
Learning Human Interactions with the 
Influence Model 

 
  

Sumit Basu* Tanzeem Choudhury* Brian Clarkson* 

Media Laboratory 
Massachusetts Institute of Technology  

Cambridge, MA 02139 
{sbasu,tanzeem,clarkson}@media.mit.edu 

 

Alex (Sandy) Pentland 
Media Laboratory 

Massachusetts Institute of Technology 
Cambridge, MA 02139 
sandy@media.mit.edu 

Abstract 

We are interested in quantitatively modeling the interactions 
between humans in conversational settings.  While a variety of 
models are potentially appropriate, such as the coupled HMM, all 
require a very large number of parameters to describe the 
interactions between chains.  We propose as an alternative the 
generative model developed in [1], the Influence Model, which 
parametrizes the hidden state transition probabilities by taking a 
convex combination of the pairwise transitions with constant 
“influence” parameters.  We develop a learning algorithm for this 
model and show its abilities to model chain dependencies in 
comparison to other standard models using synthetic data.  We also 
show early results of applying this model to human interaction 
data.            

1  Int r o duct io n  

There is a long history of work in the social sciences aimed at understanding the 
interactions between individuals and influencing their behavior.  In the psychology 
community, there are many instances of work studying these effects.  For instance,  
Wells and Petty [2] show how a speaker's confidence could be significantly 
influenced by repeated head nodding from the audience.  Studies of this kind give us 
interesting insights into the workings of human dynamics.  In many cases, the 
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experimenters have been able to take quantitative measures of behavior changes by 
looking at task performance or questionnaire responses.  However, there are 
important aspects of the behavior which can not be captured this way – how much 
one person is influencing another's behavior, the intensity of the interaction, and so 
on.  Thus far, experimenters have relied on qualitative measures based on hand 
annotations ("Bill talked more to Susan during this session" or "Joe was very angry 
and always yelled at Jane") or anecdotal incidents.  This has a number of problems – 
it is difficult to know exactly what the experimenters meant by their measures, and 
even more difficult to compare the results across different studies.  Our goal is to 
provide a means for quantifying these effects.  Our backgrounds are in computer 
vision, speech processing, and machine learning, and we believe that with the 
relevant tools in hand we can make some progress towards this goal. This paper is 
our first exploration into modeling these complex interactions. 

The general scenario of our work involves a number of participants interacting with 
each other and a number of actuators that can potentially affect their behavior.  
Initially, we wish only to observe and model the effects of people and actuators on 
each other, which will allow us to analyze and predict their behavior.  In the long 
term, we wish to use these models to build feedback systems that apply actuators 
based on the results of analysis.  Closing the loop in this way would eventually 
result in a stochastic model for influencing human behavior.  This would ideally 
allow us to enhance the interaction between the individuals (e.g., prevent fights, 
increase understanding, facilitate discussions).  While we are still far from this goal, 
we hope these first steps make some progress towards understanding human 
interactions.  To this end, we are currently working with a particular experimental 
setup we call the "Facilitator Room," which we describe in Section 2. 

While there are many possible ad hoc approaches to computing features for each of 
these effects (e.g., interaction intensity), we wish to develop a common framework 
in which we can analyze all of the effects of subjects influencing each other and 
experimental variables influencing the subjects.  The "Influence Model," developed 
as a generative model by Chalee Asivathiratham in his PhD disseration [1], is a 
possible means of representing the influences a number of Markov chains have on 
each other. As we will describe in Section 3, this model seems very appropriate to 
model the effects we are interested in.  In this paper, we generalize the model with 
hidden states/observations and develop an algorithm for learning its parameters 
from data (Section 3.2).  We then show the performance of this algorithm and model 
with respect to other models using synthetic data.  In Section 4, we show early 
results of applying our model to interaction scenarios in the Facilitator Room.  We 
close with our preliminary conclusions and plans for future work. 

2  The  Fa c i l i t a to r  Ro o m 

In the interests of studying the interactions between humans and the influences of 
various experimental variables, we have developed an experimental setup we call 
the "Facilitator Room."  This room is a 15 foot by 15 foot space with three couches 
and a table.  The room is instrumented with six pan-tilt-zoom cameras and an array 
of microphones.  From these sensors, we estimate features such as speaking rate, 
speech pitch, relative speech energy, region-based motion energy, and blob tracking.  
When using all sensors, this amounts to a data rate of 1.9 Gigabytes/hour.  In the 
experiments described in Section 4, we use a subset of the sensors resulting a data 
rate of 1.1G/hr for two hours.   



