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Abstract

This thesis presents the application of several pattern recognition techniques on phys-
iological data as a means to provide useful information about human emotional or
cognitive states. As these states may be correlated with the well-being and per-
formance of subjects, knowledge of these states could improve the human-computer
interaction, increase productivity, and reduce accidents.

We first focus on a method for recognizing the emotional state of a person who
is deliberately expressing one of eight emotions. Four physiological signals were mea-
sured and six features of each of these signals were extracted. We investigated three
methods for the recognition: (1) Sequential floating forward search (SFFS) feature
selection with K-nearest neighbors classification, (2) Fisher Projection (FP) on struc-
tured subsets of features with MAP classification, and (3) A hybrid SFFS-FP method.
Each method was evaluated on the full set of eight emotions as well as on several sub-
sets. The day-to-day variations within the same class often exceeded between-class
variations on the same day. We present a way to take account of the day information,
resulting in an improvement to the Fisher-based methods. The SFFS attained a rate
of 88% for a trio of emotions, while the Fisher Projection attained the best perfor-
mance on the full set of emotions, 81.25%. We extend the previous study by building
an online classifier so that it can be used for real-time applications. The performance
is comparable to that of the offline version. These findings demonstrate that there is
significant information in physiological signals for classifying the affective state of a
person who is deliberately expressing a small set of emotions.

We then look into cognitive load under different driving conditions. Subjects are
asked to drive in a driving simulator around several curves. Messages appear on the
screen prompting the driver to either brake immediately to a standstill or to continue
driving. In parts of the experiment the driver is asked to perform a simple mathe-
matical task on the phone. Several measures of the subjects’ behavior are recorded,
including driving parameters such as lane deviation, distance and time to lane cross-
ing, steering entropy, and braking delay, mistakes in addition, and physiological data
(EMG, BVP, GSR, HR, Respiration). Results show that although the majority of
braking delays (irrespective of the phone task) lay between -0.5 and 40.5 seconds
of the average no-phone delay, there were a few cases in which subjects pressed the
brakes significantly later (0.5-2.5 seconds after the average no-phone delay). Out of



315 messages prompting subjects to brake while they were not engaged on a phone
task, only twice did their breaking delay exceed the average; out of 642 messages
prompting subjects to brake while they were engaged on a phone task, the delay ex-
ceeded the average 41 times. The effect of the mathematical task can also be seen in
a 10% higher mean reaction time and a four times larger variance when subjects were
on the phone compared to when they were not on the phone. Furthermore, people
were on the phone in 9 out of the 10 cases that subjects mistakenly pressed the brake
pedal while the message prompted them to continue driving, as well as in 6 out of the
7 cases that subjects did not show any reaction while the message prompted them
to brake. We separated the responses into 2 classes, a normal and a slow one. Using
the physiological data and similar pattern recognition techniques as mentioned above
we predicted the class of the next delay with 65% success for an individual subject.
These results indicate that the existence of specific secondary tasks while driving may
adversely affect the reaction time of the driver, while use of physiological data may
help in predicting such potentially dangerous situations.
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Chapter 1

Introduction

The application of several pattern recognition techniques on physiological data can
provide useful information about human emotional or cognitive states. Physiological
data can help in the recognition of the level of cognitive load, of frustration involved
in the performance of a task or of the presence of stress. These states can be highly
correlated with performance. If we could know when users are in an unfomfortable
or even dangerous emotional /cognitive situation, we could inform them, or intervene
and postpone or take over some low-priority tasks. This could help improve the
human-computer interaction and reduce accidents, thus making workplaces friendlier

and safer.

1.1 Use of physiological data for recognition of
emotional states

Part of this thesis addresses emotion recognition, specifically the recognition by com-
puter of affective information expressed by people, through use of physiological and
other data. This is part of a larger effort in “affective computing,” computing that
“relates to, arises from, or deliberately influences emotions” [14]. Affective comput-
ing has numerous applications and motivations, one of which is giving computers the

9

skills involved in so-called “emotional intelligence,” such as the ability to recognize a
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person’s emotions. Such skills have been argued to be more important in general than
mathematical and verbal abilities in determining a person’s success in life [7]. Recog-
nition of emotional information is a key step toward giving computers the ability to
interact more naturally and intelligently with people.

The research in this section focuses on recognition of emotional states during
deliberate emotional expression by an actress [19]. The process included the following
eight states: Neutral (no emotion), Anger, Hate, Grief, Platonic Love, Romantic Love,
Joy, and Reverence. Four physiological signals of the actress were recorded during the
deliberate emotional expression. The signals measured were electromyogram (EMG)
from the jaw representing muscular tension or jaw clenching, blood volume pressure
(BVP) and skin conductivity (GSR) from the fingers, and respiration from chest
expansion. Data was gathered for approximately 3 minutes for each of the eight
emotional states, and the process was repeated for several sessions, over the course
of weeks.

Very little work has been done on pattern recognition of emotion from physi-
ological signals, and there is controversy among emotion theorists whether or not
emotions do occur with unique patterns of physiological signals. Some psychologists
have argued that emotions might be recognizable from physiological signals given
suitable pattern recognition techniques [2], but nobody has yet to demonstrate which
physiological signals, or which features of those signals, or which methods of classifi-
cation, give reliable indications of an underlying emotion, if any. The thesis suggests
signals, features, and pattern recognition techniques for offline recognition of all 8
emotions examined and presents results suggesting that emotions can be recognized
from physiological signals at significantly higher than chance probabilities.

Emotion recognition can be very useful if it occurs in real time. That is, we would
like the computer to be able to sense the emotional state of the user the moment he
actually is in this state (online recognition), rather than analyzing the data later, when
the user is already in another state (offline recognition). This could be considered in
combination with the model of an underlying mood, which may change over longer

periods of time. In that respect, the classification rate of a time window given a
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previous time window may yield useful information. The question is how frequently
should the estimates of the baseline be updated to accommodate for the changes in
the underlying mood. In addition, it appears that although the underlying mood
changes the features’ values for all emotions, it affects much less the relative positions
with respect to each other. We are investigating ways of exploring this, and expect
it to yield much higher recognition results.

Most of the data manipulation in this thesis is done using MATLAB which is rela-
tively slow compared to C/C++ and other compiled programming languages but has
very good vector/matrix manipulation abilities. Any real-life real-time application
will probably not be using MATLAB, so manipulating large vectors at every time
step will probably make the whole process too slow. Therefore, in the online version
of the algorithm we only use features whose values can be updated at every time step
with minimal computational cost. The same features proposed in the offline version
can be iteratively updated using simple algorithms, thus minimizing the size of data

to be manipulated in real time.

1.2 Use of physiological data for recognition of
cognitive states

The second part of the thesis involves the study of cognitive load and performance
under different driving conditions. According to the Mental Workload model [20],
performance drops sharply when a person enters the Mental Overload regime. There-
fore, talking on a cellular phone or performing some other secondary task may only be
dangerous under some very demanding driving conditions and harmless in most other
routine driving cases, and the onset of the dangerous regime may be person-specific.
We would like to be able to recognize such potentially dangerous situations so that
they can be avoided. If we could somehow predict from a variety of measures that
the driver is close to the onset of overload, we might be able to prevent it by, for
example, temporarily preventing the cellular from ringing.

Subjects were asked to drive a driving simulator past several curves while keep-
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ing their speed close to a predetermined constant value. In some cases they were
simultaneously asked to listen to random numbers from a speech-synthesis software
and perform simple mathematical tasks. Several measures drawn from the subjects’
driving behavior were examined as possible indicators of either the subjects’ perfor-
mance or their mental workload. These included lane deviation, distance and time to
lane crossing, and steering entropy [1, 13]. Cases with a sharp drop in performance
were identified. The study was used as a guideline for a more thorough experiment
where subjects’ physiological data were recorded and then used to predict these cases

of inadequate performance.

1.3 Thesis summary

In the chapters that follow, we elaborate on the specific experiments conducted, the
pattern recognition methods used and the results obtained. In Chapter 2 we analyze
the emotion expression experiment, the features extracted from the physiological
data, the pattern recognition methods applied and the best results for several offline
classifiers. In Chapter 3 we use longer data, including transitions between emotions.
We also use several extra features, and mention the best results for the same classifiers
used previously. In Chapter 4 we extend the previous experiment by building an online
classifier based on the previous data, features and classifiers. We mention the best
results and some potential problems with a real-life application. In Chapter 5 we look
into cognitive load, through a pilot study conducted with subjects “driving” through
curves under various speeds in a simulator, while performing simple mathematical
tasks. The chapter includes the experimental setup, results and observations. These
observations are then used in Chapter 6 to set up another experiment where subjects’
physiological data are recorded as they drive and perform simple mathematical tasks,

similar to the previous ones.
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Chapter 2

OfHine emotion expression
recognition from physiological

data

2.1 Introduction

This chapter addresses emotion recognition, specifically the recognition by computer
of affective information expressed by people, through use of physiological data. This

" computing that “relates to, arises

is part of a larger effort in “affective computing,’
from, or deliberately influences emotions” [14]. Affective computing has numerous
applications and motivations, one of which is giving computers the skills involved in
so-called “emotional intelligence,” such as the ability to recognize a person’s emotions.
Such skills have been argued to be more important in general than mathematical and
verbal abilities in determining a person’s success in life [7]. Recognition of emotional
information is a key step toward giving computers the ability to interact more natu-
rally and intelligently with people.

