MIT Technical Report No. 582, June 2004

The Essential Dynamics Algorithm:
Fast Policy Search In Continuous Worlds

Martin C. Martin
Media Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139
USA

Abstract

This paper presents a novel algorithm for
learning in a class of stochastic Markov deci-
sion processes (MDPs) with continuous state
and action spaces that trades speed for ac-
curacy. The algorithm can be seen as a gen-
eralization of linear quadratic control to non-
linear, non-regulation problems. A transform
is presented of the stochastic MDP into a de-
terministic one which captures the essence of
the original dynamics, in a sense made pre-
cise. In this transformed MDP, the calcula-
tion of values is greatly simplified. The online
algorithm estimates the model of the trans-
formed MDP and simultaneously does policy
search against it. Bounds on the error of this
approximation are proven, and experimental
results are presented in both a bicycle riding
domain and the control of a robot arm on a
dynamic base, a 14 dimensional state space.
The algorithm learns near optimal policies in
orders of magnitude fewer interactions with
the stochastic MDP, using less domain knowl-
edge. Code is available on the project’s web
site.

1 INTRODUCTION

There is currently much interest in the problem
of learning in stochastic Markov decision processes
(MDPs) with continuous state and action spaces
(Forbes & Andre, 2000; Strens & Moore, 2002). For
such domains the value and @-functions may be quite
complicated and difficult to approximate, especially
when the state or action spaces are of high dimension.
In fact, Baxter and Bartlett (2000) demonstrated that
policies derived from approximate value functions can
fail arbitrarily badly. However, there may be relatively
simple policies which perform well. This has lead to

recent interest in policy search algorithms, in which the
reinforcement signal is used to modify the policy di-
rectly (Ng & Jordan, 2000; Roy & Thrun, 2002; Strens
& Moore, 2002).

For many problems, a positive reward is only achieved
at the end of a task if the agent reaches a “goal” state.
For complex problems, the probability that an initial,
random policy would reach such a state could be van-
ishingly small. A widely used methodology to address
this problem is shaping (Colombetti & Dorigo, 1994;
Mataric, 1994; Ng et al., 1999; Randlgv, 2000). Shap-
ing is the introduction of small rewards to reward par-
tial progress toward the goal. A shaping function eases
the problem of backing up rewards, since actions are
rewarded or punished sooner.

When a policy changes, estimating the resulting
change in values can be difficult, requiring the new
policy to interact with the MDP for many episodes.
In this paper we introduce a method of transforming a
stochastic MDP into a deterministic one. Under cer-
tain conditions on the original MDP, and given a shap-
ing reward of the proper form, the deterministic MDP
can be used to estimate the value of any policy with
respect to the original MDP. This leads to an online
algorithm for policy search: simultaneously estimate
the parameters of a model for the transformed, deter-
ministic MDP, and use this model to estimate both the
value of a policy and the gradient of that value with
respect to the policy parameters. Then, using these es-
timates, perform gradient descent search on the policy
parameters. Since the transformation captures what
is important about the original MDP for planning, we
call our method the “essential dynamics” algorithm.

1.1 RELATIONSHIP TO ADAPTIVE
CONTROL

A control law is a function from state to action, and is
thus a policy. The study of adjusting the parameters
of a control law in response to interaction with the

system being controlled is known as adaptive control
(Astrom & Wittenmark, 1995). A loss function is the
cost, summed over future timesteps, that is to be min-
imized, and is thus analogous to the (negative of the)
value function. In control theory, model learning is
called system identification, while excitory inputs are
the most common form of exploration.

The essential dynamics algorithm can be seen as a gen-
eralization of the linear quadratic regulator (Dorato
et al., 1995). Let x be a vector of the current state
minus the desired state. In a linear quadratic regula-
tor, the next state is modelled as a linear function of
both state z and action u, plus some noise:

xz(t+ 1) = Az(t) + Bu(t) + Ce(t)

where A, B and C' are matricies and e(t) is a vector
of uncorrelated zero mean Gaussian random variables
(white noise). If the loss function is

T
V =E[Y z(t)'Qx(t) + u(t) Ru(t)]
t=0

then the optimal control law is of the form wu(t) =
—Kuz(t). If A, B and C have been estimated then it is
straightforward to compute the future z(¢) and V as a
function of K and z(0). V is quadratic in K, and the
minimizing K is easily found.

