MIT Technical Report No. 583, June 2004

Controlling Cardea:
Fast Policy Search in a High Dimensional Space

Martin C. Martin
mcm@media.mit.edu
Media Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

The essential dynamics algorithm is a novel
policy search algorithm for learning in a
class of stochastic Markov decision processes
(MDPs) with continuous state and action
spaces. We apply it to the control of a 5
degree of freedom robot arm atop a Segway
base. Movement of the arm causes the base
to translate and tilt, which in turn affects
the movement of the arm. The state space
has 14 dimensions, and the action space 5 di-
mensions, twice the dimensionality of typical
policy search applications. Despite the highly
non-linear dynamics, the algorithm is able
to control the robot through a wide range.
What’s more, this is accomplished using very
little domain knowledge and no knowledge of
dynamics.

1 INTRODUCTION

In stochastic Markov decision processes (MDPs) with
continuous state and action spaces, the value and Q-
functions are often very complicated and difficult to
approximate. In fact, Baxter and Bartlett (2000)
demonstrated that policies derived from approximate
value functions can fail arbitrarily badly. This has
lead to recent interest in policy search algorithms, that
search the space of policies directly (Roy & Thrun,
2002; Bagnell & Schneider, 2001; Strens & Moore,
2002).

When a policy changes, estimating the resulting
change in values can be difficult, requiring the new
policy to interact with the MDP for many episodes.
To circumvent this, the essential dynamics algorithm
(reference withheld for blind review) transforms the
stochastic MDP into a deterministic one. The re-
sulting MDP only approximates the original, but for
a wide class of problems, values in the deterministic

MDP are good approximations to those in the original.
This approximation can then be used to perform gra-
dient descent search on the policy parameters. Since
the transformation captures what is important about
the original MDP for planning, we call our method the
“essential dynamics” algorithm.

It can also be seen as a generalization of the adaptive
control theory technique linear quadratic regulation.
In a regulation task the goal is stay near to a desired
point in the state space. A linear quadratic regulator
models the next state as a linear function of current
state and action, and uses a quadratic shaping reward.
The essential dynamics algorithm generalizes the goal
to acting in the entire state space. It does this by as-
suming that the next state is locally linear, that is,
that its second derivative is small. It also assumes the
shaping reward is only roughly quadratic. The opti-
mal control parameters can no longer be found analyt-
ically, so gradient descent is used. We note in passing
that other combinations of adaptive control and policy
search may prove even more fruitful.

The algorithm has been applied to applied to Randlgv
and Alstrgm’s bicycle riding task (Randlgv, 2000). In
previous approaches the state was augmented with an
acceleration, “training wheels” were added, or 15 hand
crafted features were used. In contrast, the only do-
main knowledge needed by the essential dynamics al-
gorithm was a shaping reward penalizing for lean angle
and facing away from the goal. This corresponds to
the common sense advice “stay upright and head to-
ward the goal.” Even with this meagre domain knowl-
edge, it discovered a near optimal policy in orders of
magnitude less simulated time (reference withheld, in
submission).

Cardea (Brooks, 2003) is the latest robot of MIT’s
humanoid robotics group. It uses a SEGWAY RMP
(robotic mobility platform) for locomotion, and a 5 de-
gree of freedom (DOF) robotic arm for manipulation.
Learning was performed in a detailed physical simula-
tion of Cardea, and is currently being transferred to

the physical robot.

The control of a robot arm has been studied for several
decades. The classical approach (Craig, 1989) involves
two steps. First a PD controller to provide the desired
angular acceleration of each joint, then these are used
to compute the torques. This second step is compli-
cated by the fact that a torque at one joint can cause
accelerations at all of the other joints. The classical
solution requires that the acceleration of the shoulder
is known, and works through kinematics and dynamics
of each joint to determine the torques.

The classical method requires knowledge of the mass
and moment of inertia of each link, parameters that
are difficult to measure. But more importantly for
Cardea, the acceleration of the shoulder depends on
the motion of the base, which in turn depends on the
torques applied to the arm. Thus, the classical tech-
nique doesn’t apply.

Many function approximators have been applied to
the problem, such as neural networks and genetic al-
gorithms (Moriarty & Miikkulainen, 1996). However,
they often take a long time to learn, especially in the
presence of significant noise. Reinforcement learning
has been applied as well (Morimoto & Doya, 2000),
but even a simple two joint, three link arm required a
hierarchical form of RL.

