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Abstract

In this paper, we propose a new context-sensitive
Bayesian learning algorithm. By modeling the distributions
of data locations by a mixture of Gaussians, the new algo-
rithm can utilize different classifier complexities for differ-
ent contexts/locations and, at the same time, keep the op-
timality of Bayesian solutions. This algorithm is also an
online learning algorithm, efficient in training, and easy for
incorporating new knowledge from data sets available in
the future. We apply this algorithm to detecting computer-
user mouse pressure patterns during episodes likely to be
frustrating to the user. By modeling user identity as hidden
context, this algorithm achieves on average10.6% user-
independent test error rate.

1 Introduction

By approximating the Bayesian average, Bayes Classi-
fiers achieve good generalization performance [3, 6]. A
Bayesian linear classifier can be easily converted to a non-
linear classifier by using feature expansions or kernel meth-
ods as does the Support Vector Machine (SVM).

On the other hand, prediction for real world applications
is often complicated by some changing context. For exam-
ple, a person may change his accent when speaking at the
office vs. when speaking in his hometown. Modeling such
a hidden context should result in better performance. In this
paper, we present context-sensitive Bayesian classifiers that
switch Bayesian classifiers corresponding to different con-
texts. We train each component classifier by an efficient
training algorithm, expectation propagation [6].

Similar to classical context learning algorithms, for
example, the Splice algorithm [2], the context-sensitive
Bayesian classifier can be viewed as an approximation to
a mixture of experts [4, 9] with an easier training proce-
dure. Our algorithm is also an online learning technique:
after training on current data sets, if there are more data sets
possibly containing different contexts in the future, we only
need to train some new local classifiers based on new data
sets. By contrast, classical global learning techniques, e.g.,
SVM, will re-train a global classifier over all the data sets to

get a new optimal solution. Thus, when there are mulitple
data sets, our approach requires less computer memory size
and has a faster training speed than classical global learning
techniques.

One of the main difference between our algorithm and
many other context learning algorithms, such as Splice, is
that we keep the context-sensitive classifiers’ optimality in
the Bayesian sense by using data posterior probabilities to
combine different component classifiers even after incre-
mental training.

In a previous paper [7], we used a different Bayesian
approach in an attempt to classify mouse pressure signals
from subjects into two categories: pressure patterns that
arise when all is going well, and those that arise following
potentially frustrating events, like delays or usability bugs.
The method was not context-dependent, and was run in a
user-dependent way, obtaining on average88% classifica-
tion accuracy. The results in [7], plus some additional anal-
ysis from the human subjects in the experiment, confirmed
that such mouse patterns do evince differences under the
two conditions [8]. However, it is desirable to build one
person-independent classifier. The problem is difficult in
that the generalization performance of the classifier dete-
riorates when it is trained and tested on different computer
users who have different mouse-usage behaviors. In this pa-
per, context-sensitive Bayesian classifiers treat the identity
of computer user as context information, softly switching
the classifiers based on extracted context. Our experimental
results demonstrate the effectiveness of this approach.

2 Context-Sensitive Bayesian Classifier

Given a training setD = {D1, . . . , DL} that hasL sub-
sets

D1 = {(x1
1, t

1
1), . . . , (x

1
N1

, t1N1
)} (1)

...

DL = {(xL
1 , tL1 ), . . . , (xL

NL
, tLNL

)}, (2)

a test data point̃x can be classified as follows:

p(t̃|x̃, D) =
∑

i

p(t̃|x̃, Di)P (i|x̃, D) (3)
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wherei means choosing the subsetDi and different sub-
setsDi’s correspond to different contexts. In the following
sections, we first propose a new way to compute the classifi-
cation confidencep(t̃|x̃, Di) based on expectation propaga-
tion [6], and then apply a Gaussian mixture model to com-
puteP (x̃|Di). For a finite number of contexts, after com-
puting p(t̃|x̃, Di) andP (x̃|Di), it is easy to obtainp(t̃|x̃)
using equation (3).