It is worth remarking that sixty years after the foun-
dation of the field, linear models and linear control
laws are still the norm, and are used extensively in
practical systems. They are used primarily in requla-
tor problems, where the goal is to stay near to a given
desired state. In generalizing to the entire state space,
we thus take as our underlying assumption that the
model is locally linear, that is, that its second deriva-
tive w.r.t. state is small. As a result, the policy may
be non-linear as well. We define our value function to
be a limited horizon sum of the shaping reward, which
we restrict to be quadratic.

With arbitrary functions for our model and policy, it is
no longer possible to algebraically minimize the value
function. Instead, we perform gradient descent. That
is, given some initial parameters for the policy, we can
compute not only the expected state and reward over
the next T timesteps, but the derivative of the those
with respect to each parameter in the policy. We then
move the parameters in the direction that increases
reward. While we are no longer guaranteed a single
local optima, the similarity to the control theory case
suggests that, at least for policies that are “similar”
to a linear combination of state, the value should be
roughly quadratic in the policy parameters.

The next section gives an overview of the technique,
developing the intuition behind it. In section 3 we de-

scribe the mathematical foundations of the algorithm,
including bounds on the difference between values in
the original and transformed MDPs. Section 4 de-
scribes an application of this technique to learning to
ride a bicycle. The last section discusses these results,
comparing them to previous work. On the bicycle rid-
ing task, given the simulator, the only domain knowl-
edge needed is a shaping reward that decreases as lean
angle increases, and as angle to goal increases. Com-
pared to previous work on this problem, a near opti-
mal policy is found in dramatically less simulated time,
and with less domain knowledge. Section 5 briefly de-
scribes the control of a five degree of freedom robot
arm atop a Segway base, where the state space has 14
continuous dimensions, and the action space 5 dimen-
sions. The only domain knowledge needed is inverse
kinematics (which, in this case, simply involves high
school trigonometry). The resulting policy is able to
move the wrist to any desired location and to level the
wrist, throughout a wide range of its workspace.

2 OVERVIEW OF THE ESSENTIAL
DYNAMICS ALGORITHM

In the essential dynamics algorithm we learn a model
of how state evolves with time, and then use this model
to compute the value of the current policy. In addi-
tion, if the policy and model are from a parameterized
family, we can compute the gradient of the value with
respect to the parameters.

In putting this plan into practice, one difficulty is that
state transitions are stochastic, so that the expected
cumulative reward must be computed. One way to
compute this is to generate many trajectories and av-
erage over them, but this can be very time consum-
ing. Instead we might be tempted to estimate only
the mean of the state at each future time, and use the
rewards associated with that. However, we can do bet-
ter. If the reward is quadratic, the expected reward is
particularly simple. Given knowledge of the state at
time ¢, we can then talk about the distribution of pos-
sible states at some later time. Because the state is a
vector of real numbers, the expected state is well de-
fined. Given a distribution of states, let § denote the
expected state. Then

Elr(S)] = /(a(s 52 4+ b(s — 5) +) P(s)ds
avar(s) + b(s — 3) + ¢
= avar(s) +c, (1)

where a, b & ¢ depend on r and s.

Thus, to calculate the expected reward, we don’t need
to know the full state distribution, but simply its mean

and variance. Therefore, our model should describe
how the mean and variance evolve over time. If the
state transitions are “smooth,” they can be approxi-
mated by a Taylor series. Let 7 be the current policy,
and let p.(s) denote the expected state that results
from taking action m(s) in state s. If 5; denotes the
mean state at time ¢, and o7 the variance, and if state
transitions were deterministic, then to first order we
would have

Mo (gt)

dtr ? 2

—(s o;.
(Ys0) o
For stochastic state transitions, let v, (s) be the vari-
ance of the state that results from taking action 7(s)
in state s. It turns out that the variance at the next

time step is simply v, (s) plus the transformed variance
from above, leading to

Sty1 A

2
0441

M (St)

_ dpe ,\°
Ut2+1 ~ V’T<St)+(ds(8t)) o7 (2)

St41 =

Thus, we learn estimates i and U of u and v respec-
tively, use (2) to estimate the mean and variance of fu-
ture states, and (1) to calculate the expected reward.
The resulting algorithm, which we call the expected
dynamics algorithm, is presented in Figure 1.