The next section motivates and derives the essential
dynamic algorithm. Section 3 discusses Cardea and
its simulator, and describes the details of how the al-
gorithm learned to control the simulation.

2 THE ESSENTIAL DYNAMICS
ALGORITHM

In the essential dynamics algorithm we learn a model
and a policy simultaneously. A model describes the
dynamics of the world: it maps a state and action to
the next state. A policy describes an agent’s behavior:
it maps the current state to the action to be taken
in that state. A reward maps the current state and
current action to a real number. The wvalue of a given
policy in a given state is the sum of all rewards received
from starting in the state and following the policy.

In typical applications of reinforcement learning, a
positive reward comes only after successfully complet-
ing the task. For many problems, the probability of
doing this at random is vanishingly small. Even when
a successful finish can be found with reasonable fre-
quency, the credit assignment problem — backing up
the rewards to the values of the previous states —
can be incredibly time consuming, especially when the
state space is large. A widely used methodology to ad-

dress this problem is shaping (Colombetti & Dorigo,
1994; Ng et al., 1999; Randlgv, 2000). In shaping,
rewards are introduced for intermediate progress to-
ward the goal. A shaping function eases the problem
of backing up rewards, since actions are rewarded or
punished sooner.

Therefore, we use a limited horizon for our value, that
is, we only sum the rewards over the next T' timesteps.
The value of the current state is easily computed. Ap-
plying the policy to current state gives us an action,
and applying the model to the current state and action
gives us the next state. Iterating 7' times gives us a
trajectory of T states and actions, from which we can
compute values and rewards. If the policy and model
are from a parameterized family, we can compute the
gradient of the value with respect to the policy param-
eters.

In putting this plan into practice, one difficulty is that
state transitions are stochastic, so that the expected
cumulative reward must be computed. One way to
compute this is to generate many trajectories and av-
erage over them, but this can be very time consum-
ing. Instead we might be tempted to estimate only
the mean of the state at each future time, and use the
rewards associated with that. However, we can do bet-
ter. If the reward is quadratic, the expected reward is
particularly simple. Given knowledge of the state at
time t, we can then talk about the distribution of pos-
sible states at some later time. Because the state is a
vector of real numbers, the expected state is well de-
fined. Given a distribution of states, let 5 denote the
expected state. Then

Elr(S)] = /(a(s—§)2+b(s—§)—|—c)P(s)ds

= avar(s)+b(s—3) +c¢
= avar(s) +c, (1)

where a, b & ¢ depend on r and 5.

Thus, to calculate the expected reward, we don’t need
to know the full state distribution, but simply its mean
and variance. Therefore, our model should describe
how the mean and variance evolve over time. If the
state transitions are “smooth,” they can be approxi-
mated by a Taylor series. Let 7 be the current policy,
and let p.(s) denote the expected state that results
from taking action 7(s) in state s. If 3; denotes the
mean state at time ¢, and o7 the variance, and if state
transitions were deterministic, then to first order we
would have

fir (5¢) ,
(dgs“(st)) ol.

Sty1 R

Q

2
O¢t1

Suppose the policy depends on a vector of param-
eters £&. When interacting with the MDP, at every
time t after having taken action a;_1 in state s;_1
and arriving in state s;:

L. fi(st—1,ai-1) < 5¢

2. 17(St717at71) — (St - ﬁ(st,hat,l))Q

3. So =S
4. 62 =0
5. V=0
6. For every 7in 1 ...n:

(a) 8r = (371, 7(5:-1))
(b) 62 = i(5,—1,7(5.—1))+

2
(¢) 7r = 1K) (5152 4 1(5,)

(d) V=V+4+~""17,

7. Update the policy in the direction that in-
creases V: £ =&+ a%‘g

Figure 1: The essential dynamics algorithm for a one
dimensional state space. The notation f(z) <« a
means “adjust the parameters that determine f to
make f(x) closer to a,” e.g. by gradient descent.
fx(s) = (s, 7(s)), and Wd"is(s)(@_l) is the derivative
of fir(s) with respect to s, evaluated at 5,_1.

