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Abstract

In this paper, we propose a new Bayesian re-
ceiver for signal detection in flat-fading chan-
nels. First, the detection problem is formu-
lated as an inference problem in a hybrid
dynamic system that has both continuous
and discrete variables. Then, an expectation
propagation algorithm is proposed to address
the inference problem. As an extension of
belief propagation, expectation propagation
efficiently approximates a Bayesian estima-
tion by iteratively propagating information
between different nodes in the dynamic sys-
tem and projecting exact messages into the
exponential family. Compared to sequential
Monte Carlo filters and smoothers, the new
method has much lower computational com-
plexity since it makes analytically determin-
istic approximation instead of Monte Carlo
approximations. Our simulations demon-
strate that the new receiver achieves accu-
rate detection without the aid of any training
symbols or decision feedbacks.

1 Introduction

Due to the increased use of various wireless services
in our daily life, signal detection in flat Rayleigh
fading channels has become an important research
topic.  Different approaches have been proposed
to adress this problem [D’Andrea et al., 1995,
Vitetta and Taylor, 1995, Hoeher and Lodge, 1999,
Chen et al., 2000, Wang et al., 2002] Among them,
sequential Monte Carlo filters and smoothers have
been used [Chen et al., 2000, Wang et al., 2002].
The authors first formulate signal detection as an
estimation problem in a hybrid dynamic system
that has both continuous and discrete variables.
Then they apply sequential Monte-Carlo filters
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and smoothers to approximate the Bayesian esti-
mation, by drawing samples from a subpace that

is marginalized over continuous variables. Excel-
lent simulation performance has been achieved
in [Chen et al., 2000, Wang et al., 2002]. However,

despite their capability for obtaining accurate esti-
mation, Monte Carlo filters and smoothers have high
computational complexity.

In this paper, we develop an expectation propagation
(EP) algorithm for hybrid dynamic systems and ap-
ply it to signal detection in flat-fading channels. Ex-
pectation propagation, a powerful extension of belief
propagation, was proposed in the statistical machine
learning community [Minka, 2001]. Belief propaga-
tion has been widely used in digital communications,
such as Turbo decoding [McEliece et al., 1998]. How-
ever, belief propagation can handle only discrete dis-
tributions or continuous distributions in the exponen-
tial family. In contrast, expectation propagation not
only iteratively propagates the information in the dy-
namic system, but also projects exact messages into
the exponential family. As a result, expectation prop-
agation can efficiently approximate Bayesian integrals
for a variety of distributions. Compared to sequential
Monte Carlo filters and smoothers, expectation propa-
gation has much lower computational complexity since
it makes analytically deterministic approximation, in-
stead of Monte Carlo approximations. Our simulations
demonstrate that the new EP receiver achieves accu-
rate detection without the aid of any training symbols
or decision feedbacks.

2 Problem Formulation

A wireless communication system with a fading chan-
nel can be modeled as [Chen et al., 2000]
yt:stat—i—wt, tZO,L (1)

where y;, s¢,ap and w; are the received signal, the
transmitted symbol, the fading channel coefficient,



and the complex Gaussian noise N, (0, 0%) respectively.
The symbols s; take values from a finite alphabet
set A = {a;}M,. The fading coefficients o; can be
modeled by a complex autoregressive moving-average
(ARMA) process as follows:

P P
ap = E Oive—; — E Pi0s_;
i=0 i=1

where © = {6;} and ® = {¢;} are the ARMA coef-
ficients, and v; is the white complex Gaussian noise
with unit variance.

In this paper, we only consider the uncoded case,
where each alphabet in A has an equal prior proba-
bility. For this case, the communication system can
be rewritten as a state-space model:

x; = Fxy_1 + givy (2)
Yt = sthfx; +w, (3)
where
—¢1 —¢2 . —¢p 0 1
1 0 0 0 0
F = 0 1 0 0 b) g = . b)
0 0 1 0 0
h = [0y, 01,...,0,]",

and the dimension of x is d = p + 1. Note that H
means hermitian transpose.