3 ALGORITHM DERIVATION

A Markov Decision Process (MDP) is a tuple
(S,D,A, P, ,,7,v) where: S is a set of states; D :
S — R is the initial-state distribution; A is a set of
actions; Ps o, : S — R are the transition probabilities;
r:SxA— Ris the reward; and ~ is the discount fac-
tor. This paper is concerned with continuous state and
action spaces, in particular we assume S = R"s and
A =R". We use subscripts to denote time and super-
scripts to denote components of vectors and matrices.
Thus, si denotes the ith component of the vector s at
time ¢.

A (deterministic) policy is a mapping from a state to
the action to be taken in that state, m : S — A.
Given a policy and a distribution P; of states at
time ¢, such as the initial state distribution or the
observed state, the distribution of states at future
times is defined by the recursive relation P,1(s) =
Js Py (s (8)Pr(s")ds’ for 7 > t. Given such a dis-
tribution, we can define the expectation and the co-
variance matrix of a random vector x with respect
to it, which we denote E;[x] and cov,(x) respectively.
Thus, Eiz] = [2P(z)dz and covy’(z) = Eif(z" —
E:[2'])(2? — E:[27])]. When P; is zero except for a

Suppose the policy depends on a vector of param-
eters §. When interacting with the MDP, at every
time ¢ after having taken action a;_1 in state s;_1
and arriving in state s;:

L. fi(st—1,ai-1) < 5¢

2. 17(8t717at71) — (St - ll(stflyatfl))g

3. So =S
4. 62 =0
5 V=0
6. For every 7in 1 ...n:

(a) 8r = (371, 7(5:-1))
(b) 62 =0(5,—1,m(5,-1))+

2
(¢) 7r = 2 L1 (5)52 4 1(5,)

(A) V=V4+~""17,

7. Update the policy in the direction that in-
creases V: 0 =0 + a%‘g

Figure 1: The essential dynamics algorithm for a one
dimensional state space. The notation f(z) <« a
means “adjust the parameters that determine f to
make f(x) closer to a,” e.g. by gradient descent.
fx(s) = (s, 7(s)), and Wd"is(s)(i_l) is the derivative
of fir(s) with respect to s, evaluated at 5,_1.

single state s;, we introduce E[z|s;] as a synonym for
E;[z] which makes the distribution explicit.

Given an MDP, we define the limited horizon
value function for a given policy as Vi(s;) =
S AT, [r(s,, w(s,))] where the probability den-
sity at time t is zero except for state s;. Also given
a policy, we define two functions, the vector val-
ued mean p,(s) and covariance matrix v,(s) of the
next state. Thus, pr(st) = E[sey1]st] and ve(st) =
E[(st1 — s (50)) (se41 — pin(5)) " [54]. In policy search,
we have a fixed set of policies IT and we try to find one
that results in a value function with high values.

We transform the stochastic MDP M to a determin-
istic one M’ = (S, sp, A, f',r', ') as follows. A
state in the new MDP is an ordered pair consisting
of a state from S and a covariance matrix, denoted
(s,X). The new initial state s, = (Ep[s],covpls]).
The new action space is the set of all possible poli-
cies for M, that is A’ = {w|r : A — S}. The state
transition probabilities are replaced with a (determin-

istic) state transition function f'(s;,a;), which gives
the unique successor state that results from taking ac-
tion a; = 7 in state s; = (s¢, X¢). We set f'(s},a}) =
F(502 Sor) = (i), v (30) + (Vi) SV i)). The

reward r'(s,2,7) = r(s) + %tr({gg}(s)} Y) where

[ggj (s)} denotes the matrix of second derivatives of

r with respect to each state variable. Finally, v = ~.
The strength of the method comes from the theorems
below, which state that the above transform approx-
imately captures the dynamics of the original proba-
bilistic MDP to the extent that the original dynamics
are “smooth.” More specifically, the conditions are
that: we have a good estimate of expected state and
variance at a given time; the second partial derivatives
of p, are all small; the first partials of v, are all small;
the third partials of r are small; the gradient of pu,
is bounded; and the first four moments of the state
distribution are bounded at every time.

