7,72, 1-21(?7?)
© ?? Kluwer Academic Publishers, Boston. Manufacturedin The Netherlands.

Large Occlusion Stereo

AARON F. BOBICK~*

afb@cc.gatech.edu
College of Computing, Georgia Institute of Technology, Atlanta, GA 30332

STEPHEN S. INTILLE

intille@media.mit.edu

MIT Media Laboratory, Cambridge, MA 02139

Received ??; Revised 27

Editors: 77

Abstract.

A method for solving the stereo matching problem in the presence of large occlusion is presented. A data
structure — the disparity spaceimage — is defined to facilitate the description of the effects of occlusion on
the stereo matching process and in particular on dynamic programming (DP) solutions that find matches and
occlusions simultaneously. We significantly improve upon existing DP stereo matching methods by showing that
whilesome cost must be assigned to unmatched pixel's, sensitivity to occlusion-cost and a gorithmic complexity can
be significantly reduced when highly-reliablematches, or ground control points, areincorporated into the matching
process. The use of ground control points eliminates both the need for biasing the process towards a smooth
solution and the task of selecting critical prior probabilities describing image formation. Finaly, we describe how
the detection of intensity edges can be used to bias the recovered solution such that occlusion boundaries will
tend to be proposed a ong such edges, reflecting the observation that occlusion boundaries usually cause intensity
discontinuities.
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inoneimage of astereo pair but notin the other. These
regionsmark discontinuitiesin depthand areimportant
for any processwhich must preserve object boundaries,
such assegmentation, motionanaysis, and object i den-
tification. There is psychophysica evidence that the
human visual system uses geometrical occlusion re-
lationships during binocular stereopsig 27, 24, 1]

1. Introduction

Our world is full of occlusion. In any scene, we are
likely to find severd, if not several hundred, occlusion
edges. In binocular imagery, we encounter occlusion
timestwo. Stereo images contain occlusion edges that
are found in monocular views and occluded regions

that are unique to a stereo pair[ 7]. Occluded regions
are spatially coherent groups of pixelsthat can be seen

*Aaron Bobick was at the MIT Media Laboratory when the work
was performed.

to reason about the spatial relationships between ob-
jects in the world. In this paper we present a stereo
algorithm that does so as well.

Although absolute occlusion sizes in pixels depend
upon the configuration of theimaging system, images
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Fig. 1. Noisy stereo pair of aman and kids. The largest occlusion region in thisimage is 93 pixelswide, or 13 percent of theimage.

of everyday scenes often contain occlusion regions
much larger than thosefound in popular stereo test im-
agery. Inour lab, commonimageslikeFigure 1 contain
disparity shifts and occlusion regions over eighty pix-
elswide.! Popular stereo test images, however, likethe
JISCT test set[ 9], the “pentagon” image, the “white
house’ image, and the* Renault part” image have max-
imum occlusion disparity shiftson the order of 20 pix-
elswide. Regardless of camera configuration, images
of the everyday world will have substantialy larger
occlusion regionsthan aerial or terrain data. Even pro-
cessing imageswith small disparity jumps, researchers
have found that occlusion regions are a major source
of error[ 3].

Recent work on stereo occlusion, however, has
shown that occlusion processing can be incorporated
directly into stereo matching[ 7, 17, 14, 20]. Stereo
imagery contains both occlusion edges and occlusion
regiong] 17]. Occlusion regions are spatially coherent
groups of pixels that appear in one image and not in
the other. These occlusion regions are caused by oc-
cluding surfaces and can be used directly in stereo and
occlusion reasoning.?

This paper divides into two parts. The first several
sections concentrate on the recovery of stereo matches
in the presence of significant occlusion. We begin by
describing previous research in stereo processing in
which the possibility of unmatched pixelsisincluded
in the matching paradigm. Our approach isto explic-
itly model occlusion edges and occlusion regions and
to use them to drivethe matching process. We devel op
adata structure which we will cal the disparity-space
image (DSl), and we use thisdata structure to describe
thethe dynamic-programming approachto stereo (asin

[ 17, 14, 18]) that findsmatches and occlusionssimul-
taneoudly. We show that while some cost must be in-
curred by asolutionthat proposes unmatched pixels, an
algorithm’s occlusion-cost sensitivity and algorithmic
complexity can be significantly reduced when highly-
reliable matches, or ground control points(GCPs), are
incorporated into the matching process. Experimen-
tal results demonstrate robust behavior with respect to
occlusion pixel cost if the GCPtechnique usemployed.