For stochastic state transitions, let v, (s) be the vari-
ance of the state that results from taking action m(s)
in state s. It turns out that the variance at the next
time step is simply v, (s) plus the transformed variance
from above, leading to

M (St)

: dpx,_\°
R =) A

Sty1 =

Thus, we learn estimates i and o of p and v respec-
tively, use (2) to estimate the mean and variance of fu-
ture states, and (1) to calculate the expected reward.
The resulting algorithm, which we call the expected
dynamics algorithm, is presented in Figure 1.

(Reference withheld for blind review) provides a math-
ematically rigorous derivation of the algorithm, and
proves bounds on the magnitude of the error in ex-
pected state, state variance, reward, and value. The
algorithm is also used to learn to ride a bicycle in sim-
ulation, and is compared to existing techniques.

Figure 2: Cardea consists of a 5 degree of freedom arm
atop a Segway RMP base.

3 CONTROLLING CARDEA

3.1 CARDEA

Cardea locomotes using a SEGWAY RMP (robotic
mobility platform). Its cameras and sonar sensors were
not used in this experiment. It also has a 5 degree of
freedom (DOF) robotic arm. Eventually Cardea’s cur-
rent vision system will be replaced by a robotic head
with active perception, and will be outfitted with three
arms.

The goal of the Cardea project is to navigate unstruc-
tured interior spaces using simple active vision and
sensors while being able to use its single arm to reach
out and interact with objects in compliant and safe
ways. One behavior-level scenario fitting these goals
is Cardea wheeling along a corridor trying to detect a
door. Once the door is detected, Cardea will turn and
approach it, open the door, and enter the room. The
Segway RMP is attractive because it can dynamically
balance on a small wheelbase that is able to support a
torso, arms and “head” at a human scale height. With-
out dynamic balancing, a two wheeled base would have
to be much wider than the typical width of a persons
“footprint”.

The current prototype arm under development has 5
DOF. There is a 2 DOF differentially driven shoulder
which provides pitch and yaw, a 1 DOF elbow, and a 2
DOF differentially driven wrist. The arm has been de-

signed to roughly match the speed, power, weight, and
proportions of a human arm. It has analog torque and
angle feedback at each joint. Each DOF uses a series
elastic actuator (Pratt & Williamson, 1995), which is
an intentional spring between the gears and the load,
that allows the applied force (or torque) to be mea-
sured, and therefore controlled directly.

The results reported here are for a detailed phys-
ical simulation of Cardea, and are currently being
transferred to the real robot. The Cardea simula-
tion used the Open Dynamics Engine (ODE) (Smith,
2003). ODE is an open source engine for simulated
rigid body, and provides geometrical primitives such
as boxes and cylinders, as well as constraints between
them. The simulated Cardea is comprised of six bod-
ies: two wheels, the Segway base, the upper arm, the
fore arm, and the hand. The shoulder and wrist are
both modelled as a universal joints, and the elbow as
a hinge. The only other object in Cardea’s world was
the ground plane.

3.2 CONTROL

The classical solution (Craig, 1989) requires calibra-
tion, including knowledge of parameters such as mo-
ment of inertia, that are difficult to measure. It also
requires that the acceleration of the shoulder is known
at each timestep, yet the acceleration of the shoulder
depends on the motion of the base, which in turn de-
pends on the very torques we wish to calculate.

Tasks were specified as the desired angle of each joint.
The task was fixed during the episode, but changed be-
tween episodes. Tasks were generated by choosing an
end point for the hand in spherical coordinates cen-
tered at the shoulder. Because the immediate goal
of Cardea’s larger research program is to open doors,
the desired orientation of the hand was parallel to the
ground. Inverse kinematics was then performed to de-
termine the desired angles. The configuration of the
robot made this a straightforward application of high
school trigonometry.

As in many robotics tasks, it is easier to plan in
state space than in action space. Therefore, an in-
verse model (Atkeson et al., 1997) was learned, which
mapped the desired next state to action, along with an
inverse policy, mapping current state and goal state to
the desired next state. It was straightforward to mod-
ify the essential dynamics engine to perform this.

At the start of the simulation, the arm was initialized
to be fully extended in front of the robot, with zero
velocity. An episode would end when either (a) |6 —

0412 < 0.001 and [|6]2 < 0.001, (b) 2 seconds had
elapsed, (c) the arm collided with either the body or

itself, or (d) parts of the arm moved so fast that the
simulation became unstable. In the last two cases, the
arm was reset to fully extended. In the first two it was
untouched, starting the next episode with whatever
angles and velocities it had at the end of the previous
episode. In all cases, a new task was generated.

