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Abstract

It is now easy to find examples of interactive soft-
ware agents and animated creatures that have
the ability to express emotion; this paper de-
scribes research for giving them the ability to
recognize emotion. The ability to recognize a per-
son’s emotions is a key aspect of human “emo-
tional intelligence,” which has been described by
a number of scientists as being more important
to success in life than are the traditional forms
of mathematical and verbal intelligence. This
paper describes research underway in emotion
recognition at the MIT Media Lab, especially re-
search involving new wearable interfaces.

1 Introduction

People often laugh or express delight at something pre-
sented by a computer—a funny animation, a virtual pet,
a piece of humor mail—even though computers, to date,
have been unaware of these human reactions. It is perhaps
even more frequent to see a person expressing frustration
or irritation at a computer, especially when they feel that
the system is hindering their goals and progress by failing
to do what they need done. There is a recent Associated
Press report of a man who got so upset at his computer
that he shot it with a gun several times, revealing that
human anger can be just as powerfully expressed toward
a machine as it can be toward another person. Humans
often express emotions in front of computers, and interact
with them in a natural and social way [1].

To date, computers, and their agents, animated crea-
tures, and other forms of potentially adaptive software,
have been affect-impaired. Although many systems can
express emotion, most do not have any internal mecha-
nisms of emotion or the ability to recognize emotion in
others. Although there has been a lot of talk and effort
to make computers “friendly” and “intelligent,” little has
been done in terms of giving them the skills required for
affective interaction. Existing attempts focus primarily on
making animated agents and other characters expressive,
via faces, gestures, posture, and other behaviors. Such
work is an important part of developing more affective in-
teractions, and for making characters more entertaining,
more engaging, or more believable. However, expression is
only one part of affective interaction.

Affective interaction can have maximal impact when
emotion recognition and expression is available to all par-

ties, human and computational. Not only would the human
recognize the agent’s emotions, but the agent could poten-
tially recognize the human’s. In healthy human-human
interaction, this is the typical situation, where all parties
can recognize and express emotions (even without neces-
sarily “having emotions.”) If one party cannot recognize
or understand emotions, as is typically the case when com-
municating with an autistic person, then the interaction is
impaired.

Once an agent has recognized the emotions of a person
with whom it is interacting, what should it do with this in-
formation? The answer to this question depends on many
things: the situation in which the emotions arise, the rela-
tionship of the computer to that person, knowledge about
the person’s goals, standards, and preferences, and many
other factors. Although these issues are outside the scope
of this paper, they are very important. We are engaged
in research to investigate how computers should sensitively
and appropriately respond to human emotions. This paper
focuses on progress with the first aspect: emotion recogni-
tion.

1.1 Example: Tutoring agent

Let’s consider one example—a learning tutor—where some
simple emotion recognition, coupled with a small repertoire
of possible responses, can lead to an engaging and produc-
tive interaction between a person and an agent.

Imagine you are seated with your computer tutor, and
suppose that it not only reads your gestural input, musi-
cal timing and phrasing, but that it can also read your
emotional state. In other words, it not only interprets
your musical expression, but also your facial expression
and perhaps other physical changes corresponding to your
emotional feelings such as heart-rate, breathing, blood-
pressure, muscular tightness, and posture. Assume it could
have the ability to distinguish the three emotions that some
scientists have argued we all appear to have at birth: dis-
tress, interest, and pleasure [2].

Given affect recognition, the computer tutor might
gauge if it is maintaining your interest during the lesson,
before you quit out of frustration and it is too late for it
to try something different. “Am I holding your interest?”
it would consider. In the affirmative, it might nudge you
with more challenging exercises. If, however, it detects you
are frustrated and making lots of errors, then it might slow
things down and proffer encouraging feedback. Detecting
user distress, without the user making mechanical playing
errors, might signal to the computer the performance of a
moving requiem, or the presence of a sticky piano key, or
the need to ask the user afterward for more information. In



any event, the system should not always just try to make
the user happy. Nor should it simply make the lesson easier
if the user is upset. There are intelligent responses which,
if given information about what the user is experiencing,
can improve the pupil’s learning experience. Access to the
user’s affective expression is a critical aspect of formulating
an intelligent response.