Under these conditions the transformed MDP will re-
sult in good estimates at later times, and hence the re-
ward and value functions will also be good estimates.
Note that no particular distribution of states is as-
sumed. The most unusual conditions are that the re-
ward r be roughly quadratic, and that the value func-
tion is limited horizon, that is, includes only a limited
number of future rewards. This motivates the use of
shaping rewards. The first theorem bounds the error
in approximating state, the second in covariance, the
third in reward and the fourth in value. The heart of
the first three proofs is simply a Taylor series expan-
sion of the specified function, using the Lagrange form
of the remainder. The fourth proof uses the familiar
sum of an exponential series.

Theorem 1 Fixz a time t, a policy w, and a distri-
bution of states P,. Choose M, and M such that

2
o S () < My, 9GOl < M
and ||cove(se, st)||lF < M, where |||F denotes the
Frobenius norm. Let §; be given, and define S;41 =
pr(8e), € = Eylse] — 3¢ and €, = Ey[si41] — 8pq1.
Then |lej || < (€]l + M) (3M + 5l€;]|).-

Theorem 2 Suppose M, and M are chosen so

.4 2
that Vs, \/z;f;.,k_l (%) < Mo, Bl -
Edsdl¥llr < M for & = 1,2,3,4, ||5:1] =
lux(3:)l < M and all the conditions of Theorem
1. Let Xy be gz’yen, and define 77, = I/i’j(ét)~+
(V/J,z(gt))TEt(V/,LJ (gt)) Let EtE = COVt(St,St) — Et,
similarly for €7,,. Then

lerialle < (e |+ lle; |+ M+ M,) M (10+0(]|€)))-

, 2
Theorem 3 Suppose Vs, \/Z:L]k_l <%(s)) <

b

2 ~ 2 ~
M, \/Zns (25:0) < M and [Vel < M

i,j=1

and the conditions of the previous two theorems. Let
€) = E¢[r(st)] —1(8¢). Then Eir(s:)] =7'(8:) + €} =
r(8) + %tr([aa;rj} >y) 4 € where

< (e + il + 24 (31-+ 0(1c)
Theorem 4 Fix a time t and a policy 7, and a distri-
bution of states P;. Let §, and 3y be given, and define
3, and o, forT=t+1...t+n recursively as in The-
orems 1 and 2 above. Let M. be an upper bound for
|e7| for all T € [t,t +n]. Then under the conditions of
the above three theorems, E[V (s;)] = V'(5;)+¢; where

_ +1
| < 15— M.

The proofs have been omitted for brevity, but are avail-
able in Martin (2003).

4 EXPERIMENT: LEARNING TO
RIDE A BICYCLE

The code used for all experiments in this paper
is available from www.metahuman.org/martin/Re-
search.html.

The essential dynamics algorithm was applied to
Randlgv and Alstrgm’s bicycle riding task (Randlgv,
2000), with the objective of riding a bicycle to a goal 1
km away. The five state variables were simply the lean
angle, the handlebar angle, their time derivatives, and
the angle to the goal. The two action dimensions were
the torque to apply to the handlebars and the horizon-
tal displacement of the rider’s center of mass from the
bicycle’s center line. The stochasticity of state transi-
tions came from a uniform random number added to
the rider’s displacement. If the lean angle exceeded
/15, the bicycle fell over and the run terminated.

If the variance of the state is not too large at every time
step, then the variance term in the transformed reward
can simply be considered another form of error, and
only 2 need be estimated. This was done here. The
task is not naturally divided into discrete time steps,
but rather state and action are continuous in time.
Rather than arbitrarily discretize time, a continuous
time formulation was used where, instead of estimating
the next state, their derivatives were estimated. The
model was of the form

ds’

ot

where ¢(s,a) was a vector of features and w' was a
vector of weights. The features were simply the state

= flapi (8, a) =w- ¢(57 CL)

and action variables themselves. The derivative of each
state variable was estimated using gradient descent on
w® with the error measure err; = %—S; —w' - ¢(s,a)l
and a learning rate of 1.0. This absolute value error
measure was found to work better than the more tra-
ditional squared error. The squared error is minimized
by the mean of the observed values, whereas the ab-
solute value is minimized by the median (Press et al.,
1992). The median is a more robust estimate of central
tendency, i.e. less susceptible to outliers, and therefore
may be a better choice in many practical situations.