2.1 Training Bayesian Classifiers

A linear classifier classifies a pointx according to
t = sign(wTφ(x)) for some parameter vectorw (the two
classes aret = ±1). The basis functionφ(xi) allows the
classification boundary to be nonlinear in the original fea-
tures. This is the same likelihood used in logistic regression
and in Gaussian process classifiers.

Given a training setD = {(x1, t1), ..., (xN , tN )}, the
likelihood forw can be written as

p(t|w, X) =
∏

i

p(ti|xi,w) =
∏

i

Ψ(tiwTφ(xi)) (4)

wheret = {ti}N
i=1, X = {xi}N

i=1, andΨ(a) is a step func-
tion, i.e.,Ψ(a) = 1 if a > 0 andΨ(a) = −1 if a ≤ 0. We
can also use the logistic function or probit model asΨ(·).
In this section, we drop the data set indexi in (1) to (3) for
simplicity.

Given a new inputxN+1, we approximate the predictive
distribution:

p(tN+1|xN+1, t) =
∫

p(tN+1|xN+1,w)p(w|t)dw (5)

≈ P (tN+1|xN+1, 〈w〉) (6)

where〈w〉 denotes the posterior mean of the weights, called
the Bayes Point. Instead of using popular Monte-Carlo
methods, we apply efficient Expectation Propagation to
compute〈w〉 andp(tN+1|xN+1, t).

2.1.1 Expectation Propagation

Expectation Propagation (EP) [6] exploits the fact that the
likelihood is a product of simple terms. If we approximate
each of these terms well, we can get a good approximation
to the posterior. Expectation Propagation chooses each ap-
proximation such that the posterior using the term exactly
and the posterior using the term approximately are close in
KL-divergence. This gives a system of coupled equations
for the approximations which are iterated to reach a fixed
point.

Expectation Propagation can also be viewed as a power-
ful extension of assumed-density filtering (ADF) [5]. The
ADF method is a sequential technique for approximating a
posterior distribution that can be used in stochastic process

modeling and online learning. Expectation Propagation ex-
tends ADF by using iterative batch-version refinements; this
enables EP to utilize the information from the whole data
sequence and to greatly improve the approximation quality.

First, a Gaussian prior distribution is assigned forw

p(w|α) =
∏

i

N (wi|0, α−1
i ) (7)

whereα = {αi} is a hyperparameter vector. Later, we
assignαi = 1 for all i.

Denote the exact terms bygi(w) and the approximate
terms byg̃i(w):

p(w|t,α) ∝ p(w|α)
∏

i

p(ti|w) = p(w|α)
∏

i

gi(w)

(8)

≈ p(w|α)
∏

i

g̃i(w) (9)

For the Bayesian linear classifier, the approximate terms
are chosen to be Gaussian, parameterized by(mi, vi, si):

g̃i = si exp(− 1
2vi

(tiφT (xi)w −mi)2). (10)

This makes the approximate posterior distribution also
Gaussian:

p(w|t,α) ≈ q(w) = N (mw,Vw). (11)

To find the best term approximations we proceed as fol-
lows: (to save notation,tiφ(xi) is written asφi)

1. Initialization Step:

Setg̃i = 1: vi = ∞, mi = 0, andsi = 1.

Also, set the prior: mw = 0, Vw = diag(α), αi =
1 for all i.

