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Abstract

System robustness against individual sensor failures is
an important concern in multi-sensor networks. Unfortu-
nately, the complexity of using the remaining sensors to in-
terpolate missing sensor data grows exponentially due to
the “curse of dimensionality”. In this paper we demonstrate
that the influence model, our novel formulation for combin-
ing evidence from multiple interactive dynamic processes,
can efficiently interpolate missing data and can achieve
greater accuracy by modeling the structure of multi-sensor
interaction.

1. Introduction

Multi-sensor networks with tens or even hundreds of
sensors are common nowadays. One example of a wear-
able sensor network is the Groupware systems developed
for the DARPA ASSIST program [1]. In this system, data is
collected in real-time from several accelerometers, micro-
phones, cameras, and a GPS, all attached to different parts
of the soldiers’ clothing. Inference of soldier state is made
in real-time, and data automatically shared among different
soldiers wearing the Groupwear systems based on the pat-
tern of activity shown among the group of soldiers.
A couple of observations from using the Groupware sys-

tem are worth mentioning. One observation is that sen-
sor failures are unavoidable due to insufficient power sup-
ply, sensor faults, connection errors, or other unpredictable
causes. This means that an inference algorithm for soldier
state must be robust against sensor failures. Another obser-
vation is that the data collected from different sensors are
often correlated. For example, when the GPS data indicate
that a particular person is indoors, this person is also often in
a sitting position. This correlation happens in a large com-
binatorial space. In an early Groupwear system [2] with 8
locations, 6 speaking/non-speaking status, 7 postures, and 8

activities, there were 8×6×7×8 = 2688 number of differ-
ent combinatorial states. As a result, a good algorithm must
be able to determine the structural relations between differ-
ent sensors while avoiding consideration of the exponential
number of combinatorial states.

Figure 1. An early Groupware System.

Another example of a body-worn sensor network is the
cellphone network of the participants of the reality min-
ing project [3]. In this project the 81 participants’ loca-
tions, their proximity information, their cellphone usages,
and their cellphone states were continuously collected over
a period of nine months. As in the Groupware example,
the cellphone data collection for the individuals experienced
several different types of abnormalities, and the cellphone
data for different individuals are correlated. Thus a good
data mining algorithm should be robust to abnormalities,
and be able to discover the structural relationships among
different participants.
We believe that our latent structure influence model is an

efficient, robust method for analysing these sort of multi-
sensor dynamics problems. It is in the tradition of N-heads
dynamic programming on coupled hidden Markov models
[4], the observable structure influence model [5], and the
partially observable influence model [6], but extends these

1



previous models by providing greater generality, accuracy,
and efficiency.

2. Influence modeling of multi-sensor dynam-
ics

The influence model is a tractable approximation of the
intractable hidden Markov modeling of multiple interact-
ing dynamic processes. While the number of states of the
hidden Markov model is the multiplication of the num-
ber of states for individual processes, the number of states
of the corresponding influence model is the summation of
the number of states for individual processes. The influ-
ence model attains this tractability by linearly combining
the contributions of latent state distributions of individual
processes at time t− 1 to get the latent state distributions of
individual processes at time t.
Let us assume that we have C interacting stochastic pro-

cesses and mc(1 ≤ c ≤ C) number of latent states cor-
responding to process c in the system’s behavior space.
Following Asavathiratham [5] we use DC×C as the net-
work (influence) matrix, whose columns each add up to
1, and A(c1,c2)(1 ≤ c1, c2 ≤ C) as the inter-process
state transition matrix, whose rows adds up to 1. The in-
fluence matrix is defined as the Kronecker product H =
D ⊗ A = (dc1,c2A

(c1,c2)) where H is a block matrix
whose sub-matrix at row c1 and column c2 is dc1,c2A