The signal detection problem can then be formulated
as an inference problem in the dynamic system de-
fined by (2) and (3). We address this problem us-
ing a Bayesian approach. That is, we update the
posterior p(s¢, X¢|y1.t+1—1) based on the observations
Y1t+rL—1 = [Y1,- -, Yt+L—1]. We set L > 0 for smooth-
ing to improve the estimation accuracy.

If a dynamic system is linear and has Gaus-
sian noises, then we can use Kalman filtering
and smoothing to efficiently compute the posterior
p(St,Xe|y1:640—1). Otherwise, we need to resort to
other advanced techniques to approximate the pos-
terior. Instead of using the sequential Monte Carlo
method [Chen et al., 2000, Wang et al., 2002], we uti-
lize expectation propagation to efficiently approximate
the posterior p(st, X¢|y1:441-1)-

3 Expectation Propagation for Hybrid
Dynamic System

In this section, we develop the expectation propagation
algorithm for the hybrid dynamic system (2) and (3).

Expectation propagation exploits the fact that the
likelihood is a product of simple terms. If we ap-
proximate each of these terms well, we can get a good
approximation to the posterior. Expectation propaga-
tion chooses each approximation such that the poste-
rior using the term exactly and the posterior using the
term approximately are close in KL-divergence. This
gives a system of coupled equations for the approxi-
mations which are iterated to reach a fixed-point.

Specifically, the exact posterior distribution is propor-
tional to a product of observation densities and tran-
sition densities as follows:

o(st, x¢) = p(ye|st, x¢) (4)
Ge(8¢, X, Se41,Xe41) = D(St41, Xe41(5¢, X¢) (5)
= p(X¢t1/x¢)p(5¢41) (6)
p(s1.r, X7 |y11) o< p(s1,%x1)o(s1,X1)-
T

: H gt—l(St—lyxt—la St Xt)0(5t7 Xt)
i=1
(7)

Equation (6) holds because s;’s are independent to
each other at different times in the dynamic model.

Then we approximate the posterior by the product of
the independent terms:

T
p(sl:T7X1:T|y1:yT) ~ HQ(Suxz) (8)
i=1
Correspondingly, the  terms  o(s;,x¢) and

are approximated by
To decouple the

9¢(56,X¢, Se41,Xe41) in (7)
0(se,x¢) and G (S¢, X¢, Sp41, Xeg1)-
states in (7), we set

ét(st, Xty St+1, Xt+1) = §t(st, Xt)gt(st+17 Xt+1)~

We can interpret these approximation terms as
messages that propagate in the dynamic system:
o(st,x¢) is an observation message from y; to (s, X)),
Gt(St4+1,Xe4+1) a forward message from (s, xt) to
(St+1,X¢+1), and Ge(s¢,x¢) a backward message from
(St+1,X¢+1) to (s¢,x¢). After all of these approxima-
tions are made, each approximate state posterior is a
product of three messages:

q(st,%e) = Gr—1(5¢,%¢)0(5¢,%¢) Ge (8¢, %)

= (forward)(observation)(backward)

In the following sections, we describe how to compute
and incorporate these messages.

3.1 Moment matching and observation
message update



First, consider how to update the state belief ¢(s;,x;)
using the observation data and, correspondingly, how
to generate the observation message .

Denote by ¢\°(s;,x;) the belief of the state (s;,x;)
before incorporating the observation message. We as-
sume x; and s; are both statistically independent and
in the exponential family, so that

0" (s1,%¢) = q"°(x¢)q"*(s¢)
0\(x:) ~ Ne(m,”, ;)
q\%(s) ~ Discrete(p;‘)l,p};, .. ,p})oM)
ACI \o — .
where p,’; is shorthand of ¢\°(s; = a;).