The research described here focuses on recognition of emotional states during
deliberate emotional expression by an actress. The actress, trained in guided imagery,

used the Clynes method of sentic cycles to assist in eliciting the emotional states [3].

For example, to elicit the state of “Neutral,” (no emotion) she focused on a blank
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piece of paper or a typewriter. To elicit the state of “Anger” she focused on people
who aroused anger in her. This process was adapted for the eight states: Neutral (no
emotion) (N), Anger (A), Hate (H), Grief (G), Platonic Love (P), Romantic Love (L),
Joy (J), and Reverence (R). Simultaneous with the visualization she pushed with her
hand on a firm surface in a way that was intended to express each state. This effort
at physical expression is supposed to help increase the intensity of the emotions felt.
The specific states one would want a computer to recognize will depend on the
particular application. The eight emotions used in this research are intended to be
representative of a broad range, which can be described in terms of the “arousal-
valence” space commonly used by psychologists [12]. The arousal axis ranges from
calm and peaceful to active and excited, while the valence axis ranges from negative
to positive. For example, anger was considered high in arousal, while reverence was
considered low. Love was considered positive, while hate was considered negative.
There has been prior work on emotional expression recognition from speech and
from image and video; this work, like ours, has focused on deliberately expressed
emotions. The problem is a hard one when you look at the few benchmarks which
exist. In general, people can recognize affect in neutral-content speech with about
60% accuracy, choosing from among about six different affective states [16]. Computer
algorithms can match this accuracy but only under more restrictive assumptions, such
as when the sentence content is known. Facial expression recognition is easier, and
the rates computers obtain are higher: from 80-98% accuracy when recognizing 5-7
classes of emotional expression on groups of 8-32 people [22, 6]. Facial expressions are
easily controlled by people, and easily exaggerated, facilitating their discrimination.
Emotion recognition can also involve other modalities such as analyzing posture,
gait, gesture, and a variety of physiological features in addition to the ones described
in this paper. Additionally, emotion recognition can involve prediction based on
cognitive reasoning about a situation, such as “That goal is important to her, and he
just prevented her from obtaining it; therefore, she might be angry at him.” Such a
framework for analysis of affective dynamics has been developed under Affect Control

Theory [9, 17]. The best emotion recognition is likely to come from pattern recognition
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and reasoning applied to a combination of all of these modalities, including both low-
level signal recognition, and higher-level reasoning about the situation [14].

For the research described here, four physiological signals of an actress were
recorded during deliberate emotional expression. The signals measured were elec-
tromyogram (EMG) from the jaw, representing muscular tension or jaw clenching,
blood volume pressure (BVP) and skin conductivity (GSR) from the fingers, and
respiration from chest expansion. Data was gathered for each of the eight emotional
states for approximately 3 minutes each. This process was repeated for several weeks.
The four physiological waveforms were each sampled at 20 samples a second. The
experiments use 2000 samples per signal, for each of the eight emotions, gathered
over 20 days (Fig. 2-1). Hence there are a total of 32 signals a day, and 80 signals
per emotion.

Very little work has been done on pattern recognition of emotion from physi-
ological signals, and there is controversy among emotion theorists whether or not
emotions do occur with unique patterns of physiological signals. Some psychologists
have argued that emotions might be recognizable from physiological signals given
suitable pattern recognition techniques [2], but nobody has yet to demonstrate which
physiological signals, or which features of those signals, or which methods of classifi-
cation, give reliable indications of an underlying emotion, if any. This paper suggests
signals, features, and pattern recognition techniques for offline recognition of all 8
emotions examined, and presents results suggesting that emotions can be recognized

from physiological signals at significantly higher than chance probabilities.

2.2 Choice of features

A very important part in recognizing emotional states, as with any pattern recognition
procedure, is to determine which features are most relevant and helpful. This helps
both in reducing the amount of data stored and in improving the performance of the
recognizer.

Let the four raw signals, the digitized EMG, BVP, GSR, and Respiration wave-
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Figure 2-1: Examples of four physiological signals measured from an actress while
she intentionally expressed anger (left) and grief (right). From top to bottom: elec-
tromyogram (microvolts), blood volume pressure (percent reflectance), galvanic skin
conductivity (microSiemens), and respiration (percent maximum expansion). The
signals were sampled at 20 samples a second. Each box shows 100 seconds of re-
sponse. The segments shown here are visibly different for the two emotions, which
was not true in general.
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forms, be designated by (S),7 = 1,2,3,4. Fach signal is gathered for 8 different
emotions each session, for 20 sessions. Let S! represent the value of the n'* sample
of the ¢*" raw signal, where n = 1...N and N = 2000 samples. Let g; refer to the
normalized signal (zero mean, unit variance), formed as:

. Sz _ .

Gi—n Tl

n O_Z

where ' and o' are the means and standard deviations explained below. We

extract 6 types of features for each emotion, each session:

1. the means of the raw signals (4 values)

. AR
(B)==>.5 1=1,...4 (2.1)
N n=1
2. the standard deviations of the raw signals (4 values)

1 N

(0') = (ﬁm (58 - (mf)m i=1,..4 (2.2)

3. the means of the absolute values of the first differences of the raw signals (4

values)

. 1 Nz—:l . :
(8)) = —— ISt =Sl i=1,..,4 (2.3)
VOON—1

4. the means of the absolute values of the first differences of the normalized signals

(4 values)

L) L)
Sn—}—l - Sn

(81) = ﬁ z;l A (2.4)

5. the means of the absolute values of the second differences of the raw signals (4

values)
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1 N-2

(85) = ) >

n=1

Sty —Si i=1,..,4 (2.5)

6. the means of the absolute values of the second differences of the normalized

signals (4 values)

- 1 N=2z _ . & ,
B = s & [ - S| = 1 iz

=t (o7) .

Therefore, each emotion is characterized by 24 features, corresponding to a point

LA (2.6)

in a 24-dimensional space. The classification can take place in this space, in an
arbitrary subspace of it, or in a space otherwise constructed from these features. The
total number of data in all cases is 20 points per class for each of the 8 classes, 160
data points in total.

Note that not all the features are independent; in particular, two of the features
are nonlinear combinations of the other features. We expect that dimensionality
reduction techniques will be useful in selecting which of the proposed features contain

the most significant discriminatory information.

2.3 Dimensionality reduction

There is no guarantee that the features chosen above are all appropriate for emotion
recognition. Nor is it guaranteed that emotion recognition from physiological signals
is possible. Furthermore, a very limited number of data points—20 per class—is
available. Hence, we expect that the classification error may be high, and may further
increase when too many features are used. Therefore, reductions in the dimensionality
of the feature space need to be explored, among with other options. Here focus on
three methods for reducing the dimensionality, and evaluate the performance of these

methods.
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2.3.1 Sequential Floating Forward Search

The Sequential Floating Forward Search (SFFS) method [15] is chosen due to its
consistent success in previous evaluations of feature selection algorithms, where it
has recently been shown to outperform methods such as Sequential Forward and
Sequential Backward Search (SFS, SBS), Generalized SFS and SBS, and Max-Min,
[10] in several benchmarks. Of course the performance of SFFS is data dependent and
the data here is new and difficult; hence, the SFFS may not be the best method to
use. Nonetheless, because of its well documented success in other pattern recognition
problems, it will help establish a benchmark for the new field of emotion recognition
and assess the quality of other methods.

The SFFS method takes as input the values of n features. It then does a non-
exhaustive search on the feature space by iteratively adding and subtracting features.
It outputs one subset of m features for each m, 2 < m < n, together with its
classification rate. The algorithm is described in detail in [15]. For each subset size it
maintains the criterion value .J(X,,) of the best feature subset X, of that size found
so far, as well as the subset which gave this value. The first two features are selected
using the SF'S method described in [11]. The rest of the algorithm can summarized
in the following 3 steps, quoted from [15]:

e Step 1: Inclusion. Select the most significant feature with respect to X and
add it to X. Continue to step 2.

e Step 2: Conditional exclusion. Find the least significant feature k in X. If it
is the feature just added, then keep it and return to step 1. Otherwise, exclude
the features k. Note that X is now better than it was before step 1. Conlinue

lo step 3.

e Step 3: Continuation of conditional exclusion. Again, find the least sig-
nificant feature in X. If its removal will (a) leave X with at least 2 features,
and (b) the value of J(X) is greater than the criterion value of the best feature
subset of that size found so far, then remove it and repeat step 3. When these

two conditions cease to be satisfied, return to step 1.
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2.3.2 Fisher Projection

Fisher projection [5] is a well-known method of reducing the dimensionality of the
problem in hand, which involves less computation than SFFS. The goal is to find a
projection W of the data to a space of fewer dimensions than the original where the
classes are well separated. The algorithm is summarized below. First we define the

within-class scatter matriz:

[

Sw = Z Z(l’—m]’)(l‘—m]‘)T (2.7)

J=1z€EX;

where ¢ is the number of classes, x are the data points in the original space, y; is the
subset of data in class j, m; is the sample mean for class j in the original space and

m is the overall sample mean. We also define the between-class scatter matriz:
Sp =Y _ni(mj —m)(m; —m)" (2.8)

i=1

where n; is the number of data points in class j. Then the original features, z, are
projected through a linear transformation matrix W (to be determined) to a lower

dimensional space. Therefore, the new features y are given by:
y =W (2.9)

and the scatter matrices in the new space are given by:

Sw =3 (y— )y — ;)" = W SwW (2.10)
J=1 y€d;

Sp = n(m; —m)(m; —m)T = WTSpgW (2.11)
7=1

where m; is the sample mean for class j in the reduced space and m is the overall
sample mean in the reduced space.
The criterion J(W) to be maximized is defined as the ratio of the determinant

of the between-class scatter matrix over the determinant of the within-class scatter
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matrix in the projected data:

WTS5W]|
= 2.12

It turns out [21] that the columns of a W maximizing .J are the generalized eigenvec-

tors that correspond to the largest eigenvalues in:
SBwZ' = )\jSWwi (213)

Due to the nature of the Fisher projection method, the data can only be projected
down to ¢ — 1 (or fewer if one wants) dimensions, assuming that originally there are
more than ¢ — 1 dimensions and ¢ is the number of classes.

