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ABSTRACT

Spectral estimation methods typically assume station-
arity and uniform spacing between samples of data.
The non-stationarity of real data is usually accommo-
dated by windowing methods, while the lack of uniformly-
spaced samples is typically addressed by methods that
“fill in” the data in some way. This paper presents
a new approach to both of these problems: we use a
non-stationary Kalman filter within a Bayesian frame-
work to jointly estimate all spectral coefficients instan-
taneously. The new method works regardless of how
the signal samples are spaced. We illustrate the method
on several data sets, showing that it provides more ac-
curate estimation than the Lomb-Scargle method and
several classical spectral estimation methods.

1. INTRODUCTION

Spectrum estimation has been a classical research topic
in signal processing communities for decades. Many
approaches have been proposed ranging from modified
periodogram, AR model based estimation, to the MU-
SIC algorithm [1]. Though all these algorithms have
their own advantages, they all have two basic limita-
tions: first , they work only for evenly sampled signals;
second, they have the same stationarity assumption of
the signal.

For unevenly sampled signals, the Lomb-Scargle pe-
riodogram is widely used [2, 3]. The Lomb-Scargle peri-
odogram models the data as a single stationary sinusoid
wave. It is based on Maximum likelihood estimation,
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which is later given an Bayesian interpretation by Bret-
thorst [4].

2. A BAYESIAN FRAMEWORK FOR
NONSTATIONARY SPECTRUM

ESTIMATION

In this section, we introduce a new Bayesian frame-
work for estimating the nonstationary spectrum of a
given signal. This framework does not assume any
short time stationarity of the signals which by contrast
classical spectrum estimation approaches are based on.
The method works both for evenly and unevenly sam-
pled data.

For the spectrum estimation problem, we observe
the data x: x = [x1, x2, . . . , xi, . . . , xN ]T , where xi is
sampled at time ti. When the data is unevenly sam-
pled, t = [t1, . . . , tN ]T contains useful information for
spectrum estimation. We model the data as

xi = ai0 +
M∑

j=1

aij sin(2πfjti) + bij cos(2πfjti) + vi (1)

for i = 1, . . . , N.

where vi is a noise variable. The number and value of
frequency bands, M and fj , could be chosen based on
our prior knowledge. Later in this paper, we simply
choose all the frequency bands to be equally spaced.
Both aij and bij have real values. Note that for a non-
stationary signal, aij , bij , and vi depend on the sam-
pling time ti.

The use of aij and bij allows the signal to have

a nonstationary amplitude
√

a2
ij + b2

ij and a changing

phase arctan( bij

aij
) for the jth frequency band at time

ti.
For equation (1), we define

si = [ai0, ai1, ai2, . . . , aiM , bi1, bi2, . . . , biM ]T (2)
ci = [1, sin(2πf1ti), . . . , sin(2πfM ti),

cos(2πf1ti), . . . , cos(2πfM ti)] (3)



For the nonstationary spectrum estimation, our goal
is estimating the state vector si instantaneously at the
sampling time ti. To this end, we assume that the hid-
den states s1 . . . sN form a Markov chain that emits a
time series of observation x1 . . . xN :

si = si−1 + wi (4)
xi = cisi + vi (5)

where wi is the process noise at the sampling time ti,
and vi is the observation noise at ti. Based on the data
we have, we can model the process and observation
noises by Gaussian distributions or heavy-tailed non-
Gaussian distributions. However, using non-Gaussian
distributions will invokes the use of numerical approx-
imation techniques in the inference procedure.

According to this model, the joint distribution of
hidden states and observations can be computed as

p(s1:N ,x1:N ) = p(s1)p(x1|s1)
N∏

i=2

p(si|si−1)p(xi|si)

(6)
where s1:N = [s1, . . . , sN ]T and x1:N = [x1, . . . , xN ]T

denotes collections of states and observations from time
t1 to tN .

The filtering distribution p(si|x1:i) can be sequen-
tially estimated as follows

p(si|x1:i−1) =
∫
si−1

p(si|si−1)p(si−1|x1:i−1) (7)

p(si|x1:i) =
p(xi|si)p(si|x1:i−1)

p(xi|x1:i−1)
(8)

Then the spectrum at time ti can be summarized by
the mean of p(si|x1:i).

3. SPECTRUM ESTIMATION BY
KALMAN FILTERING

3.1. Algorithm

If we use linear Gaussian models in equations (4) and
(5):

wi ∼ N (0,Γi) (9)
vi ∼ N (0, σ2), (10)

then p(si|x1:i−1) is also Gaussian, and we can use Kalman
filtering to efficiently update these probabilities. To
deal with the uneven sampling, we set

Γi = Z(ti − ti−1); (11)

where Z is a pre-defined constant matrix, which we say
more about below, and Γ0 = 0.