(c1,c2).
We express the marginal probabilistic distributions of states
s
(c)
t for process c at time t as a row vector consisting

of row vectors p(�st) = (p(�s(1)
t ), p(�s(2)

t ), . . . , p(�s(C)
t )),

where p(�s(c)
t ) = (p(s(c)

t,1), p(s(c)
t,2), . . . , p(s(c)

t,mc
)), 1 ≤ c ≤

C,
∑

j p(s(c)
t,j ) = 1 is the row vector of the probability dis-

tribution on each latent state. Using this notation, the in-
fluence process is then p(�st+1) = p(�st) · H, p(�s1) = �π,
so that the marginal distributions at the next time step is
a linear combination of the marginal distributions in the
current time step. There are many ways to map from
an influence matrix H to a master Markov matrix G =
(gi,j), gs

(1)
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We follow Asavathiratham’s idea (see [5] sec. 5.11) in our
paper. The observations o

(c)
t for process c at sample times

1 ≤ t ≤ +∞ can be in multinomial or Gaussian distri-
bution and is statistically determined by the corresponding
latent state s

(c)
t . When the observations for process c are

multinomial, we use nc to represent the number of obser-
vation symbols o

(c)
t ∈ [1 . . . nc] and use B(c) = (b(c)

i,j ) to

represent the observation matrix p(�o(c)
t ) = p(�s(c)

t ) · B(c).
When the observations for process c are Gaussian, we use
nc to represent the dimensionality of the mc number of
Gaussian distributions corresponding to each latent state
s
(c)
t ∈ [1 . . .mc]. The EM algorithm for latent state esti-

mation is given as follows:

�α∗
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mc
t = 1
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The parameters are re-estimated as follows:
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3. Experimental Results

In this section, we illustrate how an influence model can
capture the correlations among different dynamic processes
and thus improve the overall classification performance.
The noisy body sensor net example illustrates the structure
that the influence model tries to capture, and how an influ-
ence model can be used to improve classification precision.
We then extend the noisy body sensor net example and com-
pare the training errors and the testing errors of different
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dynamic models. Finally, we show a wearable sensor net
example in which the goal is real-time context recognition,
and the influence model is used to discover hidden structure
among speech, location, activity, and posture signals in or-
der to allow for more accurate and robust classification of
the wearers state.

3.1. Noisy body sensor net example

In the noisy body sensor net example, we have six
stochastic processes, and we sample these six processes
with six body sensors. Each process can be either signaled
(one) or non-signaled (zero) at any time, and the corre-
sponding body sensor has approximately 10% of its samples
flipped. The interaction of the six stochastic processes be-
hind the scene looks like this: processes one through three
tend to have the same states; processes four through six tend
to have the same states; the processes are more likely to be
non-signaled than to be signaled; and the processes tend
to stick to their states for a stretch of time. The param-
eters of the model are given as the following and are go-

ing to be estimated: Aij =
(

.99 .01

.08 .92

)
, 1 ≤ i, j ≤ 6,

Bi =
(

.9 .1

.1 .9

)
, 1 ≤ i ≤ 6, dij = .33, 1 ≤ i, j ≤ 3, and

dij = .33, 4 ≤ i, j ≤ 6.
In Figure 2, (a) shows the sampled latent state sequences,

(b) shows the corresponding observation sequences, (c)
shows the influence matrix reconstructed from sampled ob-
servation sequences, and (d) shows the reconstructed latent
state sequences after 300 observations. The (i, j)th entry of
the (c1, c2)th sub-matrix of an influence matrix determines
how likely that process c1 is in state i at time t and process
c2 is in state j at time t+1. It can be seen from Figure 2 (c)
that the influence model computation recovers the structure
of the interaction.
The influence model can normally attain around 95% ac-

curacy in predicting the latent states for each process. The
reconstructed influence matrix has only 9% relative differ-
ences with the original one. Using only observations of
other chains we can predict a missing chain’s state with 87%
accuracy.