It is important to keep in mind that if the amount of training data is inadequate,
or the quality of some of the features is questionable, then some of the dimensions
of the Fisher projection may be a result of noise rather than a result of differences
among the classes. In this case, Fisher might find a meaningless projection which
reduces the error in the training data but performs poorly in the testing data. For
this reason, projections down to fewer than ¢ — 1 dimensions are also evaluated in the
paper.

Furthermore, since 24 features is high for the amount of training data here, and
since the nature of the data is so little understood that these features may contain
superfluous measures, we decided to try an additional approach: applying the Fisher
projection not only to the original 24 features, but also to several “structured subsets”
of the 24 features, which are described further below. Although in theory the Fisher
method finds its own most relevant projections, the evaluation conducted below in-
dicates that better results are obtained with the structured subsets approach.

Note that if the number of features n is smaller than the number of classes ¢, the
Fisher projection is meaningful only up to at most n — 1 dimensions. Therefore in
general the number of Fisher projection dimensions d is 1 < d < min(n,c) — 1. For
example, when 24 features are used on all 8 classes, all d = [1,7] are tried. When 4

features are used on 8 classes, all d = [1, 3] are tried.
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2.3.3 Hybrid SFFS with Fisher Projection (SFFS-FP)

As mentioned above, the SFFS algorithm proposes one subset of m features for each
m, 2 < m < n. Therefore, instead of feeding the Fisher algorithm with all 24 features
or with structured subsets, we can use the subsets that the SFFS algorithm proposes
as our input to the Fisher Algorithm. Note that the SFFS method is used here as a
simple preprocessor for reducing the number of features fed into the Fisher algorithm,

and not as a classification method. We call this hybrid method SFFS-FP.

2.4 Evaluation

We now describe how we obtained the results shown in Table 2.3. A discussion of

these results follows below.

2.4.1 Methodology

The Maximum a Posteriori (MAP) classification is used for all Fisher Projection
methods. The leave-one-out method is chosen for cross validation because of the small
amount of data available. More specifically, here is the algorithm that is applied to

every data point:

1. The data point to be classified (the testing set only includes one point) is ex-
cluded from the data set. The remaining data set will be used as the training

set.

2. In the case where a Fisher projection is to be used, the projection matrix is
calculated from only the training set. Then both the training and testing set

are projected down to the d dimensions found by Fisher.

3. Given the feature space, original or reduced, the data in that space is assumed
to be Gaussian. The respective means and covariance matrices of the classes

are estimated from the training data.
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4. The posterior probability of the testing set is calculated: the probability the
test point belongs to a specific class, depending on the specific probability dis-

tribution of the class and the priors.

5. The data point is then classified as coming from the class with the highest
posterior probability.

The above algorithm is first applied on the original 24 features (Fisher-24). Be-
cause this feature set was expected to contain a lot of redundancy and noise, we also
chose to apply the above algorithm on various “structured subsets” of 4, 6 and 18
features defined as follows:

Fisher-4 All combinations of 4 features are tried, with the constraint that each
feature is from a different signal (EMG, BVP, GSR, Respiration). This gives a total
of 6* = 1296 combinations, which substantially reduces the (%') =10626 that would
result if all combinations were to be tried. The results of this evaluation may give us
an indication of which type of feature is most useful for each physiological signal.

Fisher-6 All combinations of 6 features are tried, with the constraint that each
feature has to be of a different type: (1)-(6). This gives a total of 46 = 4096 com-
binations instead of (264):134596 if all combinations were to be tried. The results of
this evaluation may give us an indication which physiological signal is most useful for
each type of feature.

Fisher-18 All possible combinations of 18 features are tried, with the constraint
that exactly 3 features are chosen from each of the types (1)-(6). That again gives a
total of 45 = 4096 combinations, instead of (%§)2134596 if all combinations were to
be tried. The results of this evaluation may give us an indication which physiological
signal is least useful for each feature.

The SFFS software we used included its own evaluation method, K-nearest neigh-
bor (kNN) [4], in choosing which features were best. For the SFFS-FP method, the
procedure below was followed: The SFFS algorithm outputs one set of m features for
each 2 < m < n, and for each 1 < k < 20. All possible Fisher projections are then

calculated for each such set.
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Another case, not shown in Table 2.3, was investigated. Instead of using a Fisher
projection, we tried all possible 2-feature subsets, and evaluated their class ac-
cording to the maximum a posteriori probability, using cross-validation. The best
classification in this case was consistently obtained when using the mean of the EMG
signal (feature p' above) and the mean of the absolute value of the first difference of
the normalized Respiration signal (feature 5;‘ above) as the two features. The only
result almost comparable to other methods was obtained when discriminating among
Anger, Joy and Reverence where a linear classifier scores 71.66% (43/60). When try-
ing to discriminate among more than 3 emotions, the results were not significantly
better than random guessing, while the algorithm consumed too much time in an
exhaustive search.

Attempting to discriminate among 8 different emotional states is unnecessary for
many applications, where 3 or 4 emotions may be all that is needed. We therefore
evaluated the three methods here not only for the full set of eight emotion classes,
but also for sets of three, four, and five classes that seemed the most promising in

preliminary tests.

2.4.2 Results

The results of all the emotion subsets and classification algorithms are shown in Ta-
ble 2.3. All methods performed significantly better than random guessing, indicating
that there is emotional discriminatory information in the physiological signals.

When Fisher was applied to structured subsets of features, the results were always
better than when Fisher was applied to the original 24 features.

3 emotions In runs using the Fisher-24 algorithm, the two best 3-emotion subsets
turned out to be the Anger-Grief-Reverence (AGR) and the Anger-Joy-Reverence
(AJR). All the other methods are applied on just these two triplets for comparison.

4 emotions In order to avoid trying all the possible quadruplets with all the
possible methods, we use the following arguments for our choices:

Anger-Grief-Joy-Reverence (AGJR): These are the emotions included in the best-

classified triplets. Furthermore, the features used in obtaining the best results above
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Anger Joy
(High Arousal (High Arousal

Negative Valence) | Positive Valence)

Grief Reverence
(Low Arousal (Low Arousal
Negative Valence) | Positive Valence)

Table 2.1: Anger, Grief, Joy, and Reverence can be seen as placed in the four corners
of a valence-arousal plot, a common taxonomy used by psychologists in categorizing
the space of emotions, and may therefore be highly discriminable.

were not the same for the two cases. Therefore a combination of these features may
be discriminative for all 4 emotions. Finally, these emotions can be seen as placed in
the four corners of a valence-arousal plot, a common taxonomy used by psychologists
in categorizing the space of emotions (See Table 2.1).

Neutral-Anger-Grief-Reverence (NAGR) In results from the 8-emotion classifica-
tion using the Fisher-24 algorithm, the resulting confusion matrix (Table 2.2) shows
that Neutral, Anger, Grief, and Reverence are the four emotions best classified and
least confused with each other.

5-emotions The 5-emotion subset examined is the one including the emotions
in the 2 quadruplets chosen above, namely the Neutral-Anger-Grief-Joy-Reverence
(NAGJR) set.

The best classification rates obtained by SFFS and SFFS-FP are reported in
Table 2.3, while the number of features used in producing these rates can be seen
in Table 2.4. We can see that in SFFS a small number mgrprs of the 24 original
features gave the best results. For SFFS-FP a slightly larger number mspps_pp of
features tended to give the best results, but still smaller than 24. These extra features
found useful in SFFS-FP, could be interpreted as containing some useful information,
but together with a lot of noise. That is because feature selection methods like
SFFS can only accept/reject features, while the Fisher algorithm can also scale them
appropriately, performing a kind of “soft” feature selection and thus making use of

such noisy features.
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| INJA|JH|G]|P]|L]|J]R ] Total |

N 10 2 (301010} 4 20
A 201223 (01|10 20
H 51033 24|12 20
G {31102 |0]2]|1 20
p 0|0 |50 62|52 20
L o232 28|30 20
J 110112145350 20
R 1101010716 |2]0]11 20

w

| Total [[ 20 [ 18 [ 19 [ 22 [23[21 [17[20 [| 160 |

Table 2.2: Confusion matrix in the classification of 8 emotions, when using Fisher-24.
An entry’s row is the true class, the column is what it was classified as. The diagonal
shows all the correctly classified data, 64 out of a total of 160, or 40%. Neutral,
Anger, Grief, and Reverence are the most discriminated.