Denote mi and Vi as the mean and covariance ma-
trix of p(si|x1:i). We have the following Kalman filter-
ing update [5, 6] equations:

mi = mi−1 + Ki(xi − cimi−1) (12)
Vi = (I−Kici)Pi−1 (13)

where

Pi−1 = Vi−1 + Γi−1 (14)
Ki = Pi−1cT

i (ciPi−1cT
i + σ2)−1 (15)

Note that we have a nonstationary Kalman filtering
algorithm; both ci and Γi−1 vary with time.

The recursions start off with

m1 = m0 + K1(x1 − c1m0) (16)
V1 = (I−K1c1)V0 (17)
K1 = V0cT

1 (c1V0cT
1 + σ2)−1 (18)

where m0 and V0 are pre-defined hyper-parameters for
the prior distribution p(s0), which we say more about
below.

If we want to utilize not only the past information,
but also the future information in the data set to esti-
mate the spectrum, we may want to compute p(si|x1:N )
where x1:N is the whole data set. As a well-known tech-
nique, Kalman smoothing can be employed to compute
this posterior distribution [5].

3.2. Model Parameters and Hyperparameters

As a Bayesian method, this new algorithm allows us to
incorporate prior knowledge into the estimation. First,
if we have no information about the frequency content
of the data, we may set Γi or more exactly Z in equa-
tion (11) to be a scaled identity matrix: Z = zI, where
the positive, real-valued amplitude z controls the time
variability of the amplitude of the estimated frequen-
cies. Second, we may use a noninformative prior dis-
tribution p(s0) by assigning V0 to be a scaled identity
matrix, and m0 to be a zero vector. Third, if we think
the data might only contain some known frequencies,
we can represent our belief by assigning m0 to be a
zero vector, and setting V0 to be a diagonal matrix
with small variances for the 0 elements in m0. These
are a few of the ways in which prior knowledge can be
easily incorporated to guide the estimation.

3.3. Conquer Aliasing by Unevenly Sampling

In [7], G. L. Bretthorst showed that a generalization
of the DFT can handle the case when data is unevenly
sampled, resulting in a much larger effective bandwidth
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Figure 1: True and estimated amplitudes for an unevenly sampled signal that contains one 125 Hz sinusoid
modulated with an exponentially fast decaying amplitude.

than when the DFT is used on evenly sampled data.
For spectrum estimation by Kalman filtering, the sim-
ilar effect of unevenly sampling holds: the critical fre-
quency beyond which aliasing occurs may be almost
infinite for unevenly sampled data.

Let us first consider the reason why aliasing exists
in the Kalman filtering spectrum for evenly sampled
data. When the data are evenly sampled, we have

ti = i∆t, for i = 1, . . . , N. (19)

fc =
fs

2
=

1
2∆t

(20)

where ∆t is the time interval between two samples, fs is
the sampling frequency, and fc is the cut-off frequency
determined by the Nyquist criterion.

For simplicity, consider only the cosine basis in ci

defined in equation (3). If the frequency components
in ci are equally spaced between −fc and −3fc, then
ci equals

[cos(2π(−fc + f1)i∆t), . . . , cos(2π(fc)i∆t)
cos(2π(fc + f1)i∆t), . . . , cos(2π(3fc)i∆t)] (21)

= [cos(2π(−fc + f1)i∆t), . . . , cos(2πfci∆t)
cos(2π(−fc + f1)i∆t + 2π(2fc)i∆t), . . . ,

. . . , cos(2πfci∆t + 2π(2fc)i∆t)] (22)
= [cos(2π(−fc + f1)i∆t), . . . , cos(2πfci∆t)

cos(2π(−fc + f1)i∆t), . . . , cos(2πfci∆t)] (23)

The frequencies corresponding to the repeated elements
in ci will have the same probabilities in Kalman filter
using a non-informative prior. Thus, the spectral coef-
ficients in the range from −fc+f1 to fc are the same as
those in the range from fc + f1 to 3fc. In other words,
aliasing happens.

Now if the data are unevenly sampled, the time
intervals between two samples may differ. Denote the
largest common factor of all ti’s as ∆t′. Then it follows
ti = ki∆t′, for i = 1, . . . , N, where ki is an integer.
For evenly sampled data, ki = 0, 1, . . . , N − 1. For

unevenly sampled data, ki may start from a very large
number.

