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We describe experiments in recognizing a person’s situation 
from only a wearable camera and microphone. The types of 
situations considered in these experiments are coarse locations 
(such as at work, in a subway or in a grocery store) and coarse 
events (such as in a conversation or walking down a busy 
street) that would require only global, non-attentional features 
to distinguish them. 
 
Keywords: contextual computing, peripheral sensing, Hidden 
Markov Models, HMM, computer vision, computer audition, 
wearable computing 

I. INTRODUCTION 
We describe a baseline system for training and classifying 
natural situations. It is a baseline system because it will 
provide the reference implementation of the context 
classifier against which we can compare more sophisticated 
machine learning techniques. It should be understood that 
this system is a precursor to a system for understanding all 
types of observable context not just location. We are less 
interested in obtaining high precision and recall rates than 
we are in obtaining appropriate model structures for doing 
higher order tasks like clustering and prediction on a user’s 
life activities. 

II. BACKGROUND 
There has been some excellent work on recognizing various 
kinds of user situations via wearable sensors. Starner [6] 
uses HMMs and omnidirectional and directional cameras to 
determine the user’s location in a building and current 
action during a physical game. Aoki also uses a head 
mounted directional camera to determine indoor location in 
[1]. Sumi et al. uses locational and history context to 
provide a wearable exhibition agent in [7]. Brand [2] 
presents an interesting idea for determining the states of 
human activity.  His work relates strongly to the underlying 
motivation of this work (see author’s previous work in [3] 
[4]). Finally, Sawhney [5] provides an excellent example of 
the use of auditory context on a wearable messaging system. 

III. BASELINE SYSTEM OUTLINE 
A wearable computer was constructed for the purposes of 
labeling a stream of audio/visual features with tags such as 
Entering Office, or Leaving Kitchen as the wearer went 
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through his day. The classes were modeled with ergodic 
HMMs in the simplest way and used in a maximum 
likelihood classifier. The baseline system refers to this 
traditional and straightforward use of HMMs (see Figure 2).  
 
The features we obtained from a wearable video camera and 
a wearable microphone are listed in Table 4. The camera 
was 1” x 1” x ½” pinhole CCD mounted to the chest strap. 
The microphone was a omnidirectional boundary 
microphone, also mounted to the chest strap. (see Table 1) 
The features together describe the 24 dimensional feature 
space in which HMMs were trained and tested. A wearable 
computer was used to allow the user to concurrently label 
events and locations as he experienced them. Of course, in 
general this is potentially disruptive to the user’s activities. 
However, for this experiment we tried to select classes that 
were not disturbed by the labeling action.  
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Table 1 The labeling wearable: (1) the touch sensitive 
pad for Unistroke input, (2) sensor package containing 

pinhole CCD and boundary microphone. 

Also, we designed the actual interface to the labeling 
wearable so that it requires minimal use of one hand, no 
visual attention and limited auditory attention. The interface 
is a small handheld pad with 2 buttons, that allows the user 
to execute commands by drawing Unistroke characters on 
the pad with his thumb. Auditory feedback is provided via 
an earplug. 
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IV. CONTEXTUAL SITUATIONS CONSIDERED 
The situations that we have qualitatively considered so far 
are quite limited since they only involve entering and 
leaving 3 selected indoor locations: 
 
1. Enter Office 
2. Leave Office 
3. Enter Kitchen 
4. Leave Kitchen 
5. Enter Black Couch Area (BCA) 
6. Leave BCA 
 
 Many more are at this very moment being added to the 
database. Please see Figure 1 for a map of the area. The 3 
boxes refer to the areas that were labeled whenever the user 
entered or left them. The path connecting these areas is not 
an actual path but just an estimation of the usual route that 
the user took to get between these 3 areas. 
 
Other than the selection of the 3 areas for labeling, the 
conditions of this experiment were quite freeform. No effort 
was made to control for spontaneous situations since we 
wished to collect data under the most natural conditions 
possible.  
• Natural movement and posture 
• Spontaneous conversations in the hallway 
• Constant shifting of the sensor package on the user’s 

body. 
Basically, we want to emphasize that except for the user 
having a handheld device for labeling, all other conditions 
were kept as natural as possible. Of course, we shouldn’t 
ignore that the scenario was quite limited. 
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Figure 1: Location Map 

The events 1-6 were labeled with impulses in time. For 
example when the user entered the kitchen, he marked the 
moment he passed through the doorway by pressing the 

label button on the handheld touch pad. See Table 2 for the 
number of labels collected for each event. For each of the 
events we partitioned the sets into separate training sets and 
testing sets. 
 