3.2. Comparison of dynamic models

The training errors and the testing errors of the coupled
hidden Markov model, the hidden Markov model, and the
influence model are compared in this example. The setup
of the comparison is described as the following. We have a
Markov process with 2C , where C = 10, number of states
and a randomly generated state transition matrix. Each sys-
tem state �st is encoded into a binary s

(1)
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Figure 2. Inference from observations of in-
teracting dynamic processes.
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A comparison of different dynamic latent structure models
on learning complex stochastic systems
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Figure 3. Comparison of dynamic models.

the mc = 2 evaluations of “digit” s
(c)
t corresponds a dif-

ferent 1-d Gaussian observation o
(c)
t : Digit s

(c)
t = 1 cor-

responds to o
(c)
t ∼ N [μ1 = 0, σ2

1 = 1] ; Digit s
(c)
t = 2

corresponds to o
(c)
t ∼ N [μ2 = 1, σ2

2 = 1] .
In most real sensor nets we normally have redundant

measures and an insufficient observations to accurately
characterize sensor redundancy using standard methods.
Figure 3 compares the performances of several dynamic
latent structure models applicable to multi-sensor systems.
Of the 1000 samples (�ot)1≤t≤100 , we use the first 250 for
training and all 1000 for validation.
There are two interesting points. First, the logarithmi-

cally scaled number of parameters of the influence model
allows us to attain high accuracy based on a relatively small
number of observations. This is because the eigenvectors
of the master Markov model we want to approximate are
either mapped to the eigenvectors of the corresponding in-
fluence model, or mapped to the null space of the corre-
sponding event matrix thus is not observable from the in-
fluence model, and that in addition the eigenvector with the
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largest eigenvalue (i.e., 1) is mapped to the eigenvector with
the largest eigenvalue of the influence matrix [5]. Secondly,
both the influence model and the hidden Markov model ap-
plied to individual processes are relatively immune to over-
fitting, at the cost of low convergence rates. This situation is
intuitively the same as the numerical analysis wisdom that
a faster algorithm is more likely to converge to a local ex-
tremum or to diverge.

3.3. Real-time Context Recognition

An early version of the Groupwear real-time context
recognition system was developed by Blum [2], and is com-
prised of a Sharp Zaurus PDA, an ambient audio recorder,
and two accelerometers, worn on hip and wrist (see Figure
1). This system is designed to classify in real time eight lo-
cations, six speaking/non-speaking status, six postures, and
eight activities. The classification is carried out in two steps:
A pre-classifier (single Gaussian, mixture of Gaussians, or
C4.5) is first invoked on the audio and accelerometer fea-
tures to get a moderate pre-classification result of the above
four categories.
The pre-classification result of different categories is

then fed into an influence model to learn inter-sensor struc-
ture, and then this learned structure is used to generate an
improved post-classification result. In this example the in-
fluence model learns the conditional probabilies that relate
the four categories (location, audio, posture, and activity)
and then uses this learned influence matrix to improve the
overall performance. For example, given that the Group-
wear user is typing, we can inspect the row of the influence
matrix corresponding to “typing” and see that this person
is very likely to be either in the office or at home, to not
be speaking, and to be sitting. As a result, the action of
typing can play a critical role to disambiguating confusions
between sitting and standing, or between speaking vs not-
speaking, but not between office and home.
By combining evidence across different categories us-

ing the influence model, the classification errors for loca-
tions, speaking/non-speaking, postures, and activities de-
creased by an average of 23%, from 38%, 22%, 8% and
27% to 28%, 19%, 8%, and 17% respectively. The post-
classification for postures does not show significant im-
provement because of two reasons: (1) it is already precise
enough considering that we have labeling imprecision in our
training data and testing data, and (2) it is the driving force
for improving the other categories, and no other categories
are more certain than the posture category.

4. Conclusion

In this paper, we have presented the formulation of a la-
tent structure influence model, given the parameter learning

Figure 4. Influence matrix learned by the EM
algorithm.

and latent state estimation algorithms, and demonstrated the
latent structure influence model’s superior performance in
multi-sensor network analysis.
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