M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 525
To Appear: Proceedings of ICPR’00, Barcelona, Spain, 2000

SmartCar: Detecting Driver Stress

Jennifer Healey and Rosalind Picard
Massachusetts Institute of Technology
Media Laboratory
20 Ames St, Cambridge MA, USA

fenn, picard@media.mit.edu

Abstract

Smart physiological sensors embedded in an au-
tomobile afford a novel opportunity to capture
naturally occurring episodes of driver stress. In
a series of ten ninety minute drives on pub-
lic roads and highways, electrocardiogram, elec-
tromyogram, respiration and skin conductance
sensors were used to measure autonomic nervous
system activation. The signals were digitized
in real time and stored on the SmartCar’s pen-
tium class computer. Each drive followed a pre-
specified route through fifteen different events,
from which four stress level categories were cre-
ated according to the results of the subjects self
report questionnaires. In total, 545 one minute
segments were classified. A linear discriminant
function was used to rank each feature individu-
ally based on recognition performance and a se-
quential forward floating selection (SFFS) algo-
rithm was used to find an optimal set of features
for recognizing patterns of driver stress (88.6%).
Using multiple features improved performance
significantly over the best single feature perfor-
mance (62.2%).

1 Introduction

Stress has been identified as an important health risk, con-
tributing adversely to chronic problems such as back pain
and migrane headaches and to life threatening conditions
such as cardiac arrest and cancer, yet the problem of ac-
curately detecting, recording and quantifying the salient
features of stress remains a challenge to health profession-
als and researchers. Many features of physiological signals
have been proposed as indicators of stress by cardiologists
and psychophysiologists, but these are usually evaluated
individually and their performance for recognition is sel-
dom tested. This paper shows how pattern recognition
techniques can be applied to identify the best combina-
tions of features to detect stress in automobile drivers de-
rived from four physiological sensor signals: electromyo-
gram (EMG - £), electrocardiogram (EKG), galvanic skin
response (GSR - G) and respiration through chest cavity
expansion (R). These signals were chosen because previous
studies have found them useful for assessing arousal and
stress[ELF83]. GSR has been noted as being particularly
useful in studying driver stress[Hel78]. For this analysis,
a SmartCar system was developed to collect physiological
data from natural driving situations along with multiple
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Figure 1: Above: a sample frame from the video collected
during the experiment showing driver facial expression and
road conditions synchronized to the real-time physiological
responses. Below: a diagram showing sensor placement.
GSR sensors are placed on both the hand and the foot.



Event | Event Stress
Num. | Description Rating
1. Beginning stationary period (restl) 1
2. Garage Exit 2
3. City Road (city1) 4
4. Toll Booth (tolll) 3
5. Highway driving period (hwy1) 3
6. Toll Booth (toll2) 3
7. Exit Ramp Turnaround (exit) 5
8. Toll Booth (toll3) 3
9. Highway driving period (hwy2) 3
10. Two Lane Merge (merge) 5
11. Toll Booth (toll4) 3
12. Bridge crossing (bridge) 4
13. City Road (city2) 4
14. Enter Garage 1
15. End stationary period (rest2) 1

Table 1: A summary of driving events and the median
stress rating from the ten questionnaires

video recordings to provide ground truth for validation.
Four stress categories were defined by a questionnaire anal-
ysis of perceived stress ratings. Twelve features character-
ized each of 545 one minute data segments taken from the
ten days of driving records. Each of these segments was
labeled as belonging to one of four stress categories: low,
neutral, high or very high stress.

2 Data Collection

A SmartCar system was developed for this experiment by
augmenting a car with an on-board Pentium computer with
video cameras a microphone and four physiological sensors.
Figure 1 shows the placement of the sensors on the subject
and the composite image record of the video cameras plus
the video feed from the computer monitoring the sensors.
The driving route was designed to simulate a commute
to work. Table 1 shows a sequential list of the driving
events as they were encountered and the median stress rat-
ing given to that event by the median of the questionnaires
scores which ranged from “1” to “7.” From these ratings
four stress categories were created: very high (events 7,10),
high (events 3, 12, 13), neutral (events 4,5,6,8,9) and low
stress (events 1,2 14,15). The toll events and the garage
exit were excluded from analysis due to excessive motion
artifacts and inconsistencies in the experimental protocol.

3 Feature Extraction

Ten complete records of physiological data were collected
from this experiment. FEach record consists of approxi-
mately ninety minutes of data, however, the length of time
for the experiment and for each of the fifteen driving driv-
ing events varied from day to day due to traffic conditions.
From the records 545 one minute segments were extracted
which belonged to one of the fifteen driving categories in
Table 1.

From each of the one minute segments the following fea-
tures were extracted: the mean and variance of the signals
£, G, and R, represented respectively by the symbols: pue,
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Figure 2: An example of GSR responses occurring in a one
minute segment and the results of the algorithm showing
onset “X” and peak “O” detection. The features Sas and
Sp are derived as shown.

oe; po, og; and pwr, or; features of the GSR orienting re-
sponse, including the frequency of occurrence Sg, the sum
of durations ¥Sp, the sum of magnitudes XSy and the
sum of the estimated areas X.54. Two features were derived
from the EKG signal, the heart rate (HR) and autonomic
balance (AB) from short term power spectrum heart rate
variability.