2. Loop until all(mi, vi, si) converge:

Loop i = 1, . . . , N :

(a) Remove the approximatioñgi from q(w) to get
the ‘leave-one-out’ posteriorq\i(w), which is
also Gaussian:N (m\i

w ,V\i
w ). From q\i(w) ∝

q(w)/g̃i, this implies

V\i
w = Vw +

(Vwφi)(Vwφi)T

vi − φT
i Vwφi

(12)

m\i
w = mw + (V\i

w φi)v
−1
i (φT

i mw −mi)
(13)

(b) Putting the posterior withouti together with term
i gives p̂(w) ∝ gi(w)q\i(w). Chooseq(w) to
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minimizeKL(p̂(w) || q(w)). Let Zi be the nor-
malizing factor.

mw = m\i
w + V\i

w ρiφi (14)

Vw = V\i
w − (V\i

w φi)
( ρiφ

T
i mw

φT
i V\i

w φi

)
(V\i

w φi)
T

(15)

Zi =
∫
w

gi(w)q\i(w)dw = Ψ(zi) (16)

wherezi =
(m\i

w )T φi√
φT

i V\i
w φi

(17)

ρi =
1√

φT
i V\i

w φi

N (zi; 0, 1)
Ψ(zi)

(18)

(c) From g̃i = Zi
q(w)

q\i(w)
, update the term approxi-

mation:

vi = φT
i V\i

w φi

( 1
ρiφ

T
i mw

− 1
)

(19)

mi = φT
i m\i

w + (vi + φT
i V\i

w φi)ρi (20)

si = Zi

√
1 + v−1

i φT
i V\i

w φi exp(
ρi

2
φT

i V\i
w φi

φT
i mw

)

(21)

2.2 Computingp(t̃|x̃, Di)

Given the training results for data setDi, we can com-
putep(t̃|x̃, Di) as follows:

p(t̃|x̃, Di) =
∫

p(t̃|x̃,w)p(w|Di)dw = Ψ(z̃) (22)

wherez̃ =
(t̃mw)T φ(x̃)√
φT (x̃)Vwφ(x̃)

(23)

By contrast, in mixture of experts [9], logistic regression
is used instead of Bayesian classifiers.

2.3 ComputingP (i|x̃, D)

Denotexi = {xi
1, . . . ,x

i
Ni
}, ti = {ti

1, . . . , t
i
Ni
}, and

Di = {xi, ti}. We modelxi by a Gaussian mixture model
Hi, i.e.,

p(xi) =
J∑

j=1

βjN (µj ,Σj).

whereHi is parameterized by{βj ,µj ,Σj}J
j=1. Classical

expectation maximization technique can be applied to esti-
mating the parameters{βj ,µj ,Σj}J

j=1.

We assume that the probabilityp(x̃|Di) does not de-
pend on the labeling of the training set,ti, and approximate
p(x̃|Di) by p(x̃|Ĥi), whereĤi denotes the estimated pa-
rameters by EM. Using a uniform prior for the subset choice
i, we have

P (i|x̃, D) ≈ p(x̃|Ĥi)∑
i p(x̃|Ĥi)

(24)

Inserting equations (22) and (24) into (3), we obtain
p(t̃|x̃, D1, . . . , DL). If p(t̃ = 1|x̃, D1, . . . , DL) > p(t̃ =
−1|x̃, D1, . . . , DL), thent̃ = 1; otherwise,̃t = −1.

Note that equation (24) can be viewed as a gating func-
tion as in mixture of experts [9]. Xu et al’s approach ac-
tually models each subset’s data by a Gaussian, while our
gating function is more general.

3 Application: Mouse Pressure Pattern De-
tection

In this section, we apply the context-sensitive Bayesian
classifier to mouse pressure data gathered from subjects fill-
ing out a multiple-page web form to put their resume online
at a job site. After filling out a very long page and click-
ing to next web page, the subject receives an error mes-
sage alerting her that the date format in the previous page is
wrong. When the user goes back to the page, she sees that
the page lost all of the data just entered. This event has
a tendency to increase the user’s frustration level, which
is confirmed by our post-experiment questionnaire inves-
tigation and by some changes in mouse pressure patterns.
The pressure signals are collected by a custom-made mouse
equipped with eight pressure sensors [8]. The unprocessed
mouse data is 8 dimensions of 8-bit analog data captured at
60 Hz.