The piano tutor scenario holds also for non-musical
learning tasks — learning a software package, a new game,
a foreign language, and more. The topic can vary, but
the problem is the same: how should the computer adapt
the pace and presentation to the user? How can it know
when to provide encouraging feedback or to offer assis-
tance? Certainly, the user should have the option to ask
for this at any time; however, it has also been demon-
strated that systems which proactively offer suggestions
can provide a better learning experience.! The tutor prob-
ably should not interrupt a user who is doing well, but it
might offer help to one who has been getting increasingly
frustrated. Human teachers know that a student’s affec-
tive response provides important cues for discerning how
to help the student.

1.2 Affect and Intelligence

The ability to recognize emotion is one of the hallmarks
of intelligence in people [4] and has been argued, together
with several other affective abilities, to be even more im-
portant than IQ in determining success in life [5]. However,
the role of emotion in machine intelligence has been largely
ignored by researchers in artificial intelligence, who have fo-
cused instead on logical rule-based reasoning, which tends
to be brittle and limited to well-defined problems. This fo-
cus can be expected to shift given new neurological findings
about the critical role of human emotion for even rational
decision making. Such findings have shown that people
who, because of certain kinds of brain damage, essentially
do not have enough emotions, do not behave more ratio-
nally or intelligently, but actually are severely impaired
when it comes to ordinary day-to-day decision making [6].
I should emphasize that although I do not think comput-
ers will achieve true intelligence without mimicking almost
all the mechanisms of human emotion, I do not think that
all computers will need a full set of emotional abilities, just
like all animals do not need the same set of emotions hu-
mans need. Certain computers will need more emotions
than others. In particular, computational agents that at-
tempt to function in human roles, assist humans in complex
decision-making, manage large numbers of complex tasks
with limited resources in an unpredictable environment,
and interact intelligently with humans will need more so-
phisticated emotional abilities than will an agent that is
dispatched to simply find an automobile at its lowest price.
In a recent book, I give several illustrations for why we
might want to give agents actual internal mechanisms of
emotion that bias their own behaviors and cognitive func-
tions [7]. This paper focuses on giving agents the subset of
emotional skills for recognizing emotions in people.
Intelligent interaction involves the skills associated with
what has come to be called “emotional intelligence,” in-

TAn example study that demonstrated this was con-
ducted by Ted Selker, with his “COACH” system for teach-
ing the computer language LISP [3].

cluding the ability to recognize the emotions of others, to
effectively communicate emotions, and to deftly manage
and utilize emotions in social and motivational situations
[8]. For example, sometimes what was said, is not as im-
portant as how it was said, and the intelligent person can
figure this out. It is my hypothesis that many of the im-
portant skills involved in affect recognition and communi-
cation can be accomplished by a computer that does not
have emotions, but does have the ability to recognize and
communicate them. Although there are many reasons we
may want to give agents actual mechanisms of “having”
emotion, there are also many affective skills that are useful
without actually having internal emotional states and their
corresponding motivations.

Consider how an agent could behave more intelligently
if given the ability to recognize valenced affective cues such
as approval or disapproval. Valenced information—either
positive or negative—is usually subtly expressed, but car-
ries immense weight in human interaction. When the as-
sistant does something you mildly dislike, you may not
verbally elaborate about the situation, but you might sub-
tly frown. If he is intelligent, he notices the frown, figures
out what behavior you are frowning about, and tries to do
things differently the next time.