Number of | Random | SFFS | Fisher-24 | Structured subsets (%) | SFFS-FP
Emotions | Guess (%) | (%) (%) 4-feat | 6-feat | 18-feat (%)
8 12.50 40.62 40.00 34.38 | 41.25 | 48.75 46.25
5 (NAGJR) 20.00 64.00 60.00 53.00 | 63.00 | 71.00 65.00
4 (NAGR) 25.00 70.00 61.25 61.25 | 70.00 | 72.50 68.75
4 (AGJR) 25.00 72.50 60.00 58.75 | 70.00 | 68.75 67.50
3 (AGR) 33.33 83.33 71.67 75.00 | 83.33 | 81.67 80.00
3 (AJR) 33.33 88.33 66.67 73.33 | 83.33 | 81.67 83.33

Table 2.3: Classification rates for several algorithms and emotion subsets.

In Table 2.5 one can see that for greater numbers of emotions and greater num-
bers of features, the best-performing number of Fisher dimensions tends to be less
than the maximum number of dimensions Fisher can calculate, confirming our earlier

expectations (Section 2.3.2).

2.5 Day dependence

As mentioned previously, the data were gathered in 20 different sessions, one session
each day. During their classification procedure, we noticed high correlation between

the values of the features of different emotions in the same session. In this section we
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Number of | msrrs | msrrs—rp
Emotions
8 13 17
5 (NAGJR) | 12 5
I(NAGR) | 9 19
T(AGIR) | 7 2
3 (AGR) > 12
3 (AJR) 6 7

Table 2.4: Minimum number of features m proposed by the SFFS algorithms which
gave the best results. When a range of SFFS algorithms performed equally well, only
the one proposing the fewest features is listed.

Number of Structured subsets Fisher-24 | SFFS-FP | Ratio
Emotions | 4-feature | 6-feature | 18-feature

8 3/3 3/5 5/7 6/7 4.5/7 4:1
5 (NAGJR) 3/3 4/4 3/4 3/4 3/4 3:2
4 (NAGR) 3/3 3/3 3/3 3/3 3/3 0:5
4 (AGJR) 3/3 2/3 2.3/3 3/3 2/3 3:2
3 (AGR) 2/2 2/2 2/2 2/2 2/2 0:5
3 (AJR) 2/2 2/2 2/2 1/2 2/2 1:4

Ratio 0:6 2:4 3:3 3:3 3:3 11:19

Table 2.5: Number of dimensions used in the Fisher Projections which gave the best
results, over the maximum number of dimensions that could be used. The last row
and column give the ratio of cases where these two values were not equal, over the
cases that they were.

first quantify this phenomenon by building a day (session) classifier and then use it
to improve the emotion classification results by including the day information in the

features.

2.5.1 Day classifier

We use the same set of 24 features, the Fisher algorithm, and the leave-one-out
method as before, only now there are ¢ = 20 classes instead of 8. Therefore the Fisher
projection is meaningful from 1 to 19 dimensions. The resulting “day classifier” using

the Fisher projection and the leave-one-out method with MAP classification, yields
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a classification accuracy of 133/160 (83%), when projecting down to 6,9,10 and 11
Fisher dimensions. This is better than all but one of the results reported above, and

far better than random guessing (5%). We note the following on this result:

e The signals, as well as the features extracted from them, are highly dependent

on the day the experiment is held.

e This can be because, even if the actress is intentionally expressing a specific
emotion, there is still an underlying emotional and physiological state which

affects the overall results of the day.

e This may also be related to technical issues, like the amount of gel used in the
sensing equipment (for the BVP and GSR signals), or external issues like the
temperature in a given day, affecting the perspiration and possibly the blood

pressure of the actress.

o It should be expected that a more sophisticated algorithm would give even
better results. For example we only tried using all 24 features, rather than a

(structured, SFFS, or SFFS-FP) subset of them.

A possible model for the emotions explaining part of the day dependence could
be thought of as follows: At any point in time the physiological signals are a com-
bination of a long-term slow-changing mood (for example a day-long frustration) or
physiological situation (for example lack of sleep) and of a short-term emotion caused
by more sudden changes in the environment (for example the arrival of some bad
news). It is not clear how the different emotions that coexist at any given time affect
the behavior or the physiology of a subject. Nevertheless, it seems that in the current
context knowledge of the day (as part of the features) may help in establishing a base-
line which could in turn help in recognizing the different short-term emotions within
a day. This baseline may be as simple as subtracting a different value depending on
the day, or something more complicated.

It is also relevant to consider conditioning the recognition tests on only the day’s

data, as there are many applications where the computer wants to know the person’s
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emotional response right now so that it can change its behavior accordingly. In such
applications, not only are interactive-time recognition algorithms needed, but they
need to be able to work based on only present and past information, i.e., causally.
In particular, they will probably need to know what range of responses is typical for
this person, and base recognition upon deviations from this typical behavior. The
ability to estimate a good “baseline” response, and to compare the present state to

this baseline is important.

2.5.2 Establishing a day-dependent baseline

According to the results of the previous section, the features extracted from the signals
are highly dependent on the day the experiment was held. Therefore, we would like
to augment the set of features to include both the Original set of 24 features and a

second set incorporating information on the day the signals were extracted.

The Day Matrix

Let us think of a case where the data come from only 2 different days and only 1
feature is extracted from the data (This is the only way the following manipulations
can be visualized, but the manipulation trivially extends to more features). Although
the feature values of one class are always related to the values of the other classes in
the same way (for example the mean EMG for anger may always be higher than the
mean EMG for Joy), the actual values may be highly day-dependent (Fig. 2-2a). To
alleviate this problem an extra dimension can be added before the features are fed
to the Fisher Algorithm (Fig. 2-2b). If the data came from 3 different days, 2 extra
dimensions would have to be added rather than one (Fig. 2-2¢), etc. Therefore, in
the general case D — 1 extra dimensions are needed for data coming from D different
days, and 19 extra dimensions are needed in our case. The above can be also seen as
using the minimum number of dimensions so that each of D points can be at equal
distance from all others. Therefore the D — 1 dimensional vector will contain the
coordinates of one such point for each day. This vector is the same for all emotions

recorded in the same day.
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Figure 2-2: Fictitious example of a highly day-dependent feature for 2 emotions from
2 different days. (a) The feature values for (A)nger and (J)oy from 2 different days.
(b) Addition of an extra dimension allows for a line b to separate Anger from Joy.
The data can be projected down to line a, so the addition of the new dimension did
not increase the final number of features. (c) In the case of data from 3 different
days, addition of 2 extra dimensions allows for a plane p to separate Anger from Joy.
The data can again be projected down to line a, not increasing the final number of
features.
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Feature Space SFFS | Fisher | SFFS-FP

(%) | (%) (%)
Original (24) 40.62 | 40.00 46.25

Original+Day (43) | N/A | 49.38 50.62

Table 2.6: Classification Rates for the 8-emotion case using several algorithms and
methods for incorporating the day information. “N/A” denotes that SFFS feature
selection is meaningless if applied to the Day Matrix.

Feature Space SFFS | Fisher | SFFS-FP
(%) | (%) (%)
Original (24) 42.86 | 39.29 45.00
Orig.4+Day (43) N/A | 39.29 45.71
Orig.+Base. (48) 49.29 | 40.71 54.29
Orig.4+Base.+Day (67) | N/A | 35.00 49.29

Table 2.7: Classification Rates for the T-emotion case using several algorithms and
methods for incorporating the day information. “N/A” denotes that SFFS feature
selection is meaningless if applied to the Day Matrix.

Another approach that we investigated involves constructing a Baseline Matrix
where the Neutral (no emotion) features of each day are used as a baseline for (sub-
tracted from) the respective features of the remaining 7 emotions of the same day.
This gives an additional 24x20 matrix for each emotion.

The complete 8-emotion classification results can be seen in Table 2.6, while the
T-emotion classification results can be seen in Table 2.7. Random guessing would
be 12.50% and 14.29% respectively. The results are several times that for random
guessing, indicating that significant emotion classification information has been found

in this data.

2.6 Conclusions

The results suggest that there is significant information in physiological signals for
classifying the affective state of a person who is deliberately expressing a small set of

emotions. They also reveal a very high day dependence which can be seen both as
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something to be aware of, as well as something worth exploiting to better understand
and better recognize human emotions.

Success rates above 80% when recognizing 3 emotions and 50% when recognizing
8 emotions are encouraging and signify that physiological data contain information
about the human emotional state. Nevertheless it is very important to keep in mind
that these were intentionally expressed emotions, of only one subject, expressed in
the same sequence every time (with unknown interactions between emotions) and all
had similar duration (something not necessarily true with “real” emotions). In the
next chapter we will look into some slightly different data available and try some new
features. These data are longer than the ones used in this chapter and include the

transition periods between emotions.
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Chapter 3

Offline Recognition using

improved data and features

3.1 Introduction

3.1.1 Data

In the previous sections, we used data consisting of 2000 samples-per-signal, for each
of the eight emotions, gathered over 20 days (Fig. 2-1).

The data were originally gathered in 34 sessions where the 8 different emotions
were expressed one after the other. Each full session lasted around 25 minutes, result-
ing in around 28 to 33 thousand samples per signal, with each emotion being around 2
to 5 thousand samples long, due to the randomness of the Clynes method of eliciting
the emotional states [3]. In several occasions one or more sensors failed during parts
of the experiment. The first 20 sessions were the ones used in the previous sections,
choosing the last 2000 samples from each emotional state while trying to avoid parts
where the sensors had failed. The question which remained was if any information
could be extracted from the uninterrupted data, like transition characteristics, or if an
online classifier could be built. Therefore, we revisited the data from the full sessions
and chose 20 days in which the sensors did not fail during any part of the experiment.