Model estimation was done online, simultaneous with
policy search. In the continuous formulation, the
value function is Vj (s) = :Jrn YT E (s, 7(s,))]dT
The future state was estimated using Euler integration
(Press et al., 1992). While the bicycle simulator also
used Euler integration, these choices were unrelated.
In fact, the timesteps were different, with At = 0.01
sec for the bicycle simulator and 0.051sec for integrat-
ing the estimated reward. The horizon for the value
function was 1.53sec, that is, 30 integration steps.

The shaping reward was the square of the angle to goal
plus 10 times the square of the lean angle. The policy
was a weighted sum of features, with a small Gaussian
added for exploration, 7(s) = 0-¢(s)+N(0,0.05). The
features were simply the state variables themselves.
When the model is poor or the policy parameters are
far from a local optimum, dV/96 can be quite large,
resulting in a large gradient descent step which may
overshoot its region of applicability. This can be ad-
dressed by reducing the learning rate, but then learn-
ing becomes interminably slow. Thus, the gradient de-

scent rule was modified to % = fa%. Near

an optimum, when [|0V/00|| < 8, this reduces to the
usual rule with a learning rate of «/3. In this experi-
ment, o = 0.01 and 8 = 1.0.

A graph of episode time vs. learning time is shown in
Figure 3. After falling over between 40 and 60 times,
the controller was able to ride to the goal or the time
limit without falling over. After a single such episode,
it consistently rode directly to the goal in a near mini-
mum amount of time. The resulting policy was essen-
tially an optimal policy.

5 EXPERIMENT: A ROBOT ARM
ON A DYNAMIC BASE

Cardea (Brooks, 2003) is a humanoid robot consist-
ing, during this experiment, of a five degree of freedom
arm on a Segway RMP. The Segway is essentially an
inverted pendulum, and it’s controller that can’t be
modified. The state space consisted of the five revo-
lute joint angles, the tilt angle and fwd/back position

— 1000+
800-
600-
400-
200

length of episode (sec

0 1000 2000 3000 4000 5000
simulated time (sec)

0.1

0] N M/\ 7 /‘/M\

] w \VM

-0.1-
0.2 -
0.3 -
-0.4 -

angle to goal (radians)

-05 9 '50 100 150 200 250 300 350
simulated time (sec)

Figure 2: The upper graph shows length of episode vs.
training time for 10 runs. The dashed line indicates
the optimal policy. Stable riding was achieved within
200 simulated seconds. The lower graph shows angle
to goal vs. time for a single episode starting after 3000
simulated seconds of training.

of the base, and their time derivatives, for a total of 14
dimensions. An action was vector of five joint torques.
Cardea was simulated using the Open Dynamics En-
gine (Smith, 2003), and the results are currently being
applied to the actual robot. For more details, see Mar-
tin (2004).

The goal was simply to achieve a given end effector
position. The desired angles (and associated shaping
reward) could change between episodes, which means
this isn’t a single task, but rather a family of tasks.
As in many robotics tasks, it is easier to plan in
state space than in action space. Therefore, an in-
verse model (Atkeson et al., 1997) was learned, which
mapped the desired next state to action, along with an
inverse policy, mapping current state and goal state to
the desired next state. It was straightforward to mod-
ify the essential dynamics engine to perform this.

The model was a linear combination of features, where
the features were products of various subsets of: the
sin and cosine of all angles, base position, all veloci-
ties, desired acceleration and a constant (1). The pol-
icy was a linear combination of features, where the
features were simply the state variables and desired
joint angles. Gaussian noise was added to the desired
torques to ensure exploration. The algorithm parame-

&=}

£

— 0.3

8

—

$ 02

o

2

Z 01

A

n

= 0

A~ 0 50 100 150
simulated time (min)

Bl

<

.