Positive and negative reinforcement is important to sys-
tems that try to learn and adapt; however, it has been hard
for humans to communicate this feedback to computers in
a way that is natural because computers have not recog-
nized emotional expression. Most software agents that try
to adapt to people watch only their direct input. They ob-
serve human preferences from frequency of clicks on certain
items, time spent reading certain kinds of articles, lists of
keywords, and responses to online questionnaires. All of
these are valid and useful, but none of them capture the
indirect and natural forms of bodily expression that mod-
ulate so much of human communication. The computer
records what you typed, but not if you typed happily or
angrily. It records what you clicked, but not if you clicked
with delight or with irritation. And what if there is no
menu or keyword readily available to communicate how
you feel about what the computer did?

In contrast, people learn about your affective state and
preferences by watching your facial expressions, listening to
your intonation, and observing your overall behavior and
affective cues. Did she lean toward that item with interest,
or scowl at that behavior? Did he furrow his brow in con-
fusion, and did his hands tremble or become clammy with
anxiety? This is not to say that affective cues are never ar-
ticulated, but only that it is natural to communicate affect
subtly, as it continuously modulates behavior.

Consider a final example based on a common debate
about agents and emotions: should agents have faces and
expressions or not? Suppose an agent with a face is irritat-
ing to its user. If the computer could see that its user was
irritated, it might try reducing the agent’s expressiveness,
and if that didn’t alleviate some of the irritation, it would
offer to the user to remove this feature. If on the other
hand, the computer saw that its user really enjoyed the
agent’s presence, then it would continue to be expressive,
and might, over time, try expanding its repertoire of ex-
pressive interaction. The basic idea is that the computer,
or agent, would make an effort to adapt to the user’s ex-
pressed preferences, instead of always requiring the user to



directly manipulate system parameters.

2 Emotion Expression Recognition

Can a computer be taught to recognize our emotions?
Emotion recognition is very difficult for humans, and
some researchers have argued that emotion is primarily
cognitive—just another kind of thought—which would im-
ply that it is impossible to truly recognize emotions, since
it is impossible to recognize thoughts. Increasingly, how-
ever, scientists have shown that emotion involves a com-
bination of bodily and mental events, so that it is both
physical and cognitive. An internal emotional state may
be invisible to outsiders, but often this state is accompa-
nied by forms of expression that are observable. Your felt
emotion is expressed through a mixture of verbal and non-
verbal channels, such as vocal intonation, facial expression,
posture, behavior, skin color and temperature, and other
physiological changes. Such forms of emotion expression
can potentially be recognized by computers.

Emotion recognition is thwarted by factors such as the
fact that emotion is ill-defined. After decades of discus-
sion, psychologists still argue about a definition for emo-
tion, and nearly a hundred definitions have been collected
and analyzed for common themes [9]. In this paper I do
not propose another definition, but assume the most com-
mon folk usage of the term emotion, which includes states
such as anger, fear, joy, distress, interest, confusion, and
other commonly experienced kinds of feelings, but does not
include feelings that are simply sensory, like the feeling of
a pinprick or of a greasy surface. The latter sensations
might elicit emotions such as disliking or disgust, but psy-
chologists usually distinguish these simple sensations from
emotions.

2.1 Sensing Expressive Signals

Expressions are communicated by many modalities: face,
voice, posture, gesture, muscle tension, skin temperature,
and more. The most work with computers recognizing af-
fect has been done with respect to facial expression recog-
nition, which is also the easiest of the kinds of expression
for people to control. Many people can “put on a poker
face” and suppress the display of feelings. Cameras, mi-
crophones, bio-sensors, and a variety of tools from signal
processing and pattern recognition can be used together
to try to recognize a person’s emotions. Additionally, rea-
soning about the situation that a person is in can assist in
recognition of emotions. Although a person may not look
sad, if she just got some bad news about something that
meant a lot to her, then you can reason that she might
feel sad. It is likely that the most robust emotion expres-
sion recognition will use a combination of modalities, from
low-level signal processing of vocal, facial, and other bod-
ily signals, to high-level reasoning about situations. We
are interested in all of these ways of understanding human
emotion, including not only direct expression and situation
analysis, but also human behavior. The work described be-
low focuses on a subset of these modalities inspired by what
is possible with new wearable computing technology.

