from bik-
ing to walking indoors triggered an image, and
finally the transition from walking to standing
with small hand motions triggered an image of
unpacking the groceries.

In contrast, set B (regular sampling; see Figure
4) captured two much less interesting shots of
the supermarket, missed the exit from the super-
market, captured four similar images of the bike
ride home, missed the arrival home, and cap-
tured four less interesting images of the process
of unpacking groceries.

The second example set involves a much
longer example, beginning with typing that’s
interspersed with a short discussion with an
office mate. Following this is a short nap, fol-
lowed by more typing and a discussion that
began with one person, and then was later
joined by a second person. This discussion had
several instances of laughter, which triggered
media collection.

This time set A (see Figure 5, next page)—again
using the interest algorithm—begins with one
image of the computer, then one image of a short
side conversation with the office mate, and then
another typing image. It then collected one image
during the nap, with the camera staring up at a
ceiling light. The nine remaining images in this set
are of the discussion. The large number of images is
primarily due to the frequent occurrences of laugh-
ter, which always triggers media collection.

In set B (see Figure 6), with a regular collection
of audio and images, there are six images of the
laptop computer and typing (versus two in set A),
with one image of the conversation with the
office mate breaking up this sequence. The nap
gets six images (versus one in set A), and the con-
versation at the end gets only three images (ver-
sus nine in set A). 

Human judgment vs. interest algorithm
Beyond simply making comparisons of par-

ticular sequences, we also wanted to determine if
the images of set A would be judged more inter-
esting by a wide range of observers. To accom-
plish this, we conducted an experiment in which
we asked people to make judgments about how
interesting the two sets of images were.

To make the two sets comparable in size,
every third picture in set B was dropped. The two
sets of pictures were printed and displayed at the
lab with voting slips that could be placed in an
urn. The concept of the experiment was briefly
explained, and people were asked which set they
found more interesting and why. We also con-
tacted and interviewed people via email, describ-
ing things similarly.

Figure 4. Images

captured from set B,

using regular sampling

instead of the interest

algorithm. These

images are less

interesting shots of the

subject’s trip to the

supermarket, the bike

ride home, and

unpacking the

groceries. 



In this experiment, the algorithm clearly did
a better job in distinguishing interesting
moments. From a total of 28 votes received, 26
were for set A and only two for set B. About two-
thirds of the people mentioned the ratio of lap-
top pictures that appeared in sets A and B, about
half mentioned the surplus of images with peo-
ple in set A and some found that set B had too
many repetitive pictures—for example, biking.
We’ll discuss and explain some of these results in
the following paragraphs.

Set A contains 15 laptop pictures versus 47 in
set B. It should be noted that the ratio of laptop
pictures was only 3 to 17 before the lunch but 12
to 30 after lunch, because the  subject was typing
near two people who were involved in a discus-
sion. This case suggests the need for a measure to

determine if the recognized speech actually
involves the user. 

The lunch scene was clearly better document-
ed in set A (30 images) than in set B (11 images).
What’s particularly nice is that at the end of the
lunch the subject shook hands with three people,
and in two cases an image was taken. 

It’s also interesting to consider the number of
bike ride pictures (see Table 6). In three of the
four cases, set A needed fewer images to docu-
ment the ride. However, in one case the algo-
rithm clearly failed, as we previously noted. 

Conclusion
Overall, the results are pleasing and suggest

that this approach, simple as it is, can increase
the amount of interest in recorded pictures. It
also shows that we can begin to somewhat quan-
tify and generalize the notion of what’s interest-
ing to people, potentially allowing automatic
sharing of media based on its interestingness. We
can also customize the interest operator to a spe-
cific user’s preferences by assigning different val-
ues to interest points and by adjusting the
interest threshold.  For more detailed informa-
tion about the algorithms and performance in
this article, please refer to Blum.15
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Figure 5. Another set of

images captured from

set A, using the interest

algorithm. This time

the images captured

reflect a discussion, a

nap, and laughter.

Table 6. Number of biking images. 

Biking Location Set A Set B  
From lunch to the supermarket 1 2  

From the supermarket to home 0 4  

From home to the shop 2 2  

From the shop to the lab 2 4  



Something that remains to be studied is how
we can scale this approach down to taking only
a handful of pictures per day. Will the most inter-
esting moments still be captured? We speculate
that to accomplish such a dramatic summariza-
tion of the interesting points in a day will proba-
bly involve incorporating higher-level behavioral
patterns. MM
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