 

 

The room is also outfitted with a number of actuators meant to influence the 
behavior of the participants.  Currently we have speakers mounted behind each seat 
intended to mask sounds with white noise, whisper items to individuals, and so on.  
We have also installed lights focused on each seat whose colors and intensities are 
under computer control.  These are meant to change overall room lighting 
conditions and also to spotlight individuals to affect others’ response to them.  There 
are five projectors in the room: three on the walls, one going to a main screen, and 
one on the table. These are intended to show relevant information at appropriate 
times in the hopes of changing the conversation pattern. 

In the experiments in this paper, we have only begun to use the potential of this 
room – at this point we are not using the actuators.  However, we cannot study the 
effects of actuators until we have modeled the baseline interactions among 
individuals, and thus in this study we focus on the latter. 

3  The  Inf luence  M o de l  

In seeking a model appropriate to our goals, we turned to the work on dynamic 
Bayes nets (DBN's) in the graphical models community (for a review of DBNs see 
[3]). The most straightforward approach would be to model each participant with an 
HMM and then take the outer product of all the state spaces. Unfortunately, the 
number of states would be exponential in the number of chains N where Q is the 
number of states per chain, i.e., QN, and the number of parameters in the transition 
matrix would be Q2N.  Furthermore, it would be difficult to interpret the parameters 
of the resulting model – it would not be easy to determine, for example, whether a 
given person had an effect on another.  

The coupled HMM described by [4] and [5] for pairs of chains is a potential 
solution here, as it models the dependency of one chain's state on both chains' 

previous states, i.e., 1 1( | , )i i j
t t tP S S S− − , as shown in Figure 1 (a).  This keeps the 

state space at 2N, with a QxQxQ transition table for each chain, for a total of 2Q3 
transition parameters per chain. 
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Figure 1: Possible DBN models for human interactions shown at times t-1 and t: (a) 
a coupled HMM, (b) a generalized version of the coupled HMM with N chains, and 
(c) pairwise chains of coupled HMMs. 

The generalization of this model to N chains that makes sense here is for the next 
state to depend on the value of all of the previous states, i.e., we should estimate 



 

1
1 1( | ,..., )i N

t t tP S S S− −   (see Figure 1).  However, this requires a QNxQ transition table 

for each chain, resulting in NQN+1 transition matrix parameters, which is still very 
large. Another possibility is to model all possible pairs of chains with a standard 

coupled HMM.  Such a scheme would still require 3

2

N
Q

 
 
 

parameters for the 

transition tables.  Since we would like to estimate these parameters over fairly short 
segments such as a fraction of a conversation, we wish to keep the number of 
parameters to a minimum, and as a result continued to search for an appropriate 
model.  

3 .1   (Re ) in troduc ing  the  Inf luence  M o de l  

In his dissertation, Asavathiratham [1] introduced the "Influence Model," a 
generative model for describing the connections between many Markov chains with 
a simple parametrization in terms of the “influence” each chain has on the others.  
His work showed how complex phenomena involving interactions between large 
numbers of chains could be simulated through this simplified model, such as the 
up/down time for power stations across the US power grid.  In his description, all 
states were observed, and he did not develop a mechanism for learning the 
parameters of the model.  We thus nominally extend his model by adding the notion 
of hidden states and observations. We also develop a learning algorithm for the 
parameters in Section 3.2. 

The graphical model for the influence model is identical to that of the generalized 
N-chain coupled HMM, but there is one very important simplification.  Instead of 

keeping  the entire 1
1 1( | ,..., )i N

t t tP S S S− − , we only keep 1( | )i j
t tP S S −  and 

approximate the former with: 

 1
1 1 1( | ,..., ) ( | )i N i j

t t t ij t t
j

P S S S P S Sα− − −= ∑  

In other words, we form the distribution for a given chain’s next state by taking a 
convex combination of the pairwise conditional probabilities.  As a result, we only 
have N QxQ tables and N α  parameters per chain, resulting in a total of NQ2 + N2 
transition parameters.  This is far fewer parameters than any of the above models.  
The real question, of course, is whether we have retained enough modeling power to 
determine the interactions between the participants. 