Given ¢\°(x;)q\°(s¢) and o(s¢,x;), we can obtain the
posterior (s, x¢):

o(xt,51)q\° (X1, 51)
S5, 0(86)0V (%, 5¢)

4(xt, 8¢) = 9)

Define Z = [, 0(s¢)q\°(x¢, 5¢). Then it follows that

Z=3 q“(s) / No(yrlseh™xp, %) N (), V%)
Xt

si€A
= Z q\o(st)N(yt|mwayt) (10)
si€A
where
m,, = s;h"'m,’, (11)
V,, = s:h"V,hs! 4 02, (12)

and NC(~\m>O, Vt\o) is the probability density function

. . o . o
of a Gaussian with mean of m,} and variance of V;\ .

However, we cannot keep §(x:, s;) as the new belief of
(s¢,x:¢) for message propagation. The reason is that
G(x¢, 8¢) is not in the exponential family and, there-
fore, we cannot keep updating the state belief in the
dynamic model analytically and efficiently. To solve
this problem, we project §(x¢, s¢) into an approximate
distribution q(x¢, s¢) in the exponential family:

q(st,x¢) = q(x¢)q(st) (13)
Q(Xt) NNc(mt; V;s) (14)

q(st) ~ Discrete(ps,1, pe2, - - -, Pe,0M) (15)

The projection criterion is to minimize the KL diver-
gence between ¢ and g. To this end, we match the

moments between ¢ and ¢:

PN (e m,, V)

Pt 7 (16)
\°(s )N (y|my,, V,, )m,,
m; = ZsteAq ( t) (yt| Yt yt) e (17)
Z
‘/t = Vzt|yt - mtmf]+
+ Z q\o(st)N(ytlmywVyt)mztlytmilyt/z
st€A
(18)
where

m,,,, =m,° + K, (y, — s:h"m?) (19
Vg = Vi — Ky, ,h 7V, (20)
K., =V, hs{'V,! (21)

Then we compute the observation message as follows:

~ Q(Xm St)
=——. 22
O(8t7xt) q\o(Xt, St) ( )
It follows that
0(st,xt) = 0(x¢)0(st) (23)
5(Xt> ~ N(ﬁt, /~\t) (24)
0(s¢) ~ Discrete(ry 1,72, -, 7e.M) (25)
where
o= AV Tmy = A(V) Tm,(26)
A= =)™ (27)

Note that the observation message is not necessarily
a valid probability distribution. For example, A; may
not be positive definite, or some of its elements may
even go to infinite. To avoid numerical problems, we
change fi, and A; to the natural parameterization of
the exponential family:
o= A =V me = (1) (28)
A= A7 =V = () (29)
Pt,j .
rt,joOJ forj=1,....,.M (30)
t,j

3.2 Incorporating forward, observation, and
backward messages

In this section, we describe how to incorporate the
messages to update ¢(s¢, x;). Because s;’s at differ-
ent times are independent, we consider only the belief
update for x; when incorporating forward and back-
ward messages. Since all the mariginal messages and
belief which are related to x; are Gaussians, we can
efficiently update them.



1. Compute and incorporate the forward message
Gi1(x¢). Set ¢\°(x;) = §s_1(x;) such that

m,” = Fm,_, (31)
V,\ =FV,_ F¥ 4+ ggH. (32)

mg and V{ are chosen as the prior. Also, set P; =
Vt\o, which will be used later when incorporating
the backward message.

2. Incorporate the observation message o(s;,x¢). In
the previous section, we compute 6(s;,x;) based
on the update of ¢(s¢,x¢). On the other hand,
given o(s¢, x¢) and qt\o(xt), we can update g(s¢, X¢)
by rewriting (28) to (30) as follows:

m; = Vi(p, + (V') 'm,”) (33)
Vi= (P 4+ A (34)
Py =reip, (35)

3. Incorporate the backward message g;(x;). With-
out explicitly computing the backward message
g:(x¢), we can directly incorporate §:(x:) into
q(x¢) as Kalman smoothing:

J, =V FHp! (36)
m; = m}b + Jt(mt+1 - Fm}b) (37)

Vi =V + 3(Ven 3P B (38)
\b yr\b
where (m,", V;"") and (my, V;) are the means and
variances of the state belief before and after incor-
porating the backward message respectively.

