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ABSTRACT 
In this paper, we describe the use of the sociometer, a 
wearable sensor package, for measuring face-to-face 
interactions between people. We develop methods for 
learning the structure and dynamics of human 
communication networks. Knowledge of how people 
interact is important in many disciplines, e.g. organizational 
behavior, social network analysis and knowledge 
management applications such as expert finding. At present 
researchers mainly have to rely on questionnaires, surveys 
or diaries in order to obtain data on physical interactions 
between people. In this paper, we show how noisy sensor 
measurements from the sociometer can be used to build 
computational models of group interactions. Using 
statistical pattern recognition techniques such as dynamic 
Bayesian network models we can automatically learn the 
underlying structure of the network and also analyze the 
dynamics of individual and group interactions. We present 
preliminary results on how we can learn the structure of 
face-to-face interactions within a group, detect when 
members are in face-to-face proximity and also when they 
are having a conversation. We also measure the duration 
and frequency of interactions between people and the 
participation level of each individual in a conversation.  
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MOTIVATION AND INTRODUCTION 
In almost any social and work situation our decision-
making is influenced by the actions of others around us. 
Who are the people we talk to? For how long and how 
often? How actively do we participate in the conversations? 
Answers to these questions have been used to understand 
the success and effectiveness of a work group or an 
organization as a whole.  Can we identify the differences 

between people’s interactions? Can we identify the 
individuals who talk to a large fraction of the group or 
community members? Such individuals, often referred to 
the connectors, have an important role in information 
diffusion [1]. Thus, learning the connection structure and 
nature of communication among people are important in 
trying to understand the following phenomena:  (i) diffusion 
of information (ii) group problem solving (iii) consensus 
building (iv) coalition formation etc. Although people 
heavily rely on email, telephone and other virtual means of 
communication, research shows that high complexity 
information is mostly exchanged through face-to-face 
interaction [2]. Informal networks of collaboration within 
organizations coexist with the formal structure of the 
institution and can enhance the productivity of the formal 
organization [3]. Furthermore, the physical structure of an 
institution can either hinder or encourage communication. 
Usually the probability that two people communicate 
declines rapidly with the distance between their work 
location [2, 4]. Being able to measure the relationship 
between communication networks and different 
environmental and organizational attributes will enable us 
to create better workplaces with improved communication 
and collaboration among their members.   

We believe that wearable sensor data combined with pattern 
recognition techniques will play an important role in 
sensing and modeling physical interactions. These 
techniques can complement and augment existing manual 
techniques for data collection and analysis.  The results can 
be used for understanding human communication patterns 
studied in organizational behavior and social network 
analysis. The knowledge of people’s communication 
networks can also be used in improving context-aware 
computing environments and coordinating collaboration 
between group and community members. 
 
SENSING AND MODELING HUMAN COMMUNICATION 
NETWORKS 
As far as we know, there are currently no available methods 
to automatically model face-to-face interactions within a 
community. This absence is probably due to the difficulty 
of obtaining reliable measurements from real-world 

 

 

 



interactions. One has to overcome the uncertainty in sensor 
measurements. This is in contrast to modeling virtual 
communities where we can get unambiguous measurements 
about how people interact – the duration and frequency 
(available from chat and email logs) and sometime even 
detailed transcription of interactions [5, 6].  
 
We believe sensing and modeling physical interactions 
among people is an untapped resource. In this paper, we 
present machine-learning techniques that use wearable 
sensor data to make reliable estimates about a user’s 
interaction state (e.g. who is she talking to, how long did 
the conversation last, etc.). We use these results to infer the 
structure and dynamic relationships that exists in groups of 
people. This can potentially be much cheaper and more 
reliable than human-delivered questionnaires. It is also 
more easily scalable to larger groups, and does not depend 
on personal recall or interpretation. Automatically 
discovering the high-level group structures within an 
organization can also provide a sound basis for then 
exploring more fine-grained group interactions using 
questionnaires or interviews. 
 
In the following sections we will describe how we use 
wearable sensors to measure and build models of 
interactions. In summary, we are seeking to discover how 
information about social network relationships can be 
derived by applying statistical machine learning techniques 
to data obtained from wearable sensors. We hope to lay the 
groundwork for being able to automatically study how 
different groups within social or business institutions 
connect, understand how information propagates between 
these groups and analyze the effects of new policy or new 
technology on the group structure.   
 