Asavathiratham refers to the α 's as "influences," because they are constant factors 
that tell us how much the state transitions of a given chain depend on a given 
neighbor.  It is important to realize the ramifications of these factors being constant:  
intuitively, it means that how much we are influenced by a neighbor is constant, but 
how we are influenced by it depends on its state.  Another way to look at this is that 
we are only modeling the first-order effects of our neighbors' influences on us: if 
Joe yelling causes us to be quiet with certainty and Mark's yelling causes us to yell 
back with certainty and our α ’s for both are equal, the combination of both yelling 
will result in a distribution of our next action that has its probability mass equally 
distributed over yelling and not yelling. This is what we are giving up in terms of 
modeling power – while the fully-connected coupled HMM would allow us to 
explicitly model the effect of the joint event of Joe and Mark yelling together, the 
influence model does not (note, however, that the set of pairwise coupled HMMs 
would also not be able to model this joint effect).   

This simplification seems reasonable for the domain of human interactions and 
potentially for many other domains.  Furthermore, it gives us a small set of 



 

interpretable parameters – the α  values – which summarize the interactions 
between the chains.  By estimating these parameters, we can gain an understanding 
of how much the chains influence each other. 

In the sections below, we develop a learning algorithm for this model and show with 
both synthetic and real data the kinds of interaction structure this model can capture.  
Last, though we do not explore it in this paper, we can easily use this model to 
estimate the effects of actuators on the participants.  We would simply create a new 
(observed) chain for each actuator and then observe its influences. In this case, to 
investigate how the actuator changed the participants' behavior, we would have to 
look at the probability tables as well as the α ’s. 

3 .2  Lea rn ing  fo r  the  In f luence  M o de l  

The problem of estimating the Influence Model from data can be stated as follows. 

We are given sequences of observations, { }itx , from each chain i . The goal is to 

estimate the amount of influence, ijα , that chain j has on chain i, along with the 

pairwise conditional probability distributions that describe this inter-chain 

influence, 1( | )i j
t tP S S − . In this section we develop methods for doing this and 

illustrate them with synthetic data. 

 

 

Figure 2: Graphs for (a) a generalized coupled HMM, (b) an Influence Model with 
hidden states, (c) an Influence Model with observed states. 

3 .2 .1  Expec ta t ion-M a ximiza t ion  for  the  Inf luence  M o de l  

In  Figure 2 we show the graphical model for the most general form of the Influence 
Model with hidden states and continuous observations. Fitting this model to data 
requires us to maximize the likelihood of Influence Model over its free parameters. 
The likelihood function can be readily written as: 

 

0 0 0 1( , ) ( ) ( | ) ( | ) ( | )i i i i i i j
t t ij t t
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One possibility for estimating the parameters of this model is Expectation-
Maximization. The E-step requires us to calculate ( | , )P S X θ , which in most cases 
amounts to applying the Junction Tree algorithm (for exact inference) or some 
approximate inference scheme (variational, etc.). We will discuss the possibilities 
for doing inference on this model later. The M-step is specific to this model and 
requires maximizing the lower bound obtained in the E-step. Examining this 

expression we can see that the M-step for all the parameters except the ijα ’s is only 

trivially different from the HMM. However, we can readily write down the update 

equations for the ijα ’s by noticing that they are mixture weights for N conditional 

probability tables analogous to a mixture of Gaussians. The ijα  update equations 

are obtained by following the derivation of the M-step for a Gaussian mixture (i.e., 
by introducing a hidden state to represent the “active” mixture component and then 
taking an expectation over its sufficient statistics): 
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The “ i
tc j= ” event means that at time t  chain i  was influenced by chain j , and 

the “ i
tS k= ” event means that chain i  was in state k  during time t . 

 

3 .2 .2  The  Observed  Inf luence  M o de l  

 

Due to the difficulties involved in doing the inference required for E-step, we 

decided to simplify the estimation problem by allowing the states i
tS  to be observed 

for each chain (see Figure 2). We decided to obtain our state sequences by fitting an 
HMM to each chain’s observations and performing a Viterbi decoding. The chain 
transition tables were then easily estimated (by frequency counts) directly from 
these state sequences. Since our goal is to estimate the inter-chain influences (via 

the ijα ’s) this “clamping” of the observation and chain transition parameters helps 

combat the overfitting problems of the full model. 