3.3 Propagation iteration

For a linear Gaussian dynamic model or a discrete dy-
namic model, it will be sufficient to infer the exact
posterior of any state given the whole observation se-
quence after propagating all the forward, observation,
and backward messages once. However, the hybrid
model of our interest is neither linear Gaussian nor
completely discrete. As shown in [Minka, 2001], by it-
erating message propagation, expectation propagation
will keep improving the approximation quality until it
converges to a local minimum of its energy function;
however, it is possible that expectation propagation
does not converge as belief propagation, though it is
rare in practice.

Given the knowledge of how to incorporate different
messages, we are ready to construct the whole expec-
tation propagation algorithm by establishing the iter-
ation mechanism.

1. Initialize:

prj = 1/M, for all j,

mgy = [1,1,...,1]7,
Vp = 100001,

w, =10,0,...,0]7,
Ay =0,

where I and O are the identity and zero matrices.

2. Then loop t=1:T:

(a) Set ¢\°(x;) to the forward message from x;_;
via (31) and (32).

(b) Update ¢(s¢,x:) to match the moments of
0(s4,%:)q\°(5¢,%;) via (16) to (18).

(c) Compute 6(s,%:) o< q(s¢,%¢)/q (8¢, %¢) via
(28) to (30).

3. loop by increasing ¢ until ¢ equals n, or the con-
vergence has been achieved:

(a) loop t =1,...,T (Skip on the first iteration)

i. Set ¢\°(x;) to the forward message from
x;—1 via (31) and (32).

ii. Set  q(s¢,x)  to  the  product
0(s¢,%:)q (54, %;) via (33) to (35).

(b) loopt="1T,...,1

. \b \b

i. Set m,” =m; and V," =V,

ii. Update g¢(s¢,x¢) by incorporating the
backward message via (36) to (38) when
t<T.

ili. Update q(s¢, x¢) and 6(s¢,x¢) as follows:

A. Delete the current observation message
from q(s¢,x¢). This is an important
step, in order to avoid double-counting
the observation message 6(s¢, X¢):

0\ (54, %4) o< q(s¢,%¢)/0(s¢,%4).
Then it follows that
m,” =V, (V, 'me - ), (39)
VY= (- AT (40)
P = pej/re (41)
B. Update ¢(s¢, x;) to match the moments
of o(s¢,%¢)q\°(s¢, %) via (16) to (18).

C. Compute via (28) to (30) 0(st,xt)
q(se, %) /4" (56, %)

Instead of smoothing over the whole sequence as de-
scribed above, we can use a sliding window, with or
without overlapping, to reduce time delay for online
estimation. It only requires some minor modifications
of the time indexes in the above algorithm.



3.4 Computational complexity

The total computation time of incorporating the for-
ward and observation messages via (31) to (35) is
O(d?) (d is the dimension of x;), same as one-step
Kalman filtering; incorporating the backward message
via (36) to (38) takes O(d?) as Kalman smoothing; and
finally updating q(s¢,x;) and 6(s¢, x¢) in step 3.(b).iii
costs O(d?) too. Furthermore, since the estimation
accuracy is not increasing after a few propagation it-
erations, the required number of iterations n is small.
In practice, we set n = 5. In sum, if the length of the
sliding window for smoothing is L, the computation
takes O(nLd?).

In contrast, if we use m samples in stochastic mix-
ture of Kalman filters, it takes O(mMd?) for one
step update, and O(mM?%d?) for L step smooth-
ing [Chen et al., 2000].

Comparing the computation time, we can see the ex-
pectation propagation algorithm takes much less com-
putation time than the sequential Monte Carlo filters
and smoothers, especially when the window length L
is large or a large number of samples need to be drawn.

4 Adaptive EP Receiver for
Flat-fading Channels

For the signal detection problem in flat-fading chan-
nels, we apply the expectation algorithm algorithm de-
veloped in section 3 to the wireless communication sys-
tem defined in (2) and (3), and decode the symbols s;
as

5 = {a;larg m?x{ﬁt7i}}. (42)

where p; ; is obtained after the convergence of the ex-
pectation propagation algorithm.