If the variance of the state is not too large at every time
step, then the variance term in the transformed reward
can simply be considered another form of error, and
only 2 need be estimated. This was done here. The
task is not naturally divided into discrete time steps,
but rather state and action are continuous in time.
Rather than arbitrarily discretize time, a continuous
time formulation was used where the next state was
replaced by the time derivatives of state.

Model estimation was done online, simultaneous with
policy search. The policy mapped the 14 state vari-
ables and the five desired angles to five desired arm ac-
celerations. The policy and (inverse) model were both
weighted sums of features. The policy’s features were
simply the input variables themselves, plus a constant
(1). The inverse model mapped the 14 state variables
and five desired angular accelerations to the five joint
torques and two accelerations of the base. The model
features were various products of the angular veloci-
ties, the desired accelerations, and the sin and cosine
of the joint angles. Using the sin and cosine of the joint
angles rather than the angles themselves is a standard
technique from the neural network literature (Masters,
1993), which ensures that the model is periodic in the
angles, without discontinuity.

The model parameters were estimated using gradient
descent on the absolute value of the error, rather than
the more traditional squared error. The squared er-
ror is minimized by the mean of the observed values,
whereas the absolute value is minimized by the me-
dian (Press et al., 1992). The median is a more robust
estimate of central tendency, i.e. less susceptible to
outliers, and therefore may be a better choice in many
practical situations. The learning rate was 0.001.

The shaping reward was simply —||6 — 64]|2, where
é;l are the desired joint angles. It needed no knowl-
edge of dynamics, and did not directly reward damp-
ing. Gaussian noise was added to the torques. In
the continuous time formulation, the value function is
Ve(s) = ftt+n YT E,[r(sr, w(s,))]dT. The future state
was estimated using Euler integration (Press et al.,
1992). While the physical simulation also used Euler
integration, these choices were unrelated. In fact, the
timesteps were different, with At = 0.01sec for the
physical simulator and 0.05sec for integrating the esti-
mated reward. The horizon for the value function was
1.5sec, that is, 30 integration steps.

&=}

£

— 0.3

8

—

$ 02

o

2

Z 01

A

n

= 0

A~ 0 50 100 150
simulated time (min)

Bl

<

.

£

e

kS,

2

4

- 05

&

=

50

=

3

n

= 0

o 0 50 100 150

simulated time (min)

Figure 3: Position error and angular velocity vs. sim-
ulated time, at the end of every episode. Averaged
over 20 runs, with actions randomly perturbed for ex-
ploration. The algorithm ran slightly faster than real
time.

Estimating the future state and integrating the re-
ward were the most CPU intensive aspects of algo-
rithm, but were only needed for updating the pol-
icy, not the model. Thus, while the model was up-
dated every timestep, the policy was only updated
every 100 timesteps. When the model is poor or
the policy parameters are far from a local optimum,
OV/IE can be quite large, resulting in a large gra-
dient descent step which may overshoot its region of
applicability. This can be addressed by reducing the
learning rate, but then learning becomes interminably
slow. Therefore, the gradient descent rule was modi-
fied to A& = —a gz T5iT5e
|0V/0¢|| < B, this reduces to the usual rule with a
learning rate of a/. In this experiment, av = 0.1 and
3 = 100.

A 990 MHz mobile Pentium III processed 3000 episodes
per hour, slightly faster than real time. A graph of the
error in joint angles and joint velocities at the end of
every episode is shown in Figure 3. The initial policy
applied zero torque in every state, causing the arm to
fall under gravity. After three or four minutes, the
policy was good enough to allow the arm to stay in

Near an optimum, when

T 02

Nab

5 0.15

-

3

g 0.1

.S

Z 0.05

oF

Z 0

~ 0 0.5 1 1.5

simulated time (sec)

B

—

e

= 08

ey

E 0.6

£

= 0.4

=

2 02

<

2 0

~ 0 0.5 1 1.5

simulated time (sec)

Figure 4: Position error and angular velocity vs. simu-
lated time, over a single episode. Without exploration.

the air without hitting the base or itself. By half an
hour it reached most goals from most initial positions,
although it slowly oscillates around the target. After
four hours the workspace had widened considerably,
while the oscillation was greatly reduced. An example
trajectory of the final policy is shown in Figure 4.