 

We now have an unusual DBN where the observed nodes are strongly 
interconnected and the hidden states are not. This presents serious problems for 
inference because marginalizing out the observed state nodes causes all the hidden 
states to become fully connected across all time and all chains. Unless we apply an 
approximation that can successfully decouple these nodes, a maximization 
procedure such as EM will not be tractable. However, there is a far simpler way to 

estimate the ijα  values in our observed scenario. Let us first examine how the 

likelihood function simplifies for the observed Influence Model: 
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Converting this expression to log likelihood and removing terms that are not 

relevant to a maximization over ijα  yields: 

 *
1arg max log ( | )

ij

i j
ij ij t t

i t j

P S S
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 
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We can further simplify this expression by keeping terms relevant to chain i : 
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This per chain likelihood is concave in ijα , which can be easily shown as follows: 

Let 
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 Then the per chain likelihood becomes: ( ) log , i
i t

t

f Bα α= ∑ . This is concave 

since for any 0 1w< ≤  and 0 1,α α : 
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 (using Jensen) 

 

Now taking the derivative w.r.t. ijα : 
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Notice that the gradient and the per chain likelihood expression above are 
inexpensive to compute with appropriate rearranging of the conditional probability 

tables to form the i
tB  vectors. This along with the facts that the per chain likelihood 

is concave and the space of feasible ijα ’s is convex means that this optimization 

problem is a textbook case for constrained gradient ascent with full 1-D search (see 
p.29 of [6]).  Furthermore, in all examples in this paper, 20 iterations were sufficient 
to ensure convergence, which amounted to less than 10 seconds of CPU time. 

3 .2 .3  Eva lua t ion  o f  the  Observed  Inf luence  M o de l  on  Sy nthe t i c  
Da ta  

To evaluate the effectiveness of our learning algorithm we first show results on 
synthetic data. The data was generated by an Influence Model with 3 chains in lock 
step: one leader which was evolving randomly (i.e., flat transition tables) and 2 
followers who meticulously followed the leader (i.e., an influence of 1 by chain 2 
and a self-influence of 0). We sampled this model to obtain a training sequence of 
50 timesteps for each chain. These state sequences were then used to train another 

randomly initialized Influence Model.  As described above, the 1( | )i j
t tP S S −   were 

estimated by counting and the ijα ’s by gradient ascent. The resulting influence 

graph is shown along with a typical sample sequence in Figure 3.  Note how the 
“following” behavior is learned exactly by this model – chains 1 and 3 follow chain 
2 perfectly.  
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Figure 3: The evaluation pipeline for testing the Influence Model on the lockstep 
synthetic data: (a) the graph for the generating model at time t and t+1 (b) the 
training sequence (c) the learned influences (α’s) – the thickness of the lines 
corresponds to the magnitude of the influence.  Note that the strong influence of 
chain 2 on 1 and 3 was correctly learned. (d) Sample paths from the learned model.  
Note how chains 1 and 3 (the followers) follow chain 2 perfectly. 

We also evaluated the Generalized Coupled HMM (i.e. full state transition tables 
instead of the mixtures of pairwise tables) on this data using EM, using the Junction 
Tree Algorithm for inference. Again we sampled from the lock step model and 
trained a randomly initialized model. A sample sequence from the resulting model is 
shown in Figure 4.   In this case, the learned model performed reasonably well, but 
was unable to learn the “following” behavior perfectly due to the larger number of 

parameters it had to estimate ( 1
1 1( | ,..., )i N

t t tP S S S− −  vs. 1( | )i j
t tP S S − ). 
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Figure 4: The evaluation pipeline for testing the Generalized Coupled HMM on the 
lockstep synthetic data: (a) the graph for the generating model (b) the training 
sequence (c) the graph for the learned model and the likelihood values for the EM 
iterations (d) a sample path from the learned model.  Note that this model was 
unable to capture the lockstep behavior perfectly, as can be seen in the errors of 
chain 1 in following chain 2. 

4 Experiments  and Results  

After verifying the performance of our algorithm on synthetic data, we tested our 
models on data of natural human interactions in the facilitator room.  We recorded 
two hours of data of five participants playing an interactive debating game. The 
game, Opinions, comes with stack of cards that has different controversial debate 
topics. We recorded ten games (debate sessions) for our experiment. In order to 
ensure that we saw a debate session between all possible pairs of players, we listed 
all pairs and chose pairs from the list without replacement. The first participant in 
the list entry rolled a die to pick a side (proponent or opponent). Each debater spoke 
for one minute after which the stage was open for discussion between all 
participants. No restrictions were imposed on the participants’ interaction style 
during the game. The features calculated automatically from the data were per 
person motion energy (30 Hz), speech energy (30 Hz), and voicing state (60 Hz). 
Also, the speaker turns (i.e., who was speaking when) were hand labeled for all the 
games.   