Then we define the Nyquist cut-off frequency for ir-
regular sampled data f ′c as 1

2∆t′ . Aliasing can still oc-
cur if ci contains frequencies larger than f ′c. Note that
∆t′ is less than or equal to the smallest time interval
between data points. When the sampling is random,
∆t′ may be as small as the numerical resolution of the
system. For example, if ti is stored by a 32 bit number,
∆t′ will be around 2−32 and f ′c will be around 231 Hz.

In other words, when the data are randomly sam-
pled, or unevenly sampled in a well-designed way, use
of this Kalman filtering spectrum estimation results in
almost infinite f ′c and an infinite effective bandwidth
that is essentially aliasing free.

4. EXPERIMENTS AND DISCUSSIONS

We test our algorithm and compare it with the Lomb-
Scargle periodogram, which is widely used for spectrum
estimation of unevenly sampled data, as well as with
several other classical methods for evenly sampled data.

For the first evaluation, we synthesize an unevenly
sampled signal that contains one 125Hz sinusoid wave
modulated with an exponentially fast decaying am-
plitude. We compare the Lomb-Scargle periodogram,
Kalman filtering, and Kalman smoothing. For the Lomb-
Scargle periodogram, we use a short window size of
60 data points, with 59 points of overlap; less overlap
yields visible ”blocking” effects. For Kalman filtering
and smoothing, we set Z to be a scaled identity matrix
(z = 1000) in equation (11), and assign a noninforma-
tive prior on p(s0) (V0 = 1× 1010).

The true amplitude and the estimated amplitudes
of 125 Hz components are plotted in figure 1. Except
for the initialization (0.2 seconds) for Kalman filter-
ing, the mean square error of the estimated amplitudes
along the time axis is 0.0016; for Kalman smoothing,
the mean square error is 0.0000080. For the Lomb-
Scargle periodogram, the mean square error is 0.0384.
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Figure 2: Lomb-Scargle periodogram and Kalman Filtering spectra for a signal x = sin(2π39t) + sin((2π41t)
sampled 100 times over 2 seconds, with samples either evenly or randomly (unevenly) spaced.
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Figure 3: Comparison of different spectral estimation algorithms. The signal is the sum of 21 and 23 Hz real
sinusoid waves and white noise with variance 0.001. The signal is evenly sampled at 50 Hz over 2 seconds.

Kalman filtering and smoothing yield accurate es-
timates of the frequency and fast decaying amplitude,
while the Lomb-Scargle periodogram fails to track the
changing amplitude. Also, the Lomb-Scargle periodogram
contains much more sidelobes than in the spectrograms
obtained from Kalman filtering and smoothing. This
is partly because Kalman filtering and smoothing joint
estimate all the frequency bands and thus have the
“explaining-away’ effect: if the signal is well explained
by one or some of the frequency bands, the influence of
other frequency bands will be reduced. On the other
hand, for the Lomb-Scargle periodogram, there is no in-
teraction between the estimation of different frequency
bands.

Next, we show (figure 2) that unevenly sampling
removes aliasing in the traditional sense of bandlimit-
ing to fc. Results (a) and (c) show aliasing with even
sampling; (b) and (d) do not show any aliasing, despite
sampling the signal that contains 39 and 41 Hz waves at
average 50Hz. Again, Kalman filtering approach out-
performs the Lomb-Scargle periodogram. The Lomb-
Scargle periodogram is based on a single frequency data
model. Thus, its estimation of two close frequencies in-
terfers each other, which in turn affects the spectrum
estimation accuracy. In addition, comparing (c) and
(d), we see that the estimation of Kalman filtering has

an amplitude conservation property, i.e., the estimated
amplitudes are equally distributed in the true and alias-
ing frequencies in (c).

Finally, we compare several classical methods with
Lomb-Scargle and Kalman methods, on evenly sampled
data (figure 3). For the modified periodogram, we use a
Hamming window. For the Burg’s algorithm, we choose
a 6th order AR model. For the MUSIC algorithm, we
set the the signal subspace dimension to be 4. Note
that the Y axes in figure 3 are in logarithm scale.

5. CONCLUSION

This paper has proposed a Bayesian Kalman-filter based
method for spectrum estimation. Motivated by the
need to handle unevenly-sampled noisy non-stationary
data, we find that some of these problems (namely, the
unevenly sampled nature) are actually advantageous in
some sense. Our new method jointly estimates all the
amplitudes and phases of frequency bands of interest
instantaneously without the use of windowing, and is
easily able to accomodate prior information about noise
and signal structure. It is shown to provide outstand-
ing frequency resolution, even on small data sets.
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