The second logica part of the paper is motivated
by the observation that monocul ar imagesalso contain
information about occlusion. Different objects in the
world have varying texture, color, and illumination.
Therefore occlusion edges — jump edges between
these objects or between significantly disparate parts
of the same object — nearly adways generate intensity
edges in amonocular image. The final sections of this
paper consider theimpact of intensity edgeson thedis-
parity space images and extends our stereo technique
to exploit information about intensity discontinuities.
We note that recent psychophysical evidence strongly
supports the importance of edges in the perception of
occlusion.

2. Previous Occlusion and Stereo Work

Most stereo researchers have generally either ignored
occlusion analysis entirely or treated it as a secondary
process that is postponed until matching is completed
and smoothing is underway[ 4, 15]. A few au-
thors have proposed techniques that indirectly address
the occlusion problem by minimizing spurious mis-
matches resulting from occluded regions and disconti-
nuitieg 19, 11, 2, 25, 2, 23, 12].



Belhumeur has considered occlusion in severd pa
pers. In[ 7], Belhumeur and Mumford point out that
occluded regions, not just occlusion boundaries, must
be identified and incorporated into matching. Using
this observation and Bayesian reasoning, an energy
functional isderived using pixel intensity asthematch-
ing feature, and dynamic programming is employed to
find the minimal-energy solution. In [ 5] and [ 6]
the Bayesian estimator is refined to deal with sloping
and creased surfaces. Penalty terms are imposed for
proposing a bresk in vertical and horizontal smooth-
ness or acrease in surface ope. Belhumeur’s method
requires the estimation of several critical prior terms
which are used to suspend smoothing operations.

Geiger, Ladendorf, and Yuille[ 17, 18] also directly
address occlusion and occlusion regions by defining an
apriori probability for the disparity field based upon a
smoothness function and an occlusion constraint. For
matching, two shifted windows are used in the spirit of
[ 25] to avoid errors over discontinuity jumps. Assum-
ing the monotonicity constraint, the matching problem
is solved using dynamic programming. Unlikein Bel-
humeur’s work, the stereo occlusion problem is for-
mulated as a path-finding problem in a left-scanline
to right-scanline matching space. Geiger et al. make
explicit the observation that “a vertical break (jump)
in one eye corresponds to a horizonta break (jump) in
the other eye”

Finally, Cox et al.[ 14] have proposed adynamic pro-
gramming sol ution to stereo matching that does not re-
quirethe smoothing term incorporated into Geiger and
Belhumeur’swork. They point out that several equally
good paths can be found through matching space using
only theocclusion and ordering constraints. To provide
enough constraint for their system to select asingle so-
[ution, they optimize a Bayesian maximum-likelihood
cost function minimizing inter- and intra-scanline dis-
parity discontinuities. The work of Cox et al. isthe
closest to the work we present here in that we also do
not exploit any explicit smoothness assumptionsin our
DP solution.

3. The DSI Representation

In this section we describe a data structurewe call the
disparity-space image, or DSl. We have used the data
structure to explore the occlusion and stereo problem
and it facilitated our development of a dynamic pro-
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gramming agorithm that uses occlusion constraints.
The DSl is an explicit representation of matching
space; it is related to figures that have appeared in
previouswork [ 25, 28, 13, 17, 18].

3.1.  DSI Creation for Ideal Imagery

We generate the DSI representation for ' scanlinein
the following way: Select the i** scanline of the left
and right images, s- and s!* respectively, and dlide
them across one another one pixel a atime. At each
step, the scanlines are subtracted and the result is en-
tered asthenextlineintheDSl. TheDSl representation
stores the result of subtracting every pixel in s* with
every pixel s and maintains the spatial relationship
between the matched points. As such, it may be con-
sidered an (z, disparity) matching space, with » aong
thehorizontal, and disparity d alongthevertical. Given
twoimages /1. and /i thevalue of the DSl isgiven:

DS (x,d) = ||I(2,1) — Ir(z —d,7)|| (1)

when —dmax < d < dmax,and0 < (z+d) < N, N
being the horizonta size of theimage. The superscript
of L on DSI* indicatesthe left DSI. DSIF issimply a
skewed version of the DSI .

The above definition generates a “full” DSI where
there is no limit on disparity. By considering camera
geometry, we can crop the representation. In the case
of parallel optic axes, objects are shifted to the right
in the left image. No matches will be found searching
in the other direction. Further, if a maximum possi-
ble disparity d,, .. is known, then no matches will be
found by shifting right more than d.,,., pixels. These
limitations permit us to crop the top N and bottom
N — dpmqq lines of the DSI. DSI generation is illus-
trated in Figure 2.