One of the distinguishing features of wearable comput-
ers, as opposed to merely portable computers, is that they
can be in physical contact with you in a long-term inti-
mate way. A wearable may not just hang on your belt,
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Figure 1: Examples of physiological signals measured from
an actress while she consciously expressed anger (left) and
grief (right). From top to bottom: electromyogram (micro-
volts), blood volume pulse (percent reflectance), galvanic
skin conductivity (microSiemens), and respiration (percent
maximum expansion). All of these signals can be gathered
from sensors on the surface of the skin, without any pain
or discomfort to the person. These signals were sampled at
20 Hz, using a ProComp system from Thought Technology
Ltd. Each box shows 100 seconds of response.

but it may also reside in your shoes, hat, gloves, jewelry,
or other clothing, providing a variety of kinds of physical
contact beyond the traditional kind of contact, viz., fin-
gertips touching the keyboard and mouse. In particular,
when equipped with special sensors and tools from signal
processing and pattern recognition, a wearable computer
can potentially learn to recognize physical and physiolog-
ical patterns—especially those that correspond to affective
states—such as when you are fearful, stressed, or happily
engaged in a task.

An “affective wearable” is a wearable system equipped
with sensors and tools which enables recognition of its
wearer’s affective patterns [10]. Affective wearables have
the potential not only to contribute to affective interaction
with computational agents and other adaptive software,
but also to help with advances in emotion theory and user
modeling. One of the big problems in modeling people’s
emotions is determining what physiological and behavioral
patterns accompany each emotion. Wearables help in data
collection for a variety of situations.

Almost all studies trying to determine which responses
occur with which emotions have been done on large num-
bers of people over a short amount of time, instead of trying
to get to know one person over an extended period of time,
in many situations. Behavior that might be consistent for
one individual might be different for another, weakening
the findings for a large group. Furthermore, most studies
have involved artificially eliciting emotions in a lab setting,
where there is good reason to believe that people might not
feel the emotions in the same way as when they are nat-
urally elicited. These problems have held back progress
in emotion understanding. A wearable system addresses
these problems by allowing an individual to wear sensors



and gather patterns in natural situations, outside the lab-
oratory, over a long period of time. This should aid in
answering fundamental questions related to affect and hu-
man behavior.

In particular, a wearable computer can gather sig-
nals such as the four shown in Fig. 1: electromyogram
(EMG), blood volume pressure (BVP), galvanic skin re-
sponse (GSR), and respiration. The short segments shown
in this figure illustrate very different responses obtained
while an actress expressed two different negative emotions.
Although clear differences can be seen in the signals for the
two different emotions, we obtained data from the actress
over 20 days, and sometimes found that the variations in
the signals for the same emotion over different days were
greater than the variations between the different emotions
on the same day. In other words, the examples shown in
Fig. 1 are some of the cleanest and most illustrative of the
differences; in practice, it is very hard to build a system to
recognize emotions from just these signals. The ultimate
recognition accuracy that can be obtained is presently un-
known.

Another issue is that people may differ in how they ex-
press emotions, not just as a function of context or situa-
tion, but also as a function of temperament and personal-
ity. Our current best recognition results are obtained when
a system learns an individual person’s pattern of expres-
sion over a period of time. The state of this research is
like the early days of research in speech recognition, when
the best results were obtained only on speaker-dependent
systems. My expectation is that, just like performance im-
proved dramatically over the last two decades for speaker-
independent systems, performance will also improve dra-
matically for person-independent affect recognition. For
now, however, much research is needed to discern which
signals are most useful in each interaction, for each indi-
vidual. This is true for facial expression, vocal inflection,
bio-signals, behavioral signals, and so forth.