4 DISCUSSION

For learning and planning in complex worlds with con-
tinuous, high dimensional state and action spaces, the
goal is not so much to converge on a perfect solution,
but to find a good solution within a reasonable time.
Such problems often use a shaping reward to acceler-
ate learning. If the shaping reward is quadratic, the
reward and value of future states depend only on the
mean and variance of the state distribution. Thus, the
essential dynamics algorithm estimates these for fu-
ture time, uses them to estimate the value of a given
state, then uses this to adjust the policy. Learning in
this transformed problem is considerably easier than
in the original, and both model estimation and policy
search can be achieved online.

The algorithm can be seen as a generalization of the
linear quadratic regulator, an adaptive control theory
technique. We consider the success of linear models in

many real world regulator problems over half a cen-
tury to indicate that the dynamics of many systems
are locally linear. For these systems, we extend work
on regulators (which are only interested in the state
near the desired) to general control algorithms (able
to work in the entire state space) by assuming that
the second derivative of the model is small. An extra
benefit comes if the policy is roughly a weighted sum
of the state variables. In that case the value is roughly
quadratic in the policy parameters, so the search prob-
lem is roughly convex and we would expect all local
minima to be clustered around the global minima.

(reference withheld for blind review) compares the al-
gorithm to traditional value function approximation as
well as PEGASUS Ng and Jordan (2000) on the bicycle
riding task of Randlgv and Alstrgm (Randlgv, 2000).
Value function approximation took 4200 episodes to
get to the goal for the first time, and only ever found
policies that rode in circles, precessing toward the goal.
In contrast, when cast as a policy search problem, not
only do PEGASUS and the essential dynamics algo-
rithm find essentially optimal policies, but somewhat
surprisingly, so does random search. In fact, PEGA-
SUS takes far more time than random search, while the
essential dynamics algorithm takes significantly less.
This is not surprising, as PEGASUS doesn’t exploit
the structure of the MDP, and thus requires many
episodes to compute the gradient of the policy.

Given that the essential dynamics algorithm trades ac-
curacy and general applicability for speed, we would
expect it to perform well at higher dimensions than
existing techniques. Table 1 lists the policy search
problems with the largest state space dimensionality
found in an extensive literature search. The helicopter
control is cast as a regulation problem, i.e. the goal
is to hover over a fixed point on the ground, or follow
a slowly moving point. Their model, cost function,
and even choice of state were heavily informed by he-
licopter modeling and control theory. The resulting
policy was able to hover with much less error than
under a highly trained pilot’s control.

The multiple-pursuer evader is a toy problem in which
two pursuers must learn to cooperate to catch a highly
maneuverable evader in a two dimensional plane. The
evader followed a fixed, hand written policy. The pol-
icy for each pursuer was a weighted sum of 6 features:
relative angle, range, the time derivatives of those, the
relative range of the pursuers, and a constant. Unfor-
tunately, the authors don’t say how well their method
performed, nor how long it took. How other methods
fair on this problem is unknown.

In learning to control Cardea, the essential dynamics
algorithm used very little domain knowledge. The only

Table 1: Dimentionality of Successful Policy Search
Applications

Dimensions Reference

State, Action

Problem Name

Pole Balancing 4, discrete (Davies et al.,
1998)

Robot Motion 5, 2 (Roy & Thrun,

Planning 2002)

Riding a Bicy- 5 or 6, 2 (Ng & Jordan,

cle 2000)

Helicopter Con- 8, 2 (Bagnell &

trol Schneider,
2001)

Multiple- 9,2 (Strens &

Pursuer Evader Moore, 2002)

Robot Arm on
Segway

14,5 this paper

features were products of the various state variables,
with angles represented as their sin and cosine. The
reward was a function of position only, not velocity,
yet it nonetheless learned to damp the motions.

Learning took only a few hours on a laptop computer
with parameters that had been tuned to merely an or-
der of magnitude. It learned not just to stay near a
desired point in state space, but to competently reach
all states of practical interest in a very high dimen-
sional state space. Encouraged by it’s success in the
Cardea simulation, we are currently applying the es-
sential dynamics algorithm to the physical robot.