£

e

kS,

2

4

- 05

&

=

50

=

3

n

= 0

o 0 50 100 150

simulated time (min)

Figure 3: Position error and angular velocity vs. sim-
ulated time, at the end of every episode. Averaged
over 20 runs, with actions randomly perturbed for ex-
ploration. The algorithm ran slightly faster than real
time.

ters were only tuned to within an order of magnitude.
The shaping reward was simply the sum of the squared
error in each joint angle.

A 990 MHz mobile Pentium ITI processed 3000 episodes
per hour, slightly faster than real time. A graph of the
error in joint angles and joint velocities at the end of
every episode is shown in Figure 3. After three or four
minutes, the policy was good enough to allow the arm
to stay in the air without hitting the base or itself.
By half an hour it reached most goals from most ini-
tial positions, although it slowly oscillates around the
target. After four hours the workspace had widened
considerably, while the oscillation was greatly reduced.

6 DISCUSSION

For learning and planning in complex worlds with con-
tinuous, high dimensional state and action spaces, the
goal is not so much to converge on a perfect solution,
but to find a good solution within a reasonable time.
Such problems often use a shaping reward to acceler-
ate learning. For a large class of such problems, this
paper proposes approximating the problem’s dynamics

in such a way that the mean and covariance of the fu-
ture state can be estimated from the observed current
state. We have shown that, under certain conditions,
the rewards in the approximation are close to those
in the original, with an error that grows boundedly as
time increases. Thus, if the value function has a lim-
ited horizon, the resulting values will approximate the
values of the original system. Learning in this trans-
formed problem is considerably easier than in the orig-
inal, and both model estimation and policy search can
be achieved online.

The algorithm can be seen as a generalization of the
linear quadratic regulator, an adaptive control theory
technique. We consider the success of linear models in
many practical regulator problems over half a century
to indicate that the dynamics of many problems are
locally linear. For these problems, we extend work on
regulators (which are only interested in the state near
the desired) to general control algorithms (able to work
in the entire state space) by using an arbitrary function
approximator for both model and policy, but assuming
that the second derivative of the model with respect
to state is small. An extra benefit comes if the policy
is roughly a weighted sum of the state variables. In
that case the value is roughly quadratic in the policy
parameters, so the search problem is roughly convex
and we would expect all local minima to be clustered
around the global minima.

To gain insight into how the algorithm compares to
existing techniques, and how it works on an existing
problem, it was applied to the bicycle riding task of
Randlgv and Alstrgm, which has also been tackled by
the PEGASUS algorithm of Ng and Jordan (2000).
They describe the PEGASUS algorithm in terms of
MDPs, but the algorithm does not exploit the struc-
ture of MDPs and can be described more simply with-
out them.

Given a family of policies parameterized by a vector
0, the PEGASUS algorithm attempts to find the 0
that maximizes the total expected reward. It requires
a simulator which it treats as a black box function
f that, given policy parameters 6 and a sequence of
(pseudo-) random numbers &, returns the total reward.
Thus, PEGASUS attempts to estimate E¢[f(0,&)],
where f is deterministic, although ¢ is random. This is
a traditional operations research problem, and PEGA-
SUS applies the variance reduction technique known
as common random numbers (see section 5 of Gaver
(1969), section 11.7 of (Fishman, 1973)). Specifically,
a number of £s are generated, and that one set of s is
used for all fs. A thorough theoretical analysis of this
technique can be found in Gal et al. (1984).

The bicycle riding task is a good example of a problem

where the value function can be quite complicated, yet
a simple policy is near optimal. Randlgv, using a tradi-
tional value function approximation approach, needed
to augment the state with the second derivative of the
lean angle () and provide shaping rewards (Randlgv,
2000). The resulting algorithm took 1700 episodes to
ride stably, and 4200 episodes to get to the goal for
the first time. The resulting policies tended to ride in
circles and precess toward the goal, riding roughly 7
km to get to a goal 1km away.

Both the essential dynamics algorithm and the PE-
GASUS algorithm are policy search algorithms where
the policy is a weighted sum of features, and both find
policies within 1% of optimal. In fact, a random search
of policies can find such near optimal ones quickly. We
tested this experimentally', and found that 0.55% of
random policies consistently reached the goal when Q
was included in the state, and 0.30% when it wasn’t.
What’s more, over half of these policies had a path
length within 1% of optimal. Policies that rode sta-
bly, but not to the goal, were obtained 0.89% and 0.24
% of the time respectively. Thus, a random search of
policies needs only a few hundred episodes to find a
near optimal one.