16 of the original days and another 4 which had not been used before were included.
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We call this new set of data “Set B”, with “Set A” being the original data analyzed
in the previous sections. Some comparative results between the common days of the

two slightly different sets of data can be seen in Table 3.2.

3.1.2 Features

Using peak detection on the Blood Volume Pressure signal, the Heart Rate can be
calculated. The same 6 features proposed in Section 2.2 can be extracted from the
Heart Rate as well. Additionally, a set of 11 other features have been proposed for
use with these physiological data. Quoting from [8], these features are: the mean
EMG activity, the mean and mean slope of the skin conductivity, average heart rate
and heart rate change, and the normalized mean, variance, and four power spectral
densily characteristics of the respiration signal. We would like to see if the inclusion

of any of the above features can improve classification.

3.1.3 Results

The results can be seen in Tables 3.3, 3.4 and 3.5. The confusion matrix for the case
with the highest recognition rate, 81.25% can be seen in Table 3.1. Note that the
total number of different features is 40 (rather than 41) because the mean EMG that
was proposed in [8] was already included in the original 24 features.

We can see that in most cases, a small number mgrrs of the original features
gave the best results in SFFS. For SFFS-FP a slightly larger number mgpps_pp of
features tended to give the best results. These extra features found useful in SFFS-FP
but not in pure SFFS, could be interpreted as containing some useful information,
but together with a lot of noise. That is because feature selection methods like
SFFS can only accept/reject features, while the Fisher algorithm can also scale them
appropriately, performing a kind of “soft” feature selection and thus making use of
such noisy features.

From this point on, all results mentioned are based on these new longer data.
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| INJA|H|G|P|L]|J]|R | Total]
N [17[0 ] 0] 0 [3]0]0]0] 20
A JJofrrrjofo]2]1]0]0]| 20
H oo |14 1]0]0]3]2]| 20
G o]0 ]1]15]0]0]4]0] 20
p 00 ]O0foO017[2]1]0]| 20
L 1100|3141 ]0] 20
J O JoJ1[2]0]o0[17]0 [ 20
R JO[O0]0]1]0]0]0/[19] 20

| Total || 18 [ 18 [ 16 [ 19 | 25 [ 17 [ 26 | 21 [ 160 |

Table 3.1: Confusion matrix in the classification of 8 emotions, when using SFFS-FP,
starting with all 40 features and without using the Day Matrix. An entry’s row is
the true class, the column is what it was classified as. The diagonal shows all the
correctly classified data, 130 out of a total of 160, or 81.25%.

Data | Without Day Matrix | With Day Matrix
(%) (%)

Set A 42.97 46.09

Set B 54.69 54.69

Table 3.2: Comparative classification rates for the 16 common days (128 data points in
total) between Data Sets A and B, using 24 features fed to the Fisher Algorithm. The
results suggest that using the longer data (Set B) improves classification performance.

3.2 Conclusions

The results here confirm and expand upon our earlier results, which suggested that
there is significant information in physiological signals for classifying the affective
state of a person who is deliberately expressing a small set of emotions.

Success rates above 80% when recognizing 8 emotions are extremely high, even
compared to the other existing methods of emotion recognition. Nevertheless it is very
important to keep in mind that these were intentionally expressed emotions, of only
one subject, expressed in the same sequence every time (with unknown interactions
between emotions) and all had similar duration (something not necessarily true with

“real” emotions). Therefore, plenty of work has to be done until a robust and easy-to-
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Number of Without Day Matrix With Day Matrix
Features SFFS | Fisher | SFFS-FP | Fisher | SFFS-FP

(%) | (%) (%) (%) (%)

24 49.38 | 51.25 56.87 54.37 63.75

30 (incl. HR) 52.50 | 56.87 60.00 58.75 63.75

11 (other) 60.62 | 70.00 70.63 61.25 63.12

40 (incl. HR, other) | 65.00 | 77.50 81.25 77.50 78.75

Table 3.3: Comparative classification rates for all 20 days (160 data points in total)
of Data Set B and different features and methods used. The Day Matrix adds 19
features to the data fed to the Fisher Algorithm.

Number of Without Day Matrix | With Day Matrix
Features MSFFS | MSFFS—FP MSFFS—FP
24 14 16 19
30 (incl. HR) 5 7 22
11 (other) 11 7 7
40 (incl. HR, other) 8 25 32

Table 3.4: Number of features m proposed by the SFFS algorithms that gave the
best results in Data Set B. When a range of SFFS algorithms performed equally well,
only the one proposing the fewest features is listed.

use emotion recognizer is built. A first step could be looking into real time emotion
recognition. That 1is, if the computer can sense the emotional state of the user the
moment he/she actually is in this state, (online recognition), rather than analyzing
the data later, when the user is already in another state (offline recognition). This
could be considered in combination with the model of an underlying mood, which
may change over longer periods of time. In that respect, the classification rate of
a time window given a previous time window could yield useful information. In
addition, it appears that although the underlying mood changes the features’ values
for all emotions, it affects much less the relative positions with respect to each other.
The question is how frequently should the estimates of the baseline be updated to
accommodate for the changes in the underlying mood. Also, how often can new data

be incorporated and at any moment in time how have back do we have to look in
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Number of Without Day Matrix | With Day Matrix
Features Fisher | SFFS-FP | Fisher | SFFS-FP

24 7 7 4 4

30 (incl. HR) 4 5 3 4

11 (other) 5 6 5 3

40 (incl. HR, other) 7 5 7 6

Table 3.5: Number of dimensions used in the Fisher Projections which gave the best
results, out of a maximum of 7 dimensions. When a range of Fisher Projections

performed equally well, only the one using the fewest dimensions is listed.

order to establish the currect emotion? In the next chapter we look more closely at

some of these questions and build a classifier capable of recognizing emotional states

from physiological data in real time.
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Chapter 4

Online Recognition

4.1 Introduction

Each day of Data Set B contains a continuous stream of data running through 8
different emotions. This data set is then appropriate for training and testing an

online algorithm.

4.2 The iterative algorithm

Most of the data manipulation in this thesis has been done using MATLAB which
is relatively slow compared to C/C++ and other compiled programming languages
but has very good vector/matrix manipulation abilities. Any real-life real-time appli-
cation will probably not be using MATLAB, so manipulating large vectors at every
time step will probably make the whole process too slow. Therefore, in the online
version of the algorithm we will only use features whose values can be updated at
every time step with minimal computational cost. The 6 features per signal proposed
previously can be iteratively updated using the following algorithm (where Sy is
the value of the signal at the time step newly incorporated in the data and W is the

width of the moving window in number of time steps):
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(4.3)
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(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

The estimates for the first few steps can be calculated using the offline formulae

(Eqns. 2.1-2.6)

The above iterations assume a continuous feed of data, therefore we will be using
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the long continuous data of Set B, as mentioned earlier. Using all 5 signals (EMG,
BVP, GSR, Respiration, and HR), gives a total of 30 features that can be calculated

for every position of the moving window, for each one of the days.

4.3 Training data

Given that this is an online algorithm, it is not clear if we should use data from
emotions of one day in the training of the classifier for other emotions of the same
day. Therefore, assuming that a person does not re-train the algorithm during the
day, we only use features from other days to train the classifier. Because of the small
amount of days available, we use the leave-one-out method (2.4.1). This means that
a new classifier is trained using 19 days and tested on the one left out, with the
process repeated for all 20 days. Each day has around 30 thousand time steps, so
a moving window can produce around that many sets of 30 features. But using all
these sets for training would make the problem computationally very hard, requiring
extreme amounts of disk space, memory and time, and would be almost useless, as
consecutive time steps have very highly correlated features (for example in a 1000-
time step moving window, 999 data points would be the same between consecutive
time steps). Therefore, we arbitrarily choose to use a subset of 200 sets of features
per emotion, updating around every 15 time steps. This produces 30400 training sets
of features (200 sets of features per emotion times 8 emotions per day times 19 days)
which are then fed into the Fisher Algorithm to produce a reduced dimensionality

Fisher Projection.

4.4 Testing data

Using the Fisher Projection matrix, we calculate the posterior probabilities for all
the sets of features (around 30 thousand data points) of the day we are testing and

classify each one as coming from the emotion with the highest posterior probability.
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4.5 Data labeling and moving window size

In the offline version, features were calculated from segments of data known to fully
belong to only one emotion. In the online version, features are calculated based
on data from a moving window. When the window includes the transition from
one emotion to the next, features are calculated from data coming from 2 different
emotions. It is not clear if these features should be included in the training of the
classifier, and to which emotion. Similarly it is not clear if the classifier should
be expected to classify these features to the previous or the next emotion during
the testing phase. We expect our decisions on the training phase to influence the
performance of the classifier in the testing phase.

The objective of an online emotion classifier is to first recognize as correctly as
possible the emotional state of the user (high classification rate), and second to rec-
ognize it as soon as possible (high sensitivity). The former suggests a large window
size, to minimize variance in the features within a class. It would also require that
the features be considered as belonging to the previous emotion if most of the window
is still in the previous emotion. On the contrary, the latter suggests a small window
size, and the features of a window including the smallest part of a new emotion to be
considered as belonging to the new emotion. Taking into account the above tradeoffs,
we built and compared several classifiers, varying the following parameters:

W: We compare 5 different window sizes W (100, 200, 500, 1000, and 2000 time
steps long). We also try combinations of 2, 3, 4 and all 5 window sizes. This is done
by feeding to the Fisher Projection Algorithm a multiple of the 30 features calculated
from each different window size for each data point (60 features when using 2 windows,
90 features when using 3 windows, etc.) Besides the 5 single-window cases, there are
10 pairs, 10 triplets, 5 quadruplets and 1 case of all 5 window sizes used, therefore a
total of 31 different window size combinations.