2.2 Example Interaction

In some early tests using a physiological monitoring sys-
tem, we wired up a student who was playing the rather
violent video game DOOM. We expected to see signs of
distress during especially violent events in the game, such
as when the student was brutally murdered with a machine
gun. Over the several games where we observed the stu-
dent, we saw many small responses in his bio-signals, such
as when he “found the rocket launcher” or when he “was
killed.” However, the biggest response we found, through-
out all of our recordings, was not when the student was
being brutally murdered, or during any particular acts of
violence. The biggest response of all occurred at a point
where the software didn’t work properly.

A short segment of three of his physiological signals can
be seen in Fig. 2, which shows his GSR, BVP, and EMG
over 5 minutes of time. His stress is initially signaled by
the jaw-clenching peak in the EMG, which remains high
during the minute and a half where the software controlled
navigation keys failed to work as he expected. The point
labeled “give up” is where he stopped the game and started
over. After the game gets going, we see a constriction in his
BVP, indicative of lowered blood flow to his extremities,
and an increase in the GSR, indicating a state of higher
arousal.
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Figure 2: Three physiological signals measured from a stu-
dent playing the game DOOM on the computer. The most
significant response is shown in the center, where EMG
peaked during loss of use of the controls.

Building tools to recognize stress would clearly be use-
ful in a variety of interactive situations. Systems that
proactively offer help might choose to adapt their timing
based on signs of distress from a user. The tutoring sys-
tem might modify its interaction with the pupil to allow
just enough stress that a student learns how to overcome
difficulty, but not so much that she gives up before she has
met her goals. A character in an interactive game might
change its behavior and offer some comic relief if it recog-
nized that the human player was exhibiting a significant
level of stress. It might also reward a player who exhib-
ited less stress, especially if the human indicated interest in
relaxing. Human factors experts evaluating new products
could be aided by this technology to help gather data in-
dicating precisely where subjects found interactions most
stressful or annoying, helping pinpoint places where the
product most needs improvement. For example, a copy
machine might note what state it was in when people got
most frustrated using it. Although the use of physiological
and other affective signals may not replace the ubiquitous
questionnaire, it can provide valuable information that a
user may not easily be able to recall or articulate upon
request.

2.3 Example Recognition Results

We have been running experiments to try to teach comput-
ers how to recognize human emotion. These experiments
take two basic forms to date: (1) A person deliberately ex-
presses emotions, using techniques such as visualization to
increase the probability of simultaneously feeling the emo-
tion being expressed; (2) The person is placed in a situation
that is intended to induce an emotion. Clearly, the means
by which an emotion is elicited can greatly influence the
results. Hence, it is important to consider many different
kinds of eliciting factors, including not only the stimulus for
eliciting an emotion (watching a movie, listening to music,



giving of a gift, impeding a goal, etc.) but also the envi-
ronment in which it takes place (public setting, professor’s
lab, etc.)

Consider two situations we have investigated that illus-
trate the two kinds of experiments just mentioned. In the
first situation, an actress, sitting in her office alone, de-
liberately expressed one of eight different emotions. She
expressed all eight emotions in series, over the course of
about half an hour. She repeated this once a day, for
several weeks. The actress used a combination of tech-
niques to try to arouse an actual experience within herself
of each emotion. Not only did she use visualization, but
also she was aided by the use of a “sentograph,” a device
designed by Manfred Clynes, together with a tape created
by Clynes, that helps a person quickly experience a broad
range of emotions [11]. The latter also assists a person in
re-generating each emotion over a period of time, so that
it builds in intensity over several minutes before the next
emotion is begun. The eight emotions she expressed were:
no emotion, anger, hate, grief, platonic love, joy, romantic
love, and reverence, in that order, each day. While the
actress went through the process of generating the eight
emotions, she was wired to a system that measured the
four physiological signals of EMG, BVP, GSR, and res-
piration, examples of which were shown above. Hence, 32
signals were gathered every day for twenty days. Note that
this experiment is different from what is usually done by
emotion theorists who gather data from groups of people
over a short amount of time, instead of gathering data from
an individual over a long period of time.