Turning to learning time, the essential dynamics al-
gorithm took 40 to 60 episodes to ride stably, that
is, to the goal or until the time limit without falling
over. After a single such episode, the policy consis-
tently rode directly to the goal in a near minimum
amount of time. In contrast, PEGASUS used at least
450 episodes to evaluate each policy?. One reasonable
initial policy is to always apply zero torque to the han-
dlebars and zero displacement of body position. This
falls over in an average of 1.74 seconds, so PEGASUS
would need 780 simulated seconds to evaluate such a
policy. The essential dynamics algorithm learns to ride
stably in approximately 200 simulated seconds, and in
the second 780 simulated seconds will have found a
near optimal policy.

LOur experiment contained two conditions, namely with
or without €2 in the state, resulting in 5 or 6 state variables.
The features were the state variables themselves, state and
action variables were scaled to roughly the range [-1, +1],
weights were chosen uniformly from [-2, +2], and each pol-
icy was run 30 times. In 100,000 policies per condition,
549 (0.55%) reached the goal all 30 times when was in-
cluded, and 300 (0.30%) when it wasn’t. For such policies,
the median riding distance was 1009m and 1008 m respec-
tively. The code used is available on our web site.

2Ng and Jordan (2000) evaluated a given policy by sim-
ulating it 30 times. The derivative with respect to each
of the 15 weights was evaluated using finite differences, re-
quiring another 30 simulations per weight, for a total of
30x15 = 450 simulations. In general, the starting weights
at a given stage are often evaluated during the previous
stage, so only the derivatives need to be calculated.

A closer look at the algorithms explains the dispar-
ity of learning times. In value and Q-learning, as well
as REINFORCE style policy search, a single episode
gives a sample of the value for every state visited. That
is, the reward from a given timestep is used to update
the value of every previous state. The simulator in
PEGASUS, on the other hand, returns only the dis-
counted reward from the initial state, which is much
less information per episode.

The essential dynamics algorithm achieved its perfor-
mance using very little domain knowledge. Q) was not
needed in the state, and the features were trivial. The
experiments in section 4 added the square of the lean
angle to the shaping reward, but did not use any in-
formation about dynamics (i.e. velocities or acceler-
ations), nor about the handlebars. In fact, the shap-
ing reward simply corresponded to the common sense
advice “stay upright and head toward the goal.” A
final advantage of the algorithm is that it can be used
for online learning, or can learn from trajectories pro-
vided by other policies, that is, it can be an off-policy
method.

These advantages allowed it to learn to control a robot
arm on a Segway base, a problem with a 14 dimen-
sional state space and 5 dimensional action space. This
is remarkable, because existing applications of policy
search are typically 5 or 6 dimensions, with a single
example of an 8 dimensional search. The algorithm
was easily modified to learn an inverse model and pol-
icy, and parameters were only tuned to within an order
of magnitude. The shaping reward was again a sim-
ple function of position, yet the algorithm learned to
include damping in the policy.

However, these advantages do not come without draw-
backs. It needed many times more computing power
per simulated second than PEGASUS, although it was
still faster than real time on a 1GHz mobile Pentium
II1, and therefore could presumably be used for learn-
ing on a real bicycle. It only does policy search in
an approximation to the original MDP, so an optimal
policy for this approximate MDP won’t, in general, be
optimal for the original MDP. The theorems in section
3 give bounds on this error, and for bicycle riding this
error is small.

As well, it relies on the state being a continuous func-
tion of the previous state. When the algorithm was
applied to a simulation of a bipedal walking robot, it
failed to accurately predict future state when a joint
limit was reached, where an angular velocity instan-
taneously dropped to zero. This prevented the policy
search from finding a policy that could take even a
single step, even with the help of a user provided hi-
erarchical decomposition.