Wirain,t A data point’s features are used in the training of the new emotion

when it is at least W45, time steps into the new emotion. We compare classifiers
Wtrainl

with 0 < Wiein, < W. Normalizing provides wiqin, = , 0 < Wipain, < 1.
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When using multiple moving windows, they are all positioned so that their individual
Wirain, S are equal. Therefore when a window of 100 data points is 20 data points into
a new emotion (Wirgin, =20, Wirain, =0.2), a window of 1000 data points is 200 data
points into the new emotion (Wirqin, =200, wyrq4in, =0.2).

Wirain,: A data point’s features are used in the training of the previous emotion
when it is at most Wy,44,, time steps into the new emotion. We compare classifiers
with —% < Wirain, < % Normalizing provides wiyqin, = %, —0.5 < Wirgin, <
0.5. When using multiple moving windows, they are all positioned so that their
individual wy,q,,’s are equal, as mentioned above.

Wiest;: A data point is expected to be classified as belonging to the new emotion
when it is at least Wi.s, time steps into the new emotion. We compare classifiers
with 0 < Wiee, < W. Testing has to occur online, so multiple moving windows have
to incorporate the same new data point simultaneously, (their individual Wy,4;,, s are
equal). Therefore when a window of 100 data points is 20 data points into a new
emotion, a window of 1000 data points is also 20 data points into the new emotion
(Wiest; =20 in both cases), not 200 data points as in the training.

Wiest,: A data point is expected to be classified as belonging to the previous

emotion when it is at most Wi.s, time steps into the new emotion. We compare

. . 4
classifiers with —% < Wiest, < %

4.6 Definition of performance

In the case of an online algorithm, there are several options for how to define perfor-
mance. We could try to combine the posterior probabilities of all data points in one
emotion and end up with an overall posterior probability from which we could classify
the whole segment. Alternatively we could use simple voting among the classification
results of all data points within one emotion to come up with an overall classification
of the whole segment. None of these methods are natural, because in real life we will
not know the emotion boundaries of the data we are trying to classify. (Although

such pre-segmented classification is what was used in the facial and vocal expression
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recognition results alluded to in 2.1.)

Another measure of performance is the data point classification success rate. This
is the ratio of the total number of data points correctly classified over the total
number of data points in the day for which a classification was attempted. The results
analyzed later use this definition of performance, but overall segment-classification

performance will also be mentioned.

4.7 Results

In all 31 window-size combinations, the best results were obtained when the data
were projected down to 7 Fisher dimensions (¢ — 1). This is probably because the
increase in training data helps in reducing the effect of noise in the features, making
all 7 dimensions contain useful information, unlike in the offline version.

In all single-window cases, the larger the window size, the better the results. In
all other cases, the larger the maximum window size used, the better the results.

In all cases, the results when using a combination of window sizes were at least
as good, and in most cases significantly improved, over using any subsets of these
window sizes.

When using multiple moving windows in the training, they all have equal normal-
ized overlaps Wirqain, s, as mentioned in Section 4.5. They also have equal wiyqin,’s.
Therefore Figures 4-1 and 4-3 plot performance against ws,qin, and wyyq,, respectively.
Contrary to the training, when using multiple moving windows in the testing, they all
have equal unnormalized overlaps Wi,4in, ’s, as mentioned in Section 4.5. They also
have equal Wy, 4in,’s. Therefore Figures 4-2 and 4-4 plot performance against Wi.g,
and Wi, respectively.

Using data points from the start of a new emotion, even though the window
still includes data from the previous emotion (werqin, << 1) in the training, seems
to slightly improve the results (Fig. 4-1). On the contrary, using these data points
in the testing, slightly worsens the overall results (Fig. 4-2). Therefore, they help

improve the training of the classifier, but they themselves are not classified as well as

52



0.5

0.48

0.46

0.44

042

o
S
T

Success Rate

0.38

0.36

0.34

0.32 | | | | | | | | | J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
W,

Figure 4-1: Success rate vs. normalized overlap wyqin, for different combinations of
window sizes. Using data points from the start of a new emotion, even though the
window still includes data from the previous emotion (wirqin, << 1) in the training,
seems to slightly improve the results.
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Figure 4-2: Success rate vs. unnormalized overlap Wi s, for different combinations
of window sizes. Using data points from the start of a new emotion while the window
still mostly includes data from the previous emotion (left part of the curves) in the
testing, seems to slightly worsen the results.
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Figure 4-3: Success rate vs. normalized overlap wiqin, for different combinations
of window sizes. Excluding data points that include the start of the next emotion
segment (Wirqin, < 0.5) in the training, slightly improves the results.
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Figure 4-4: Success rate vs. unnormalized overlap Wi 4, for different combinations of
window sizes. Excluding data points from the end of an emotion segment (left part
of the curves) in the testing, significantly improves the overall results.
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the middle section of the emotions.

Excluding windows that include data points from the start of the next emotion
segment (Wirqain, < 0.5) in the training, slightly improves the results (Fig. 4-3).
Similarly, excluding these data points from the testing significantly improves the
overall results (Fig. 4-4). It seems that the data towards the end of each emotion
segment is not helpful in the training of the classifier, and is not classified as well
as the middle section of each emotion segment. We inquired with the actress who
provided the data, and she indicated that trying to express a specific emotion steadily
for 3 minutes often got boring; hence the data towards the end of each segment might
not be as representative of the emotion as the earlier and middle portions of the
segment.

The highest data point classification success rate was obtained when combining all
5 window sizes, and it was 48.98%. It should be noted that the segment classification
success rate reached 60%, while the offline version using the same methods (Fisher
Projection method, 30 features, without Day Matrix) gave a (segment classification)
success rate of 56.87% (Table 3.3). Unfortunately, in most real-life applications,

presegmented data will not be available.

4.8 Conclusions

Plenty of work needs to be done before a robust and easy-to-use emotion recognizer is
built, but a first step was made, by looking into online emotion expression recognition
and trying to solve some of the issues that arise. Results from the online classifier were
very encouraging, comparable to the offline version’s results using the same features
and methods. They confirm and expand upon our earlier results, which suggested
that there is significant information in physiological signals for classifying the affective

state of a person who is deliberately expressing a small set of emotions.
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Chapter 5

Cognitive Load: Pilot Study

5.1 Introduction

This chapter describes two sets of pilot studies on cognitive load under different driv-
ing conditions. Physiological signals were not gathered at this point. Five subjects
were asked to drive a driving simulator past several curves. In parts of the experiment
they were also asked to listen to random numbers from a speech-synthesis software
and perform simple mathematical tasks. Several measures drawn from the subjects’
driving behavior were examined as possible indicators of either the subjects’ per-
formance or their cognitive load. The studies were used as a guideline for a more
thorough experiment which follows (6) and includes the recording of physiological
data.

5.2 Motivation

Every day more people use their cellular phones while driving. This may have a serious
impact on their driving performance, and subsequently on the safety of people on the
road.

According to the Mental Workload model [20], performance drops sharply when
a person enters the Mental Overload regime. Therefore, talking on a cellular phone

may only be dangerous under some very demanding driving conditions and harmless
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in most other routine driving cases, and the onset of the dangerous regime may be
person- and situation-specific. We would like to be able to recognize such potentially
dangerous situations so that they can be avoided. If we could somehow predict from
a variety of measures that the driver is close to the onset of overload, we might be
able to prevent it by, for example, temporarily turning the phone off or warning the
driver to be more attentive to the road.

In the specific experiment, the measures used were extracted from real-time data
of the subjects’ driving patterns as recorded in the state of the car at each time
step. They involve measures of performance and measures of workload. These may
be useful in understanding that a person is close to his/her Mental Overload limit,
either because of the level of difficulty of the task or alternatively because the person’s
effective Mental Overload limit is temporarily much lower (due to substance-abuse,
fatigue, sleep deprivation, or the user’s underlying emotional state). No physiological
data have been recorded at this point, although such data are used in the second

study, described in the following chapter.

5.3 First study

5.3.1 Experiment

The driving simulator used for the purposes of the experiment is part of Cambridge
Basic Research, a laboratory of Nissan Research & Development, Inc. and it consists
of a Nissan 240sx (Fig. 5-1), an SGI Octane rendering the virtual world and a PC
recording the state of the car in real time. An Apple Macintosh was used for the speech
synthesis. The five subjects who participated in the experiment were all male MIT
students from various departments and backgrounds, and all had moderate driving
experience. The path they were asked to follow was identical in all the runs and can
be seen in Fig. 5-2. It consisted of 10 right turns, none of which was more than 180
degrees, and none of which had a radius of curvature less than 40 meters, as well as

the equivalent 10 left turns. The turns were randomly placed along the length of the
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Figure 5-1: The Nissan 240sx driving simulator at Cambridge Basic Research.

path, with alternating right and left turns and small straight parts of various lengths
in between. The fact that the finishing direction is parallel to the starting one is
because each right turn has an equal and opposite left turn. Subjects said they did
not learn the road, especially because the turns were not sudden or steep, so there
was no need to anticipate them, although they all noticed the alternating right-left
pattern.