3.2. DSI Creation for Imagery with Noise

To make the DSI more robust to effects of noise, we
can change the comparison function from subtraction
to correlation. We define g& and ¢/t as the groups of
scanlines centered around s& and s , respectively. gF
and ¢t areshifted acrosseach other to generatethe DS
representation for scanline ¢. Instead of subtracting at
asinglepixd, however, we compare mean-normalized
windowsin g and ¢%:
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Fig. 2. Thisfigure describes how a DSIiL is generated. The corresponding epipolar scanlines from the left and right images are used. The
scanline from the left image is held till as the scanline from the right image s shifted across. After each pixel shift, the scanlines are absolute
differenced. The result from the overlapping pixelsis placed in the resulting DSI f . The DSIiL is then cropped, since we are only interested in
disparity shiftsthat are zero or greater since we assume we have parallel optical axisin our imaging system.
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Normalization by the mean eiminates the effect of
any additive bias between left and right images. If
thereisamultiplicativebias aswell, we could perform
normalized correlation instead [ 19].

Using correlation for matching reducesthe effects of
noise. However, windows create problems at vertical
and horizontal depth discontinuities where occluded
regionslead to spuriousmatching. We solvethisprob-
lem using a simplified version of adaptive windows]
22]. Atevery pixel location weuse 9 different windows
to perform the matching. The windows are shown in
Figure 3. Somewindowsare designed so that they will
match to the left, some are designed to match to the
right, some are designed to match towards the top, and
so on. At an occlusion boundary, some of the filters
will match across the boundary and some will not. At
each pixel, only the best result from matching using
al 9 windows is stored. Bad matches resulting from
occlusion tend to be discarded. If we define €%, CY to
be the possi blewindow reference pointse,, ¢, respec-
tively, then DSI is generated by:

DSIZ»L(x, d, wg, wy) =
czecm,lcr;ew Wi (&, d, we, wys ez, )
(4)

for0< (¢ —d) < N.

To test the correlation DSI and other components
of our stereo method, we have produced a more inter-
esting version of the three-layer stereo wedding cake
image frequently used by stereo researchers to assess
algorithm performance. Our cake hasthree squarelay-
ers, a square base, and two doping sides. The cakeis
“iced” with textures cropped from several images. A
side view of aphysical model of the sloping wedding
cake stereo pair is shown in Figure 4a, a graph of the

Fig. 3. To reduce the effects of noisein DSl generation, we have
used 9 window matching, where window centers (marked in black)
are shifted to avoid spurious matches at occlusion regions and dis-
continuity jumps.
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depth profile of a scanline through the center of the
cake is shown in Figure 4b, and a noiseless simulation
of the wedding cake stereo pair is shown in Figure 4c.
The doping wedding cake is a chalenging test ex-
ample since it has textured and homogeneous regions,
huge occlusion jumps, adisparity shift of 84 pixelsfor
the top level, and flat and doping regions. The en-
hanced, cropped DSI for the noiseless cake is shown
in Figure 4d. Notethat thisis areal, enhanced image.
The black-linefollowing the depth profile has not been
added, but results from enhancing near-zero val ues.

A noisy image cake was generated with Gaussian
white noise (SNR = 18 dB) The DSI generated for the
noisy cake is displayed in Figure 4e. Even with large
amounts of noise, the “near-zero” dark path through
the DSI disparity space is clearly visible and sharp
discontinuities have been preserved.

3.8.  Structure of the DSI

Figure 4d shows the cropped, correlation DSI for a
scanline through the middle of the test image pair
shown in Figure 4c. Notice the characteristic stresk-
ing pattern that results from holding one scanline till
and dliding the other scanline across. When atextured
region on theleft scanline didesacrossthe correspond-
ing region in the right scanline, aline of matches can
be seen in the DSIZ. When two texture-less matching
regions slide across each other, a diamond-shaped re-
gion of near-zero matches can be observed. The more
homogeneoustheregionis, themoredistinct theresult-
ing diamond shape will be. The correct path through
DSl space can be easily seen as adark line connecting
block-like segments.

4. Occlusion Analysis and DSI Path Con-
straints

In adiscrete formulation of the stereo matching prob-
lem, any region with non-constant disparity must have
associated unmatched pixels. Any dope or dispar-
ity jump creates blocks of occluded pixels. Because
of these occlusion regions, the matching zero path
through the image cannot be continuous. The regions
labeled “D” in Figure 4d mark diagona gaps in the
enhanced zero linein DSIF. The regions labeled “V”
mark vertica jumpsfrom disparity to disparity. These
jumps correspond to left and right occlusion regions.
We use this “occlusion constraint”[ 17] to restrict the
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Fig.4. Thisfigureshows(a) amodel of the stereo sloping wedding cakethat wewill useas atest example, (b) adepth profilethrough the center
of the sloping wedding cake, (c) a simulated, noise-free image pair of the cake, (d) the enhanced, cropped, correlation D.ST f representation
for the image pair in (c), and (€) the enhanced, cropped, correlation DS for a noisy sloping wedding cake (SNR = 18 dB). In (d), the regions
labeled “D” mark diagonal gaps in the matching path caused by regions occluded in the left image. The regions labeled “V” mark vertical

jumpsin the path caused by regions occluded in the right image.

type of matching path that can be recovered from each
DSl;. Each time an occluded region is proposed, the
recovered path isforced to have the appropriatevertical
or diagonal jump.