EXPERIMENTAL DETAILS 
The first step towards reliably measuring communication is 
to have sensors that can capture interaction features. For 
example, we need to know who is talking to whom, the 
frequency and duration of communication. To record the 
identity of people in an interaction, we equip each person 
with an infra-red (IR) transceiver that sends out unique ID 
for the person and receives ID from other people in her 
proximity. We use microphones to detect conversations.  
 
In this section we describe a pilot experiment we have 
recently completed in our lab. A group of eight people at 
the MIT Media Lab agreed to wear the sociometer – the 
wearable sensor that measures social interactions. It is an 
adaptation of the hoarder board, a wearable data acquisition 
board, designed by the wearable computing group at the 
Media lab [7]. The sociometer is especially packaged by 
wearable designer Brian Clarkson [8] for the comfort of the 
wearer, aesthetics, and placement of sensors that are 
optimal in getting reliable measurements of interactions. 
The users have the device on them for six hours a day 

(11AM –5PM) while they are on MIT campus. We 
collected 10 days (two full work weeks) of data from each 
subject, which amounts to 60 hours of data per subject. 
 
The Sociometer 
The sociometer has an IR transceiver, a microphone, two 
accelerometers, on-board storage, and power supply. The 
wearable stores the data locally on a 256MB compact flash 
card and is powered by four AAA batteries. A set of four 
AAA batteries is enough to power the device for 24 hours. 
Everything is packaged into a shoulder mount so that it can 
be worn all day without any discomfort.  
 
The sociometer stores the following information for each 
individual  

(i) Information about people nearby (sampling 
rate 17Hz – sensor IR) 

(ii) Speech information (8KHz - microphone) 
(iii) Motion information (50Hz - accelerometer)  

 
Other sensors (e.g. light sensors, GPS etc.) can also be 
added in the future using the extension board. For this paper 
we do not use the data obtained from the accelerometer. 
 

 

Figure 1 - The wearable sensor board 

 

The success of IR detection depends on the line-of-sight 
between the transmitter-receiver pair. The sociometer has 
four low powered IR transmitters. The use of low powered 
IR transmitters is optimal because (i) we only detect people 
in close proximity as opposed to far apart in a room (as 
with high-powered IR) and (ii) we detect people who are 
facing us and not people all around us (as with RF 
transmitter). The IR transmitters in the sociometer create a 
cone shaped region in front of the user where other 
sociometers can pick up the signal. The range of detection 
is approximately six feet, which is adequate for picking up 
face-to-face communication. The design and mounting of 
the sociometer places the microphone six inches below the 
wearer’s mouth, which enables us to get good audio without 
a headset. The shoulder mounting also prevents clothing 
and movement noise that one often gets from clip-on mics. 
All of the eight users were very satisfied with the 
comfortable and aesthetic design of the device. None of the 



subjects complained about any inconvenience or discomfort 
from wearing the device for six hours everyday. 

Despite the comfort and convenience of wearing a 
sociometer, we are aware that subject’s privacy is a concern 
for any study of human interactions. Most people are wary 
about how this information will be used.  To protect the 
user’s privacy we agree only to extract speech features, e.g. 
energy, pitch duration, from the stored audio and never to 
process the content of the speech. But, to obtain ground 
truth we need to label the data somehow. Our proposed 
solution is to use garbled audio instead of the real audio for 
labeling. Garbled audio makes the audio content 
unintelligible but maintains the identity and pitch of the 
speaker [9]. In future versions of the sociometer we will 
store encrypted audio instead of the audio, which can also 
prevent unauthorized access to the data. 
 