Each subject first did a small number of trial runs, usually 2, during which he was
also allowed to listen to a sample of the speech synthesizer saying some numbers. He
then proceeded with the testing runs.

There were 9 different runs, a matrix of 3x3 different cases (Table 5.1), each 200
seconds long, in all of which the driver had to try to preserve a nominal speed as close
to a preset constant value as possible. These values were 30, 40, and 50 miles per hour

(MPH), although the perceived speeds reported were around 25%-50% slower. In 3
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No Easy Hard
Addition | Every 3 | Every 8

30 1 6 2
40 7 3 8
50 4 9 3

Table 5.1: The sequence of runs was constructed to minimize the effects of learning.

cases there was no associated phone task. In another 3 cases the subject had to answer
simple mathematical questions: add “1” to a random single digit number ([0-9]), read
by the speech-synthesizer every 3 seconds. In the remaining 3 cases the subject had
to answer slightly harder mathematical questions: add two random non-negative
numbers read by the speech-synthesizer every 8 seconds, whose sum was between 0
and 99. The interface for the sound/speech was a head-mounted speaker /microphone,
resembling some new integrated car phones. The sequence by which these 9 runs were

executed was identical for all subjects; this sequence is numbered in Table 5.1.

5.3.2 Analysis and results
The data which were available for analysis are the following:
e Car data: Every 50 ms a line is appended to the data file containing:

— Elapsed time
— 2-D car position

— 2-D car velocity

Accelerator pedal depression

Brake pedal depression
e Speech data: Audio file of mathematical questions and subjects’ responses

From the above, the following values can be calculated for each run and for each

subject:
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Figure 5-2: The path to be followed by the subjects had 10 right turns, 10 symmetric
left turns, and a total length of 4.5 kilometers. The full length was only used in the
high speed runs.
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e Steering angle prediction error variance and entropy H, [1, 13] : For each time

step t(¢), a quadratic function is fitted to the steering angles
6(i—1),0(: —2),0(i —3)
of the last 3 time steps
t(i—1),t(¢t—2),t(z—3)
respectively. Then, using extrapolation, the angle
10

is calculated as an estimate of #(z) and the steering angle prediction error:

is calculated. The error probability distribution is estimated by using a his-
togram, and then the entropy is calculated by:
N
Hy =3 (p(j) * logn (p(5)))

J=1

where N is the number of equally spaced bins used in the histogram and p is

the number of samples in bin j normalized by the total number of samples.

o Accelerator pedal variance and entropy: The accelerator pedal entropy is cal-
culated using the same technique as above but with the prediction being a

constant, the mean accelerator pedal depression of the whole session.

e Speed variance and entropy: The speed entropy is calculated using the same

technique followed for the accelerator pedal depression.

e Mean lane deviation: Mean distance from the center of the street.
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Easy Hard
Addition | Addition
30 | 2/1000 4/375
40 | 1/1000 4/375
50 | 0/1000 6/375

Table 5.2: Total number of errors over the total number of trials for each different

test case.
e Normalized mean lane deviation: Same as above, except for the subtraction of
the subject-specific mean from each subject’s results, to account for any trend

of driving on the right side of the street.
e Lane deviation variance and entropy

e Mean distance and time to lane crossing: The distance and time the car can
travel before exiting the current lane, if it keeps the current heading (i.e. straight

ahead) and speed.
e Speech task errors

All of these measures drawn from the subjects’ driving behavior were examined
as possible indicators of the subjects’ cognitive load and performance. No monotonic
behavior was observed with increasing difficulty of either task, and no behavior was

consistent between different subjects.

5.3.3 Remarks

We can think of human resources as a bucket of limited capacity, with the higher
priority tasks using the lower available resources. Then, if too many or too demanding
tasks need to be performed, the person will enter the so-called Mental Overload regime
(the bucket is going to overflow) with the tasks of perceived lowest priority being
ignored first.

The apparent lack of correlation between the two tasks in the specific study may

be an indication that the tasks were too easy. Figure 5-3 shows the model that
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Speech

Driving

Figure 5-3: Mental Workload model for first pilot study. Driving is considered to be
a higher priority task than the speech. No overload occurs, as the tasks are very easy.

probably describes this situation. Several subjects said that after they stabilized the
car to a speed close to the desired, they would lay their foot against the side and
thus keep the speed constant without any further effort (Fig. 5-4). The sound of
the engine gave an extra cue. Also, the path was made out of constant curvature
turns, so after subjects found the correct steering angle they just had to keep the
wheel almost steady, rather than continuously introduce corrections. These are very
unrealistic situations, because in real life the presence of vibrations from the road,
wind, and inclines, among other things, make keeping a constant speed and driving
through curves much harder of a task. As mentioned above, a common remark was
that the car “felt” like it was going slower than the nominal speed, with the perceived
speed reported usually being around 50%-75% of the nominal one.

The analysis was further complicated by the presence of multiple relatively uncor-
related measures of workload such as the ones related to the steering wheel (e.g. steer-
ing entropy) and the ones related to the accelerator pedal (e.g. accelerator entropy).
Similarly, there were multiple relatively uncorrelated measures of performance, such
as the ones related to the position of the car (e.g. lane deviation, distance to lane

crossing) and the car speed (e.g. speed variance). It cannot be known exactly how
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Figure 5-4: Example car speed and accelerator pedal depression vs. time.
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these unrelated measures interact, making it harder to estimate “global” measures
of workload and performance. It was noticed, for example, that at least one person
clearly favored keeping a constant speed around steep curves, at the expense of go-
ing slightly off-course, while another favored staying in the middle of the lane, by
decelerating in advance.

Finally, with respect to the speech tasks, although adding two numbers whose
sum is less than 100 is for most people more difficult than adding 1 to a given digit,
it is not clear whether doing the former every 8 seconds is much harder than doing
the latter every 3 seconds.

We try to make use of these conclusions in building the next set of experiments.

5.4 Second study

5.4.1 Experiment

In the second pilot study, several modifications were introduced. First, one of the
phone tasks was eliminated. The subjects were now asked only to add two numbers
whose sum was between 0 and 99, in intervals of 3, 5, 7, or 9 seconds. Instead of
asking the driver to keep a desired speed, nominal speeds of 30, 60, 90, and 120 MPH
were imposed. To minimize road predictability and constant curvature turns, a new
path was created as a sum of 4 sinusoids of different amplitudes and frequencies,
which can be seen in Fig. 5-5. The specific sequence of runs is displayed in Table 5.3.

Unfortunately the first and only subject to participate in this study had to stop af-
ter the first 9 runs, after feeling sick. Nevertheless, results from these runs contributed

to further modifications.

5.4.2 Analysis and results

The analysis which followed was similar to the one in the first study. This time
several driving performance measures were found to be deteriorating with higher

speeds. Also the speech performance deteriorated as intervals between questions got
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Figure 5-5: The path to be followed by the subjects was a sum of 4 sinusoids of
different amplitudes and frequencies, and a total length of 15 kilometers. The full
length was only used in the high speed runs.

No Addition | Addition | Addition | Addition
Addition | Every 9 | Every 7 | Every 5 | Every 3
30 1 9 17 5 13
60 8 16 4 12 20
90 15 3 11 19 7
120 2 10 18 6 14

Table 5.3: The sequence of runs was constructed to minimize the effects of learning.
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Figure 5-6: Mental Workload model for second pilot study. The assumption is that
driving needs a lot of low level resources (on the left), and only a few high level
congnitive resources (on the right). The speech task needs a lot of high level cognitive
resources. Sometimes overload occurs, almost independently for the two tasks, when
the needed resources of one sort exceed the height of the respective bucket.

smaller. Nevertheless, still there appeared to be no correlation between the speech

task and driving performance, or speed and the speech performance.

5.4.3 Remarks

This time each task individually was hard enough to produce a deterioration in this
task’s performance. Nevertheless, it seems the two tasks share very few common
resources, as if people use different parts of their brains. This may be because the
continuous driving task can be mostly performed “in the back of our minds”, while
our highly cognitive resources get dedicated to the speech task. Figure 5-6 shows the
model that probably describes this situation. Our model for the previous study should
also be updated with the existence of multiple kinds of resources, rather than just one.
This raises the following issue: if another event requiring cognitive resources suddenly
appears, will talking on the phone make it harder to deal with? In the next chapter
we set up such an experiment where events suddenly demand the driver’s cognitive
resources. We then use the driver’s physiological data to predict the driver’s ability

(or inability) to cope with such a challenge.
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Chapter 6

Cognitive Load and Physiological
Data

6.1 Experiment

The study presented here is very similar to the second pilot study described in the
previous chapter: the path was again generated as a sum of sinusoids, the speed was
imposed, the math questions were of the same type. The most significant change was
that messages appeared on the screen which prompted the subject to either Continue
driving at same speed or to Brake immediately to () mph. In order for the subject to be
able to use the brakes, the gas pedal was turned into a switch: when it was pressed,
the predetermined speed was instantly imposed, while when it was released the car
was allowed to slow down because of friction, wind resistance, or braking. There
were 4 different runs, all combinations of 2 different speeds and 2 different intervals
between math questions. In some occasions, when subjects had more time, another 4
runs followed. Each run was 6 minutes long, with no math questions during the first
and last minutes. Messages appeared every 10 seconds in a random sequence which
guaranteed 3 Brake and 3 Continue messages in the first minute, 12 from each during
the 4 minutes the subject was on the phone, and 3 each again in the last minute.
The specific sequence of runs and the setup of each run are displayed in Tables 6.1

and 6.2. Finally, the sum of the math questions now was constrained to be between
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Addition | Addition
Every 3 | Every 9
60 1,8 3.6
120 4.5 2,7
Addition | Addition
Every 3 | Every 9
60 2,7 4.5
120 3,6 1,8

Table 6.1: The sequences of runs were constructed to minimize the effects of learning.
Some subjects were given the first sequence, others were given the second one.