We have developed several approaches to analyzing this
data and conducted numerous tests with these approaches.
In the best cases, where the system works with a subset
of the data such as three emotions, we are able to obtain
recognition rates of up to 87%, which is significantly higher
than the rate of 33%, which would be expected with ran-
dom guessing [12]. Although the rates drop when more
emotions are included, they do remain significantly higher
than random guessing, indicating that although there is
much room for improvement, these early results still show
that there is important affective expression information in
the signals we gathered.

A second situation in which we have run experiments
aims to approximate a more natural human-computer in-
teraction. In this case, a user is given a task, and a goal,
and is told he will win a 100 dollar prize if he is the fastest
and most accurate of our subjects in achieving the goal.
We set up a “visual perception” task, consisting of many
small simple puzzles, and asked the person to complete
them as accurately and quickly as possible. Meanwhile
we had rigged the mouse so that it would break in a con-
trolled fashion, intending to frustrate the user who had to
rely upon the mouse’s performance to achieve his goal. We
assumed that these events would cause an emotion of mild
distress, one of the common kinds of frustration occurring
during human-computer interactions.

During this experiment we gathered two signals: BVP
and GSR. Our goal was to analyze these two signals dur-
ing times of rest, and during time periods shortly after
the mouse “broke,” to see if they gave any indication of
when the subject was “frustrated” by the mouse breaking.
Although we do not claim that this situation reliably gen-
erated human frustration, or that frustration can generally

Figure 3: The shoe provides a convenient location for sen-
sor placement. Here, a skin conductivity sensor is placed
in the arch of the shoe and a pressure sensitive resistor is
placed on the heel. Sensors look unobtrusive when worn.
(Photograph courtesy of Fernando Padilla.)

be recognized by these two signals, we did find that pat-
terns of the two signals gave significant discrimination of
“non-frustrated” vs. “frustrated” for twenty of twenty-four
users [13]. The average recognition rate was 75%, whereas
chance guessing would be 50%. I should mention that it
took a lot of work to obtain these results, as many of the
methods of analysis we tried initially did not discriminate
the two cases. The significant results we finally obtained
used relatively sophisticated hidden Markov models, a dou-
bly stochastic model often used in speech recognition sys-
tems. These models also worked best when trained for each
user, individually. The patterns learned by the system for
recognizing frustration in one person did not, in general,
work for recognizing frustration in another person.

Both situations—the actress situation, and the case
of users who we attempted to deliberately frustrate—
approximate situations that might occur while a person
is interacting with a computer, software agent, or compu-
tational characters in a virtual world. In all these cases,
it is possible that something could go wrong in a way that
causes a user to feel like the users did when the mouse
stopped working. It is also possible, especially in games
and role-playing situations, that a user might arouse within
himself certain emotions in a similar means as those gen-
erated by the actress in our experiment. As a user inter-
acts repeatedly with a system, the system has increased
opportunity to learn how that person expresses different
emotions and what situations tend to give rise to such
emotions. Although the recognition of human emotions
by computers is a new area, and far from being solved,
we have already obtained results illustrating the promise
of combining pattern recognition and signal processing for
helping a computer recognize expressions.



Figure 4: Analog BVP sensor incorporated into an earring.
(Photograph courtesy of Frank Dabek.)

3 New Wearable Interfaces for
Sensing Affect

Physiological signals are traditionally gathered with med-
ical monitoring equipment, which tends to be non-stylish
and awkward to wear. This section describes our ongo-
ing effort to develop clothing, jewelry, and other wearable
accessories as an opportunity to more comfortably sense
affective information from people.