Along with these advantages, the algorithm has some
drawbacks. The policies only approximate the optimal
ones, although (reference withheld for blind review)
prove bounds on the error. The error seems small in
both the bicycle riding domain and for Cardea.

More significantly, it does not account for discontinu-
ities in state transitions. When the algorithm was ap-
plied to a simulation of a bipedal walking robot, joint
limits would cause angular velocities to instantly drop
to zero. The algorithm failed to accurately predict
future state in this case, which prevented it from find-
ing a policy that could take even a single step. This
was even with the help of a hierarchical decomposition
constructed by hand.

5 Conclusion

For many real world problems, finding the optimal so-
lution can take prohibitively long. For these problems
it is little comfort to know at a given algorithm will
converge to the optimal solution eventually. In such
domains it may be more useful to quickly find an ap-
proximate solution, even if there is an upper bound on
the solution’s performance.

One such domain is the control of a robot arm atop a
Segway base. Torques on the arm cause the base to
react which in turn causes motion of the arm, mak-
ing traditional methods inapplicable. The essential
dynamics algorithm performed well, learning a policy
that worked reliably for the entire space in only a few
hours, with very little domain knowledge. This is all
the more remarkable given that the state space had 14
dimensions and the action space 5.

The combination of control theory and reinforcement
learning techniques seems very powerful. Other com-
binations may prove even more fruitful.

References

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997).
Locally weighted learning for control. Artificial In-
telligence Review, 11, 75-113.

Bagnell, J. A., & Schneider, J. G. (2001). Autonomous
helicopter control using reinforcement learning pol-
icy search methods. Proc. Intl. Conf. on Robotics
and Automation. Korea.

Baxter, J., & Bartlett, P. (2000). Reinforcement learn-
ing in pomdp’s via direct gradient ascent. Proc. 17th
Intl. Conf. on Machine Learning.

Brooks, R. (2003). Cardea web site.
http://www.ai.mit.edu/projects/cardea.

Colombetti, M., & Dorigo, M. (1994). Training agents
to perform sequential behavior. Adaptive Behavior,
2, 247-275.

Craig, J. J. (1989). Introduction to robotics: Mechan-
ics and control. 2nd edition.

Davies, S., Ng, A., & Moore, A. (1998). Applying on-
line search techniques to continuous-state reinforce-
ment learning. Proc. of the Fifteenth Natioinal Conf.
on Artificial Intelligence (AAAI-98) (pp. y53-760).

Masters, T. (1993). Practical neural network recipes.
Academic Press.

Moriarty, D. E., & Miikkulainen, R. (1996). Evolving
obstacle avoidance behavior in a robot arm. From

Animals to Animats: The Fourth Intl. Conf. on
Simulation of Adaptive Behavior (SABY6).

Morimoto, J., & Doya, K. (2000). Acquisition of stand-
up behavior by a real robot using hierarchical rein-
forcement learning. Proc. 17th Intl. Conf. on Ma-
chine Learning (ICML’00).

Ng, A., et al. (1999). Policy invariance under reward
transformations: Theory and applications to reward
shaping. Proc. 16th Intl. Conf. on Machine Learning
(pp. 406-415).

Ng, A., & Jordan, M. (2000). Pegasus: A policy search
method for large mdps and pomdps. Uncertainty in
Artificial Intelligence (UAI), Proc. of the Sizteenth
Conf. (pp. 406-415).

Pratt, G. A., & Williamson, M. M. (1995). Series
elastic actuators. Proc. of the Intl. Conf. on Intelli-
gent Robots and Systems (IROS-95) (pp. 399-406).
Pittsburgh, PA.

Press, W. H., Teukolsky, S. A., Vetterling, W., & Flan-
nery, B. (1992). Numerical receipes: The art of sci-
entific computing. Cambridge University Press. 2
edition.

Randlgv, J. (2000). Shaping in reinforcement learning
by changing the physics of the problem. Proc. 17th
Intl. Conf. on Machine Learning (pp. 767-774).

Roy, N., & Thrun, S. (2002). Motion planning through
policy search. Proceedings of the Conference on In-
telligent Robots and Systems (IROS). Lausanne,
Switzerland.

Smith, R. (2003).
http://ql2.org/ode/.

Strens, M. J. A., & Moore, A. (2002). Policy search us-
ing paired comparisons. Journal of Machine Learn-
ing Reserach, 3, 921-950.

Open dynamics engine.