Duration (minutes) | 1 4 1
Speech Task No | Yes | No
Brake events 3 12 3

Conlinue events 3 12 3

Table 6.2: Each run consisted of 3 parts.

11 and 99, excluding the really easy single digit summations, and the number of
summations with carry-over was controlled to be exactly half of the total number of
questions. The only information withheld from the subjects was (1) that the path
was always the same, (2) the path itself, (3) the timing of the messages on the screen,
(4) that there was an equal number of instances of the two messages, and (5) that
we were controlling for the number of cases with a carry over (See Appendix). These
would increase the effect of learning and create further secondary tasks, with people
trying to memorize the road or to predict when the next message would appear. In
some cases it was necessary to decrease the rate of questions from every 3 to every
4 seconds, and/or the speed from 120 MPH to 100 MPH, when subjects said they
found it impossible to perform the tasks. More curtains were used, to block a larger
amount of light from the driving simulator room than in the previous studies, in case
this reduced the chances of subjects getting sick, but another two subjects still had

to interrupt the experiment.
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The messages prompting the driver to brake or to continue driving were used to
examine the driving performance on discrete tasks of a person talking on the phone.
The messages were almost exactly the same length, to make the subject devote some
cognitive resources before deciding on some action. This is because in real life one
has more than one possible action (press brakes, steer left etc.) when such discrete
events occur, so one has to assess the situation before acting. The setup with a first
and last minute without math questions was included to give a baseline performance
and baseline physiological data. Finally, the control for carry-overs in the math
was included after several subjects mentioned that these are the hardest and it was
clear from preliminary results that they were responsible for the vast majority of the

summation mistakes.

6.2 Driving results

The most important new performance measure is the driver’s reaction time. This is
the time from the moment a Brake message appears on the screen until the moment
the subject presses the brake pedal. A typical plot of response delay with and without
speech task can be seen in Figure 6-1. It turns out that the same pattern appeared
consistently across all subjects: although the majority of delays lay between 0.7 and
1.4 seconds (irrespective of the phone task), there were a few cases in which subjects
pressed the brakes significantly later (1.5-3.5 seconds). These latter cases occurred
almost entirely while subjects were performing the speech task. The complete set of
delays for all subjects can be seen in Figure 6-2. Each subject’s delays are normalized
by the mean delay in the absence of the speech task.

Further analysis revealed that out of a total of 972 times a Brake message ap-
peared, there were 7 cases where the driver never pressed the brakes. In 6 of these
7 cases the driver was talking on the phone. Finally, out of a total of 972 times a
Continue message appeared, there were 10 cases where the driver mistakenly pressed
the brakes. In 9 of these 10 cases the driver was talking on the phone.

If reaction times consistently increased by a small amount in the presence of sec-
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Figure 6-1: A typical plot of response delay with and without speech task.
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Figure 6-2: Response delay for 10 subjects. Each subject’s delays are normalized by
the mean delay in the absence of the speech task.
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Figure 6-3: Mental Workload model for study. Overload occurs often when subjects
are asked to brake while talking on the phone. As only the lowest priority resources
are available then, braking is the one to overflow when demand exceeds resources.

ondary tasks, people could compensate by taking greater precautions. Unfortunately,
the specific study shows that drivers’ braking delays generally tend to be compara-
ble (0.7-1.5 seconds) with and without the speech task, except for a few times when
the delays are significantly longer. Furthermore, while on the phone, drivers have
a higher tendency to mistakenly press the brakes after a Continue message or com-
pletely ignore a Brake message while they are on the phone. Because the need to take
immediate action is infrequent and most of the times drivers seem to react appropri-
ately, a false sense of safety is created, further aggravating the problem. Figure 6-3

shows the model that probably describes this situation.

6.3 Physiological data

Unfortunately physiological data are available for only 1 out of the 10 subjects whose
driving performance was reported above. The first subjects were used only as pi-
lots, until the pattern in the response delay was established (so no physiology was
recorded). During some experiments, there were severe problems with a computer

undersampling or failing to save the data, or a sensor failing during the experiment.
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For two subjects the presence of only 5 cases of high delay (out of 72) would have

made it all but impossible to train any algorithm into recognizing these cases.

6.3.1 Analysis

A classifier based on physiology could ideally help identify when a subject is likely
to have a significantly delayed response to a low-probability discrete event. The
procedure followed in building the classifier is almost identical to the one used in the

earlier chapters for emotion recognition:

e Signals: EMG, BVP, GSR, Respiration, HR, each sampled at 20 samples a

second.

e Data: A window of size 1 to 5 seconds immediately preceding the appearance

of a Brake message on the screen.
e Features: Same 6 features/signal as in Section 2.2.

e Classes: All normalresponses (delays of 0.7-1.5 seconds) define Class 1 (55 data
points); all slow responses (delays of more than 1.5 seconds) define Class 2 (17

data points);

e Recognition: Fisher Projection (2.3.2) with leave-one-out (2.4.1).

6.3.2 Results

There are two types of error in the classification process. The first is the mistaken
classification of a normal response as slow (a false positive, also known as false alarm).
The second is the mistaken classification of a slow response as normal (a false neg-
ative). In most cases these two are not equally important. We may be willing to
take a lot of false positives (also called false alarms) in order to avoid false negatives,
because of potentially dangerous situations arising from the latter. Following the
convention in [18], the Receiver-Operator Curve (ROC) for the system can be seen
in Fig. 6-4. We see that the point where the two errors are equal is at about 65%

recognition rate.
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Figure 6-4: Receiver-Operator Curve for the delay classification.
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6.4 Conclusions

In this chapter we showed that while performing some very demanding secondary
tasks, driving performance with respect to discrete events drops with potentially very
dangerous consequences. Furthermore, we showed that it may be possible to use
physiological data from the drivers to predict if their reaction to an event in the near
future would be “normal” or “slow”. This can help in the prevention of accidents

where attentiveness is crucial, like in driving, or in operating heavy machinery.
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Chapter 7

Conclusions

The application of several pattern recognition techniques on physiological data was
shown to provide useful information about some cases of human emotional or cognitive
states.

Part of this thesis addressed the recognition, through physiology, of emotional
states during deliberate emotional expression by an actress. The thesis suggested
signals, features, and pattern recognition techniques for offline recognition of all 8
emotions examined and presented results suggesting that emotions can be recognized
from physiological signals at significantly higher than chance probabilities.

Emotion recognition can be very useful if it occurs in real time. That is, we
would like the computer to be able to sense the emotional state of the user the
moment he actually is in this state (online recognition), rather than analyzing the
data later, when the user is already in another state (offline recognition). The thesis
showed an online algorithm is not only possible but it can reach classification rates
comparable to the ones of the offline version. It suggested the use of iterative updates
for several features and made it run much faster than the current sampling rate of the
physiological sensors that were available for the experiments. Finally it pointed out
problems and limitations: if we have no knowledge of the time scale of the duration
of an emotion, it is very hard to choose a window size; if the data is not presegmented
the performance drops significantly.

The second part of the thesis involved the study of cognitive load and performance
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under different driving conditions. Verifying the Mental Workload model [20], it was
displayed that different tasks can act cumulatively on a subject’s cognitive load,
with possibly detrimental effects. Furthermore, again verifying previous findings, we
showed that in some cases there are multiple kinds of workload, which may or may
not interact significantly. The physiology of subjects driving in a driving simulator
was recorded, and used for one subject to successfully predict slow response times.
The above findings suggest that by using physiology among other things we may
be able to better predict the emotional state or the cognitive load of a car driver,
a heavy machinery operator, a computer user, and improve safety, performance and

well-being of subjects.
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Appendix

These are the instructions given to the subjects in the final driving study (Chapter 6):
Welcome,

Please make sure to read and sign our consent form. The experiment you will be
asked to perform has the following format: There are 8 runs of 6 minutes each. In
some of the runs you will be driving at 60 miles per hour, and in some at 120 miles
per hour. These speeds are perceived as much slower than that, around half their
nominal values. Your accelerator pedal operates as a switch, so as long as you press

it, it imposes the predetermined speed.

At random points during these runs, a message will come up on the screen, ask-
ing you to brake immediately to 0 miles per hour, in which case you are expected to
press the brake pedal until the car stops and then press the accellerator pedal again.
In other occasions, a message will come up asking you to continue driving at the same

speed, in which case you are expected to continue pressing the accelerator pedal.

In addition, during the middle 4 minutes of each run, you will listen to pairs of
numbers on the headphone and you will be expected to say their sum to the micro-
phone. These will either come at a rate of one every 9 seconds, or at a rate of one

every 3 seconds.

Before we start, we need you to perform 2 trial runs in order to get used to the
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setup, one at 60 and one at 120 miles per hour.
If you have any questions, do not hesitate to ask the experimenter. We can take
a break half way through the experiment. Finally, if at any time during the experi-

ment you feel sick, inform the experimenter immediately.

Thank you for participating in this experiment.
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