5 Simulation

In this section, we demonstrate the high performance
of the proposed EP receiver in a flat-fading channel
with different signal noise ratios. We model the fading
coefficients {a;} by the following ARMA(3,3) model,
as in [Chen et al., 2000]:

® =[—-2.37409 1.92936 — 0.53208]
© = 0.01 x [0.89409 2.68227 2.68227 0.89409]
Vg ~ NC(O, 1)

With these parameters, we have Var{a;} = 1. BPSK
modulation is employed, that is, s; € {1, —1}. In addi-
tion, differential encoding and decoding are employed
to resolve the phase ambiguity.

We test the new EP receiver with different smoothing
window lengths L = 1,2, 4, with 0,1, 3 overlap points
correspondingly. In other words, the estimation time
delay § equals 0,1,and 3 repectively. Moreover, we run
the EP receiver with smoothing over the whole data
sequence.

For comparison, we test a genie-aided lower bound and
a differential detector. For the genie-aided detection,
an additional observation is provided, which is another
transimitted signal where the symbol is always 1, i.e.,
9 = oy + wy. The receiver employs a Kalman filter to
estimate the posterior mean &; of the fading process
based the new observation sequence {g; }. The symbols
are then demodulated according to

8 = sign(R{ajy.}) (43)

where * means conjugate. By obtaining the extra in-
formation from the genie, this detector supposes to
achieve accurate detection results. For the differential
detection, no attempt is made for channel estimation.
It simply detects the phase difference between two con-
secutively observations y;_1 and y;:

sy = sign(R{g:"yt—1})- (44)

We run these detectors on 50,000 received signals mul-
tiple times. Each time, we randomly synthesize a new
symbol sequence and a new observation sequence ac-
cording to (2) and (3). The signal-noise ratio (SNR),
defined as 10log,o(Var{a;}/Var{w;}) , increases each
time. The bit-error rate (BER) performance of differ-
ent detectors versus SNR is plotted in figure 1.

As shown in the figure, the proposed EP receiver with
smoothing clearly outperforms the concurrent detector
and the differential detector. The EP receiver does not
have the error floor, as does the differential detector.
With a delay § = 3, the performance of the EP re-
ceiver is almost as good as that of the EP receiver
with smoothing over the whole data sequences, and
it is close to the performance of the genie-aided detec-
tor. Considering the range indicated by the error bars,
the performance of the EP receiver is comparable to
that of sequential Monte Carlo receivers as reported
in [Chen et al., 2000]. In contrast, the EP receiver has
much less computational complexity as discussed in
section 3.4.

The EP receiver works in a robust way in practice; it
always converges to accurate Bayesian estimation in
all of our simulations.

6 Conclusion and future work

In this paper, we have developed the expectation prop-
agation receiver for signal detection in fading channels.
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Figure 1: BER demodulation performance of the
EP receiver with different smoothing parameters, the
genie-aided detector, and the differential detector in
a fading channel with complex Gaussian noises. The

unit error bars, defined as 1/ w, are also

shown in the figure.

As shown by the simulations, the EP receiver with
short-time smoothing clearly outperforms the differ-
ential detector and the concurrent adaptive Bayesian
receiver under different signal-noise ratios. Moreover,
its performance is close to the so-called genie-aided de-
tection. Compared to sequential Monte Carlo filtering
methods, the EP receiver has much lower computa-
tional complexity.

As to the future work, we plan to extend this work to
the case that transmitted symbols are coded by con-
volutional codes. In this case, we will exploit the cor-
relation between coded symbols at different times.

Expectation propagation, as an extension of belief
propagation, allows the use of more complicated mod-
els in digital communications. It could be applied to
many areas of digital communications such as iterative
decoding, iterative equalization, and iterative demod-
ulation. The EP receiver for wireless signal detection
is just one example.
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