EVENTS # OF EXAMPLES 
Leave Office 31 
Enter Office 27 
Leave BCA 21 
Enter BCA 22 
Leave Kitchen 21 
Enter Kitchen 22 

Table 2: The Data Set 

V. THE MODELS 
The models used for determining the occurrence of events 
from the sensor stream were fully connected HMMs. We 
trained an HMM on each of the six events separately. 
Classification was achieved by using the Viterbi algorithm 
to obtain an estimate of the event likelihood for a window of 
features. If the likelihood exceeded a threshold then the 
event was triggered.  
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Figure 2 Overview of the Baseline System: 24 

dimensional A/V features sampled at 5Hz enter the 
training pipeline at the left. HMMs are trained with 

varying numbers of states and window sizes. The 
HMMs that give maximum testing performance are 

selected. 

To construct the training examples we took a time window 
of features around each of the impulse labels in the training 
set. This same window size was used in the Viterbi 
algorithm during classification. The window size represents 
the model’s use of context, so that larger window sizes 
mean more context is taken into account. Each state in the 
HMMs were constrained to have a single Gaussian. 
However, this still leaves the number of states and the 
window size undetermined. 
 
We selected the parameters using brute force search over a 
range of state counts and window sizes. Using classification 
accuracy as the selection criterion we iterated over state 
counts from 1-10 and window sizes from 2-20 secs. See 
Figure 2 for a flow diagram of the training procedure just 
described and Figure 3 for an example of a criterion 
surface. 
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Figure 3 Accuracy vs. Free Model Parameters: this plot 
shows classification accuracy for the Enter Kitchen task 

for different HMM sizes and window sizes. 

VI. RESULTS 
We evaluated the models on a separate test set and obtained 
the following classification results. Since the thresholds for 
each model still needed to be determined we calculated 
Receiver-Operator Characteristic (ROC) curves for each 
model. The resulting curves are shown in Figure 4. We used 
the Equal Error Rate (EER) criterion (i.e. cost of false 
acceptance and of correct acceptance are the same) to 
choose optimal points on the ROC curves. Table 3 gives the 
resulting accuracies and the associated model parameters 
for each event. 
Events # of 

States 
Window 

Size (secs) 
Accuracy 

(%) 
Leave Office 8 20 85.8 
Enter Office 2 11 92.5 
Leave BCA 3 20 92.6 
Enter BCA 7 20 95.7 
Leave Kitchen 1 4 99.7 
Enter Kitchen 7 11 94.0 

Table 3: The resulting model parameters and accuracies 
(based on EER) for each event/class. 

The next plots (Figure 5Figure 6, Figure 7, and Figure 8) 
give the actual likelihood traces for the best and worst 
performing event models overlaid with the ground truth 
labels. Although in both cases the likelihood traces are quite 
noisy, the peak separation near actual labels is quite good 
(as supported by the ROC curves). Leave Kitchen (Figure 5) 
had the best performance with 99.7% accuracy achieved 
with just a 1 state HMM trained on 4 sec. feature windows. 
Leave Office (Figure 7) had the worst performance with 
85.8% achieved with an 8 state HMM trained on 20 sec. 
feature windows. Notice that the window sizes exhibit 
themselves in the time resolution of the classifiers (Figure 6 
and Figure 8). 
 

These results are actually quite surprising (i.e. the high 
accuracy) considering the lack of context (perhaps in the 
form of a spatial grammar) and the coarse features. 
However, we can’t assume from these results that this 
method would work for a wide variety of conditions and 
events/situations. We still need to consider the possible 
degradation over time of the accuracy as the present 
situations drift away from their previously trained models. 
Basically we have no idea what the generalization 
properties of these models are. 
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Figure 4 Receiver-Operator Characteristic (ROC) 

Curves for each model when tested on the test set and 
varying the threshold on the likelihood. 
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Figure 5 Leave Kitchen Classification: This class 

achieved the best classification performance of all the 
classes and it used a 1 state HMM trained on 4 sec 

feature windows. This figure shows approx. 1 hr. of 
performance on the test set. 
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Figure 6 Leave Kitchen Classification (Zoom): This 

figure zooms in on a particular event in Figure 5. Notice 
the width of the likelihood spike is similar to the window 

size of this model (i.e. 4 secs). 
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Figure 7 Leave Office Classification: This class achieved 

the worst classification performance of all the classes 
and it used a 8 state HMM trained on 20 sec feature 

windows. This figure shows approx. 1 hr. of 
performance on the test set. 
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Figure 8 Leave Office Classification (Zoom): This figure 

zooms in on a particular event in Figure 7. Notice the 
width of the likelihood spike is similar to the window 

size of this model (i.e. 20 secs). 

 
 
 

 
Figure 9 The Kitchen 

 

 
Figure 10 The Black 

Couch Area 
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Figure 11 The Office 
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