Visually examining the pressure signals, we find that
subjects have different patterns with respect to handling the
mouse, and that almost all of them seem to have more ac-
tivity right after the error notification/data loss event. For
classification, the signal is labeled as -1 during the page pre-
ceding the error event and 1 during the page immediately
following the event. Thus the two episodes being classi-
fied involve the exact same web task: filling out the same
form; however, the state of the user may differ (and perhaps
signal more frustration) on the second round. More details
about the data collection experiment are in our previous pa-
per [7]. For classification, we extract from the signals two
features, the mean and the variance of the pressure signals
over a half-second window (i.e., 30 data points because the
signals are sampled at 60 Hz).

Five subjects filled out the forms using the mouse. For
the ith subject’s data subset, we choose the nonlinear ba-
sis expansionφ(x) in equation (4) over the data points as
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Table 1. CS-EP, the Context Sensitive Expectation Propagation-trained Bayesian classifier uses less
computation, memory, and time, and has slightly lower error rates than SVM on the average. Choos-
ing different kernel widths improves the test performance of CS-EP.

Test Error Test 1 Test 2 Test 3 Test 4 Test 5 Average Kernel SVM’s Error
Rate (%) Error Width Rate (%)
CS-EP 7.1 8.0 12.3 11.8 28.7 13.6 0.1 14.3
CS-EP 8.0 10.0 9.0 5.9 23.0 11.2 0.5 11.4
CS-EP 7.1 8.0 9.0 5.9 23.0 10.6 0.1 & 0.5 -

follows:

φ(x) = [K(x,x1), · · · ,K(xi,xi
j), · · · ,K(xi,xi

Ni
)]T

whereK(x,xi) is a basis function, which is chosen to be a
Gaussian. Each data subset is randomly split into a training
subset and a test set, in the ratio60% : 40%. We first train a
Bayesian component classifiers on each training subset and
model each subset by a mixture of two Gaussians, whose
parameters are estimated by the EM algorithm. We choose
0.1 Gaussian kernel width for the first two component clas-
sifiers and 0.5 kernel width for the others. In the test phase,
we pretend that we do not know which test data set is from
which subject and let our algorithm adapt to the test data
automatically. The test error rate on each test set and the
average test error rate are shown in table 1.

For comparison, we train two SVMs with Gaussian ker-
nel widths of 0.1 and 0.5 repectively, using all the data
sets. The test results are also summarized in table 1. Al-
though having comparable test performance to the context-
sensitive classifiers, the SVMs compute much larger kernel
matrices, require larger memory sizes and a longer training
time. Choosing working sets can reduce the required mem-
ory size for SVMs, but many training iterations are needed
over the split working sets for convergence. On the other
hand, context-sensitive classifiers do not have to be iterated
over different training sets. Also, our algorithm can use dif-
ferent kernel widths for different component classifiers to
optimize the performance while the SVMs cannot.

4 Conclusion and Future Work

In this paper, we present a new context-sensitive
Bayesian learning algorithm. This algorithm is trained ef-
ficiently and easily incorporates new knowledge. In addi-
tion, the algorithm can utilize different kernels for different
component classifiers, i.e., different classifier complexities
in different contexts/locations, to handle unstationary data
distributions and at the same time keep the optimality of the
Bayesian solution. By contrast, global learning algorithms,
for example, SVM, and classical local learning algorithms
like k-nearest neighbours cannot achieve the best compro-
mise between locality and capacity [1].

We apply the context-sensitive Bayesian classifier to de-
tect user-independent mouse patterns related to frustration
and achieved significant classification results. This suggests
the algorithm might be useful as part of an adaptive system
that aims to better respond to users’ frustration.

Future work includes improved modeling of the context
with a full Bayesian treatment and detecting the hidden con-
text in the training procedure if we do not know it during
training. Also, in our algorithm there is no information shar-
ing between the training of different component classifiers.
A hierarchical data model may solve this problem. Finally,
we will test our algorithm on more real world data sets.
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