7 CONCLUSION

For many problems (e.g. NP-hard problems), the op-
timal solution can take far too long to find. Thus, it
is little comfort to know that a given algorithm would
eventually converge to the optimal solution. In such
domains, it may be more useful to quickly find an ap-
proximate solution, even if there is a lower bound on
the solution’s error. The essential dynamics algorithm
does just that, approximating a given MDP by a deter-
ministic one, thus greatly speeding up learning. When
applied to the bicycle riding domain, it finds a near
optimal solution in orders of magnitude less time than
previous approaches. It has also allowed us to con-
trol a simulation of a robot arm on a Segway base,
a problem of far higher dimensionality than previous
applications.

And it accomplishes this in a few hours with very lit-
tle domain knowledge. Crossing control theory tech-
niques with reinforcement learning seems to hold much
promise.

ACKNOWLEDGEMENTS

The author would like to thank Kevin Murphy, Leslie
Kaelbling, Russ Tedrake, Ali Rahimi, and Eduardo
Torres-Jara for enlightening comments and discussions
of this work. This work was funded by DARPA under
contract number DABT 63-00-C-10102.

References

Astrom, K. J., & Wittenmark, B. (1995). Adaptive
control. Addison-Wesley. 2nd edition edition.

Atkeson, C. G., Moore, A. W.; & Schaal, S. (1997).
Locally weighted learning for control. Artificial In-
telligence Review, 11, 75-113.

Baxter, J., & Bartlett, P. (2000). Reinforcement learn-
ing in pomdp’s via direct gradient ascent. Proc. 17th
Intl. Conf. on Machine Learning.

Brooks, R. (2003). Cardea web site.
http://www.ai.mit.edu/projects/cardea.

Colombetti, M., & Dorigo, M. (1994). Training agents
to perform sequential behavior. Adaptive Behavior,
2, 247-275.

Dorato, P., Abdallah, C. T., & Cerone, V. (1995). Lin-
ear quadratic control: Amn introduction. Prentice-
Hall.

Fishman, G. S. (1973). Concepts and methods in dis-
crete event digital simulation. John Wiley & Sons.

Forbes, J., & Andre, D. (2000). Real-time reinforce-
ment learning in continuous domains. AAAI Spring
Symposium on Real-Time Autonomous Systems.

Gal, S., Rubinstein, R. Y., & Ziv, A. (1984). On the
optimality and efficiency of common random num-

bers. Math. Comput. Simulation, 26, 502-512.

Gaver, D. P. (1969). Statistical methods for improv-
ing simulation efficiency. Proc. of the third conf. on
Applications of simulation (pp. 38—-46).

Martin, M. C. (2003). The essential dynamics al-
gorithm: Essential results (Technical Report AIM-
2003-014). Massachusetts Institute of Technology,
Artificial Intelligence Lab.

Martin, M. C. (2004). Controlling cardea: Fast policy
search in a high dimensional space. Proc. 21st Intl.
Conf. on Machine Learning (ICML 04) in submis-

sion.

Mataric, M. J. (1994). Reward functions for acceler-
ated learning. Proc. 11th Intl. Conf. on Machine
Learning.

Ng, A., et al. (1999). Policy invariance under reward
transformations: Theory and applications to reward
shaping. Proc. 16th Intl. Conf. on Machine Learning
(pp. 406-415).

Ng, A., & Jordan, M. (2000). Pegasus: A policy search
method for large mdps and pomdps. Uncertainty in
Artificial Intelligence (UAI), Proc. of the Sizteenth
Conf. (pp. 406-415).

Press, W. H., Teukolsky, S. A., Vetterling, W., & Flan-
nery, B. (1992). Numerical receipes: The art of sci-
entific computing. Cambridge University Press. 2
edition.

Randlgv, J. (2000). Shaping in reinforcement learning
by changing the physics of the problem. Proc. 17th
Intl. Conf. on Machine Learning (pp. 767-774).

Roy, N., & Thrun, S. (2002). Motion planning through
policy search. Proceedings of the Conference on In-
telligent Robots and Systems (IROS). Lausanne,
Switzerland.

Smith, R. (2003).
http://ql2.org/ode/.

Strens, M. J. A., & Moore, A. (2002). Policy search us-
ing paired comparisons. Journal of Machine Learn-
ing Reserach, 3, 921-950.

Open dynamics engine.