In the first experiment, we used the hand-labeled speaker turns only. Each player 
had two states – speaking and silent. When multiple players were speaking at the 
same time, all of them were considered to be in the speaking state. The full set of 
features for the game was the binary state vector for all of the players, which was 
afterwards non-uniformly resampled in order to remove consecutively repeating 
states.  Therefore, if all the players were in the same state for t timesteps, those t 
identical observations were effectively replaced with one time step.  This effectively 
broke up the data such that there would be one feature vector per conversational 
turn.  If the features were not resampled in this way, the self-transitions would 
overwhelm the effects of any inter-person  influences. 

We estimated the influence matrix α  for the entire dataset (all ten games) and also 
for each game separately.  In this dataset, player Tammy was asked always to 
respond/react to player Bob and thus we expect Bob to have a strong influence on 
Tammy. We see this influence in the full game influence matrix shown in Figure 5.  
Furthermore, Tammy and Anne were observed to be the dominating speakers in all 
of the datasets.  This appears in the learned graphs as the strong connections to the 
other participants. Last, for each game we compared the learned influence graph 



 

with the influence graph generated from a hand-labeled interaction matrix.  This 
latter graph was formed by creating a directed link from participant A to participant 
B if participant B responded to participant A; the strength of the link is proportional 
to the number of times B responded to A (normalized by all of A’s influencers). 
Figure 6 shows the results for a subset of games from our dataset. 
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Figure 5: Influence graph for the full game showing strong links for the dominating 
speakers Tammy and Anne. 
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Figure 6: Results for two sub-games (a) debate between John and Anne - 
interaction graph learned by our model (b) graph of hand-coded influence matrix 
used as ground truth (c) debate between Sam and John – learned model (d) ground 
truth. 

 

Finally, we ran our algorithms using the motion energy, speech energy and voicing 
state for each person to generate the influence graphs, now learning the states in an 
unsupervised manner. Figure 7 shows one example of the influence structure 
extracted, which shows a strong link between the proponent and the opponent, as 
was observed in the audio-visual record for that game. 
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Figure 7: Influence graph for one debate session learned using the automatically 
generated features - motion energy, speech energy and voicing state. The model 
learned the strong link between the two debaters. 

5 Discussion and Future Work 

Human interactions are quite complex and we cannot hope to capture all of their 
subtleties with a simple graphical model.  However, we have shown that the 
Influence Model is capable of describing some of the phenomena we expect to see, 
and also that the learning algorithms we have proposed are capable of reliably 
estimating these parameters. Furthermore, we have applied our algorithms to real 
data of human interactions and shown that we can recover some of the structure 
observed in the data.  While these first forays do not yet constitute a comprehensive 
framework for analyzing human interactions, we believe they are an important step 
towards characterizing the influences people have on each other during 
conversations. 

Currently, we are running further experiments using the automatically generated 
features (as in Figure 7) to see how well they correlate with our measures of ground 
truth.  We are also considering a number of different methods for doing full learning 
on the model, including variational methods and other approximate inference 
techniques.   We also plan to perform more detailed evaluations of the performance 
of the Influence Model with respect to the generalized (N-chain) Coupled HMM.  

Ackno w ledg ments  

We used Kevin Murphy’s MATLAB Bayes Net Toolbox for performing EM with 
the junction tree algorithm. 

References  

1. Asavathiratham, C., The Influence Model: A Tractable Representation for the 
Dynamics of Networked Markov Chains. In Dept. of EECS, MIT. Cambridge,  
2000. 

2. Wells, G., Petty, R., "The Effects of Overt Head Movements on Persuasion." 
Basic and Applied Social Psychology, 1980. 1(3): pp. 219-230. 

3. Ghahramani Z, "Learning Dynamic Bayesian Networks." Adaptive Processing 
of Sequences and Data Structures. International Summer School on Neural 
Networks ‘E.R. Caianiello’. Tutorial Lectures. Springer Verlag, 1998. 



 

4. Brand, M., N. Oliver, and A. Pentland. "Coupled hidden Markov models for 
complex action recognition." In Proceedings of IEEE Conference on Computer 
Vision and Pattern Recognition. 1997. 

5. Saul, L. and M. Jordan, "Boltzmann Chains and Hidden Markov Models." 
Advances in Neural Information Processing Systems, 1995. 7: pp. 435-42. 

6. Bertsekas, D.P., Nonlinear Programming. Athena Scientific: Belmont, 1995.  