 

 

Figure 2 - The shoulder mounted sociometer 

 

Data Analysis Methods and Preliminary Results 

The first step in the data analysis process is to find out 
when people are in close proximity.  We use the data from 
the IR receiver to detect proximity of other IR transmitters. 
The receiver measurements are noisy – the transmitted ID 
numbers that the IR receivers pick up are not continuous 
and are often bursty and sporadic. The reason for this bursty 
signal is that people move around quite a lot when they are 
talking, so one person’s transmitter will not always be 
within the range of another person’s receiver. Consequently 
the receiver will not receive the ID number continuously at 
17Hz. Also each receiver will sometimes receive its self ID 
number. We pre-process the IR receiver data by filtering 
out detection of self ID number as well as propagating one 
IR receiver information to other nearby receivers (if 
receiver #1 detects the presence of tag id #2, receiver #2 
should also receive tag id #1). This pre-processing ensures 
that we maintain consistency between different information 
channels. However, we still need to able use the bursty 
receiver measurements to detect the contiguous time chunks 
(an episode) people are in proximity. Two episodes always 
have a contiguous time chunk in between where no ID is 

detected. A hidden Markov model (HMM) [10] is trained to 
learn the pattern of IR signal received over time. Typically 
an HMM takes noisy observation data (the IR receiver data) 
and learns the temporal dynamics of the underlying hidden 
node and its relationship to the observation data. The hidden 
node in our case has binary state - 1 when the IDs received 
come from the same episode and 0 when they are from 
different episodes. We hand-label the hidden states by 
labeling 6 hours of data. The HMM uses the observation 
and hidden node labels to learn its parameters. We can now 
use the trained HMM to assign the most likely hidden states 
for new observations. From the state labels we can estimate 
the frequency and the duration that two people are within 
face-to-face proximity. Figure 3 shows five days of one 
person’s proximity information. Each color in the sub-
image identifies a person to whom the wearer is in close 
proximity of and the width is the duration contact. Note that 
we are also able to detect when multiple people are in close 
proximity at the same time. 

 

Figure 3 - Proximity information for person # 1. Each sub-image 
shows one day’s information 

 

Figure 4 - Zoomed into the red shaded region from day two in 
figure 3. Upper panel: Bursty raw data from IR receiver. Lower 
Panel: Output of the HMM which groups the data into contiguous 
time chunks. 



The IR tag can provide information about when people are 
in close face-to-face proximity. But it provides no 
information about whether two people are actually having a 
conversation. They may just have been sitting face-to-face 
during a meeting. In order to identify if two people are 
actually having a conversation we first need to segment out 
the speaker from all other ambient noise and other people 
speaking in the environment. Because of the close 
placement of the microphone with respect to the speaker’s 
mouth we can use simple energy threshold to segment the 
speech from most of the other speech and ambient sounds. 
It is been shown that one can segment speech using voiced 
regions (speech regions that have pitch) alone (ref sumit). 
In voiced regions energy is biased towards low-frequency 
range and hence we threshold low-energy threshold (2KHz 
cut off) instead of total energy. The output of the low-
frequency energy threshold is passed to another HMM as 
observation, which segments speech regions from non-
speech regions. The states of hidden node are the speech 
chunks labels (1 = a speech region and 0 = non-speech 
region). We train our HMM on 10 minutes of speech where 
the hidden nodes are again hand labeled.  

Figure 5 shows the segmentation results for a 35 second 
audio chunk.  In this example two people wearing 
sociometers are talking to each other and are interrupted by 
a third person (between t=20s and t=30s). The output of 
low frequency energy threshold for each sociometer is fed 
into the speech HMM which segments the speech of the 
wearer. The red and green lines overlaid on top of the 
speech signal show the segmentation boundaries for the two 
speakers. Also note that the third speaker’s speech in the 
20s-30s region is correctly rejected, as indicated by the 
grayed region in the figure.  In Figure 6 we show the 
spectogram from the two speakers’ sociometers overlaid 
with the results from the HMM. 

 

 

Figure 5 - Speech segmentation for the two subjects wearing the 
sociometer.  

 

Figure 6 - Spectogram from person A and person B’s microphone 
respectively with the HMM output overlaid in black(top) and 
blue(bottom). 

Now we have information about when people are in close 
proximity and when they are talking. When two people are 
nearby and talking, it is highly likely that they are talking to 
each other, but we cannot say this with certainty. Recent 
results presented in the doctoral thesis of Sumit Basu[11] 
demonstrate that we can detect whether two people are in a 
conversation by relying on the fact that the speech of two 
people in a conversation is tightly synchronized. Basu 
reliably detects when two people are talking to each other 
by calculating the mutual information of the two voicing 
streams, which peaks sharply when they are in a 
conversation as opposed to talking to someone else. We are 
in the process of using his techniques for detecting if two 
people talking in close proximity are actually talking to 
each other.  