Figure 3 illustrates the use of a sandal for sensing GSR.
We have found that the GSR signal on the foot is highly
correlated with that on the hand [10], the place where GSR
is usually measured. Sometimes it is desirable to move the
sensors off the hands so that the hands can be free for
other tasks, in which case the sandals offer a comfortable
alternative.

One of the other signals commonly measured using a
bulky device on the fingertip is the BVP, for which we
have developed an alternate sensor that can be used on
the earlobe. A prototype earring incorporating this sensor
is shown in Fig. 4.

We are very interested in wireless sensing, and have be-
gun to try to remove the wires connecting sensors to the
computer, replacing them with a “Personal Area Network”
(PAN) communication system such as that described by
Tom Zimmerman [14]. We have augmented the PAN tech-
nology to work with multiple worn devices, allowing for
many sensors to share approximately 2400 baud of band-
width through a person’s body. PAN uses short-wave FM
to send signals through the body, obviating the need for
wires to run from each sensor to the wearable computer.
In this way the wearable computer can gather a constella-
tion of patterns without a wearer having to tangle with a

Figure 5: Glasses equipped with EMG sensors for detect-
ing muscle movements used to recognize confusion. (Pho-
tograph courtesy of Fernando Padilla.)

web of wires.

There are remote learning situations where a computer
is used to deliver a lecture or present new information, and
where a videoteleconference system delivers a picture of an
audience to a lecturer, and the lecturer cannot make out
the facial expressions of the audience. This makes it diffi-
cult for the lecturer to gauge if the audience is interested,
confused, bored, or ready to fall asleep. If the lecturer had
this information, she could better adjust her presentation
for a more effective interaction. If each member of the au-
dience was willing to wear a networked piece of jewelry and
special eyeglass frames that sensed their confusion, inter-
est, or arousal, then this information might be integrated
and presented to the lecturer in a way that nicely supple-
mented the tiny low-resolution video image of the remote
audience.

We have prototyped a pair of eyeglasses with EMG sen-
sors (Fig. 5) that can sense changes in the facial muscles
involved in expressions of confusion. Plans are underway
to build analyzers and integrators for the data they col-
lect, to enable better communication of affective informa-
tion through computers. Although in the long run it might
be less burden on the user if this information were gath-
ered from non-contact field sensing or video cameras, the
glasses provide an immediate and relatively simple solution
compared to these alternatives, and provide an advantage
of privacy. The glasses can optionally cover up the user’s
expression and only reveal it anonymously. Anonymous
communication can be desirable for timid students or for
situations where people do not wish to reveal that they
are confused. Glasses, as opposed to video cameras, pro-
vide a familiar and comfortable paradigm when it comes
to a person feeling “in control” of the sensing technology:
it is easy to take one’s glasses off, or to physically discon-
nect the sensor from the glasses; it is not necessarily easy
to figure out how to turn off a surveillance camera in the
environment.

There are dozens of applications of affective computing
in addition to the ones above [7]. For example, emotions
are known to provide a keen index into human memory;
therefore, a computer that pays attention to your affective
state will be better at understanding what you are likely to
recall on your own, and what is of interest to you. This is
potentially very useful in helping people deal with informa-



tion overload, an important application area for software
agents. For example, instead of a system recording every-
thing you hear, see, or click on, the system might learn
to record (or play back) just those places where you were
interested. Or, it might play back just those places in a
lecture that you missed, perhaps because your mind wan-
dered or you were bored. Augmenting a system like Steve
Mann’s WearCam [15] with affective sensing and pattern
recognition could help it learn when to “remember” the
video it collects, as opposed to always relying on the user
to tell it what to remember or forget. Of course the user
can still directly manipulate the system if that is desired;
that function does not go away. The goal is simply to
begin to automate those functions that the user typically
applies, especially when they are predictable with affective
information.