Four features of the GSR response are derived from an
algorithm which detects the onset and peak of individual
responses, as shown in Figure 2. The detection algorithm
first smoothes the segment using a digital elliptical filter
with a cutoff at 4Hz. Next the derivative of the signal was
calculated using the first forward difference (6g [n] = G[n] -
G [n-1]) and a threshold was applied (0.093 pS per sec was
found to yield good performance in practise). Responses
occurring less than one second after a previous response
were counted as a continuation of that response. Once the
response was detected, the zero-crossings of the derivative
preceding and following the response were identified as the
onset and peak of the response respectively. The features
for the magnitude Sas and duration Sp of each response
are derived as:

SM = tpeak - tonset (1)

SD = gpeak - gonset (2)

From these measurements the area of the response is
estimated by Sa = % * Sy % Sp. For each one minute seg-
ment, the sum of response magnitudes (3X.Syr), durations
(XSp), areas (¥S4) and the frequency of responses (Sr)
are calculated.

The AB feature is calculated by finding the ratio of low
frequency energy to high frequency energy in the spec-
trum of the heart rate (HR) signal. This feature used
a five minute window of the heart rate time series cen-
tered on the midpoint of the minute segment used for the
other features. To calculate AB, the heart rate time se-
ries was first derived from the EKG signal by detecting the
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Figure 3: Above: The peaks or the “R” waves in the elec-
trocardiograph signal are first detected using the WAVE
software[M0093]. Outliers in the heart rate time series,
caused by missed beats are ignored rather than estimated.
A Lomb-Scargill periodogram is then calculated on this
time series.

amount of time between successive “R” wave peaks in the
EKG. These peaks were detected using the WAVE soft-
ware program developed by George Moody (available at
http://ecg.mit.edu). This program was used to reject out-
liers as shown in Figure 3 and use a least-squares spectrum
estimation (Lomb-Scargill) method to determine heart rate
variability[Moo93] [Lom76]. Autonomic balance is a mea-
sure of the variability of the time series of the heart rate
derived from the EKG. The low frequency (LF) variations
in the heart rate (0.01-0.08 Hz) are influenced by both
sympathetic and parasympathetic activity, while the high
frequency (HF) variations (0.15-0.5 Hz) are almost exclu-
sively due to parasympathetic activity[SSea93]. The ratio
of low to high frequency energy and reflects the sympatho-
vagal balance, a measure that increases in stressful situa-
tions and decrease with relaxation[MAea95]. The ratio of
the sum of the energy in the LF band of this spectrum to
the HF band is then calculated as the AB feature:

LF 00 lombPSD(HR) _
AB = HF ~ <05Hz ! : (3)
o lombPSD(HR)

For the AB feature, outliers could be eliminated to cre-
ate a better estimate, however to calculate the heart rate
variable (HR) a a uniformly sampled and smoothed instan-
taneous heart rate signal was created using the function

“tach” from the WAVE software.

4 Analysis

Each of the individual features was tested to see how well
it performed in a recognition task using a linear classifier.
Using this classifier each class k = 1,2, 3,4 was modeled as
a gaussian with g equal to the sample mean for that class
and o2 equal to the pooled variance. The classification
was implemented by assigning the feature to the class k
for which gr was maximum|[The89] where:

Feature | Rank | Correct | Feature | Rank | Correct
UR 1 62.2% og 6 53.5 %
1o 2 62.0% | ©Sa 7 53.0 %
¥Sp 3 58.5% HR 8 52.6 %
ne 4 58.3% AB 9 52.5 %
Sk 5 57.6% oR 10 50.2 %
2SS 5 57.6% oc 11 48.3 %

Table 2: A ranking of each individual feature

Optimal Selected Feature Set SFFS kNN
AB, HR, ¥5p, ¥Sum, pe, pr, or 88.6 %
AB, HR, ¥Sp, ¥S5um, SF, kg, oc 88.4 %

Table 3: Recognition rates achieved using Jain and
Zongker’s FS-SFFS algorithm with a k nearest neighbor
classifier. No significant drop in performance occurs when
£ and R are eliminated from the initial pool.

T 2 ‘ .
gr(9) = %y - 5—}; + 2Un(Prlwk]); (4)
and the a priori probability of belonging to class &,

Prlwg] = nl—k (where ny is the number of members in class

k). For the results in Table 2 leave one out and test cross-
validation was used where first gy and o2 were calculated
using all but the feature for one minute, then classifying
the excluded feature according to the maximum gg.

A second analysis was performed using features selected
from Jain and Zongker’s sequential forward floating selec-
tion (SFFS) algorithm [JZ97]. This algorithm used a k-
nearest neighbor classifier and the leave one out and test
method and shows that by combining multiple physiologi-
cal features, the recognition of driver stress can be signif-
icantly improved as shown in Table 3. A further feature
selection and classification analysis was done eliminating
signals which might primarily depend on physical motion,
&€ and R, from the initial pool. The result shows no sig-
nificant decrease in performance indicating both that the
stress detected is more likely to be mental and emotional
and that high recognition rates can be achieved with few
sensors using multiple features.

5 Conclusions

This research shows the application of pattern recognition
techniques to the problem of emotional stress detection us-
ing features from multiple physiological signals. The re-
sults show that by detecting patterns across combinations
of features, performance for recognizing stress in drivers
improves significantly from at best 62.2% to 88.6%. This
performance was shown not to depend mainly on motion
artifacts. Perfect performance is not expected due to am-
biguities in labeling the stress level, however, the recogni-
tion rates from this research suggest that stress information
could be used by a computer to control non-critical driv-
ing applications, such as as music selection and managing
on-board information appliances such as cell phones and
navigation aids. In the broader picture, a regular com-
mute offers the opportunity to record daily stress signals
for analysis. Records of these stress patterns over time




could provide an indicator of changes in life stress, giv-
ing a quantified feedback to the individual about how life
choices could be affecting their stress level and providing
a new metric with which to make informed choices about
their health and behavior.
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