Once we detect the pair-wise conversation chunks we can 
estimate the duration of conversations. We can further 
break down the analysis and calculate how long each person 
talks during a conversation. We can measure the ratio of 
interaction, i.e. (duration of person A’s speech):(duration of 
person B’s speech). We can also calculate what fraction of 
our total interaction is with people in our community, i.e. 
inter vs. intra community interactions. This may tell us how 
embedded a person is within the community vs. how much 
the person communicates with other people. For example, 
someone who never talks to his work group but has many 
conversations in general is very different from someone 
who rarely talks to anyone. 

A first pass picture of the network structure can be obtained 
by measuring the duration that people are in close face-to-
face proximity.  Figure 7 shows the link structure of our 
network based on duration, i.e. the total length of time spent 
in close proximity. There is an arrow from person A to 
person B if the duration spent in close proximity to B 
accounts for more than 10% of A’s total time spent with 
everyone in the network. The thickness of the arrow scales 
with increasing duration. Similarly, Figure 8 shows the link 



structure calculated based on frequency, i.e. the number of 
times two people were in close proximity. We are currently 
working on combining the audio and IR tag information and 
re-estimating the link the structure. Then we will be able 
look at network structure along various dimensions – i.e. 
based on frequency and duration of actual conversations 
people have with each other. We can also analyze the 
structure based on the dynamics of interaction (e.g. 
interaction ratio) we mentioned earlier in the section. 
There are a few interesting points to note about differences 
in the structure based on duration vs. frequency.  The two 
main differences are that in the frequency network there are 
links between  ID #1 and ID # 7 and there are extra links 
connecting ID #6 to many more nodes than the duration 
network.  The additional link to ID # 6 was created because 
person # 6 sat mostly in the common space through which 
every one passed through frequently. Consequently, ID# 6 
was picked up by most other receivers quite often, but the 
duration of detection was very short. However, if we 
combined IR with the presence of audio these extra links 
would most likely disappear. But, the links between ID 1 an 
ID 7 are more interesting  – although these two people 
never had long discussions they quite often talked for short 
periods of time. These links would probably remain even 
when combined with audio.  
 

 

Figure 7 - The link structure of the group based on proximity 
duration. 

 

Figure 8 - The link structure of the group based on proximity 
frequency. 

 

Figure 9 – Interaction distribution based on proximity duration 
(first column) and proximity frequency (second column). Each 
row shows results for a different person in the network 

Figure 9 shows the fraction of time each individual spends 
with other members in the group based on duration and 
frequency. Person 1 talks to all other members regularly 
and is the most connected person as well (see Figure 7 and 
Figure 8). Person 2-6 have more skewed distribution in the 
amount of time they spend with other members, which 
means they interact mostly with a select sub-group of 
people. These are only a few examples of looking at 
different characteristics of the network. Analysis along 
different dimensions of interaction is going to be one the 
main advantage of sensor-based modeling of human 
communication networks.  

 
DISCUSSION AND CONCLUSION 
In this paper we have presented preliminary results from 
our efforts in sensor-based modeling of human 
communication networks. We show that we can 
automatically and reliably estimate when people are in 
close proximity and when they are talking.  We demonstrate 
the advantage of continuous sensing of interactions that 
allows us to measure the structure of communication 
networks along various dimensions – duration, frequency, 
ratio of interaction etc. We are working on combining the 
proximity and audio information channels and obtaining 
quantitative results for our algorithms by comparing the 
accuracy of our algorithms to hand-labeled ground truth 
data of the interactions. We are also working on modeling 
the evolution and dynamics of the network as a whole and 
quantitatively measuring the influences people have on each 
other [12].  Within the next two months we also plan to 
scale-up our experiment to include a group of 25 people 
who belong to different research groups and different 
physical locations within the MIT campus. We can then 
begin to model how information propagates between groups 
in a community or an organization and analyze the effects 
of new policies or new technologies on the dynamics of the 
group.   
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