Suppose for example that you let the WearCam roll in a
continuously learning mode while playing with a cute lit-
tle child. It might notice that you always save the shots
when the child makes you laugh, or smile. By detecting
these events, it could become smarter about automatically
saving these kinds of photos in the future. Moreover, by
labeling the photos with these affective events, you can
later ask the system to retrieve data by its affective quali-
ties, “Computer, please show us the funny images.” If the
wearable learns continuously, by watching what the wearer
chooses, it should help reduce some of the users workload
and enable the wearer to offload repetitive tasks.

We have built a prototype of an affective WearCam that
includes a small camera worn as a pendant around the
wearer’s neck, together with skin conductivity sensors and
pattern recognition software running in a wearable com-
puter. The camera continuously records and buffers images
in a rotating buffer, deleting the oldest images as the buffer
fills. Simultaneously, the system uses small electrodes to
sense skin conductivity in the wearer’s skin, either across
two fingers or across the arch of the foot. Pattern recog-
nition software has been trained to recognize the wearer’s
“startle response,” a skin conductivity pattern that occurs
when the wearer feels startled by a surprising event. Un-
like many affective signals, the human startle response is
fairly robust and easy to detect. With a matched filter and
threshold detector, the startle pattern in the wearer’s skin
conductance signal is detected in real time. The skin con-
ductivity response occurs with a typical latency of three
seconds after the startling event. When the pattern is
detected, the images leading up to the startle event are
extracted from the buffer. The buffer can be set to hold
arbitrary amounts of imagery, typically in the range of 5
seconds to 3 minutes of data. When the startle is detected,
the images extracted from the buffer can then be saved into
a more permanent memory for your later perusal, or au-
tomatically sent back to a remote location to be analyzed
by a “safety net” [15], community of friends or family with
whom you felt secure, to see if the event warranted any
action on your behalf.

Applications of affective wearables extend to other forms
of information management beyond image and video. An
intelligent web browser responding to the wearer’s degree of
interest could elaborate on objects or topics that the wearer
found interesting, until it detected the interest fading. An
affective assistant agent could intelligently filter your e-
mail or schedule, taking into account your emotional state

or degree of activity. The agent might also be given the
ability to recognize forms of affective expression in text,
perhaps highlighting in red certain lines you typed in an
email that might be read as “angry” by a recipient. “Are
you sure you might not want to re-word this potentially
angry-sounding mail?” it might ask you before it forwarded
the mail.

Agents involved in preference selection, such as musical
preference [16] [17], might not only take into account your
explicitly stated musical tastes, but might also learn how
your selection of music depends upon your “mood.” Mu-
sic is perhaps the most popular and socially-accepted form
of mood manipulation. Although it is usually impossible
to predict exactly which piece of music somebody would
most like to hear, it is often not hard to pick what type of
music they would prefer—a light piano sonata, an upbeat
jazz improvisation, a soothing ballad—depending on what
mood they are in. As wearable computers gain in their ca-
pacity to store and play music, to sense the wearer’s mood,
and to analyze feedback from the listener, they have the
opportunity to learn patterns between the wearer’s mood,
environment, and musical preferences.

4 Conclusions

It is becoming important for agents and other computa-
tional creatures to develop certain emotional skills, espe-
cially the ability to recognize human emotions. This pa-
per has highlighted recent research in emotion recognition
based on signals that can be sensed from wearable com-
puters. New designs for sensing physiological signals of
expression have been constructed in jewelry, shoes, eye-
glasses, and other wearable devices. Prototypes have been
developed for gathering expressive signals, and work is un-
derway to develop better algorithms for analyzing the data
using tools from signal processing and pattern recognition.
Once a computer learns to recognize various affective pat-
terns for an individual, this information can be included
in its decision-making for how to better adapt its behavior
in service to a user. These are steps toward the ultimate
goal of making human-computer interaction more human-
centered, enabling computational agents and other forms
of technology to better adapt to people and their expressed
preferences.
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