The fact that the disparity path moves linearly
through the disparity gaps does not imply that we
presume the a linear interpolation of disparities or a
smooth interpolation of depth in the occluded regions.
Rather, thelinesimply reflects the occlusion constraint
that a set of occluded pixels must be accounted for by
adisparity jump of an equal number of pixels.

Nearly all stereo scenes obey theordering constraint
(or monotonicity constraint [ 17]): if object a isto the
left of object b intheleft imagethen a will beto theleft
of b intherightimage. Thin objectswith large dispar-
itiesviolate thisrule, but they are rare in many scenes
of interest. Exceptions to the monotonicity constraint
and aproposed techniqueto handle such casesisgiven
in[ 16]. By assuming the ordering rule we can im-
pose a second constraint on the disparity path through
the DSI that significantly reduces the complexity of
the path-finding problem. In the DSIZ»L, moving from

left to right, diagona jumps can only jump forward
(down and across) and vertical jumps can only jump
backwards (up).

It isinteresting to consider what happens when the
ordering constraint does not hold. Consider an exam-
ple of skinny pole or tree significantly in front of a
building. Some region of the building will be seen in
the left eye as being to the left of the pole, but in the
right eye asto theright of the pole. If astereo system
isenforcing the ordering constraint it can generate two
possible solutions. IN one case it can ignore the pole
completely, considering the pole pixelsin the left and
right image as simply noise. More likely, the system
will generate a surface the extends sharply forward
to the pole and then back again to the background.
The pixels on these two surfaces would actualy be
the same, but the system would consider them as un-
matched, each surface being occluded from one eye by
the pole. Later, where we describe the effect of ground
control points, we will see how our system chooses
between these solutions.



5. Finding the Best Path

Using the occlusion constraint and ordering constraint,
the correct disparity path is highly constrained. From
any location in the DSIF, there are only three direc-
tions a path can take — a horizontal match, a diagonal
occlusion, and a vertical occlusion. This observation
allows us to develop a stereo algorithm that integrates
matching and occlusion analysisinto asingle process.

However, the number of alowable paths obeying
these two constraints is still huge.® As noted by pre-
vious researchers [ 17, 14, 18] one can formulate
the task of finding the best path through the DSI as a
dynamic programming (DP) path-finding problem in
(z,disparity) space. For each scanline ¢, we wish
to find the minimum cost traversa through the DS,
image which satisfies the occlusion constraints.

5.1.  Dynamic Programmaing Constraints

DPagorithmsrequirethat the decision making process
be ordered and that the decision at any state depend
only upon the current state. The occlusion constraint
and ordering constraint severely limit the direction the
path can take from the path’s current endpoint. If we
base the decision of which path to choose at any pixel
only upon the cost of each possible next step in the
path and not on any previous moves we have made, we
satisfy the DP requirements and can use DPto find the
optimal path.

As we traverse through the DSI image constructing
theoptimal path, wecan consider thesystemashbeingin
any one of three states: match (M), vertical occlusion
(V), or diagonal occlusion (D). Figure 5 symbolically
shows the legal transitions between each type of state.
Weassume, without lossof generality, that thetraversal
starts at one of the top corners of the DSl.

The application of dynamic programming to the
stereo problem reveals the power of these techniques
[8, 7, 14, 17]. When formulated as a DP problem,
finding the best path through an DSI of width N and
disparity range D requiresconsidering N * DD dynamic
programming nodes (each node being apotentia place
along the path). For the 256 pixel wide version of
the dloping wedding cake example, the computation
considers 11,520 nodes.

To apply DP a cost must be assigned to each (DSI)
pixe in the path depending upon its state. As indi-
cated, a pixel aong a path is either in one of the two
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“occlusion” states — vertical or diagona — or is a
“matched” pixel. The cost we assign to the matched
pixelsissimply theabsolute valueof the DSI pixel at
the match point.* The better the match, the lower the
cost assessed. Therefore the algorithm will attempt to
maximize the number of “good” matches in the final
path.

However, the agorithmisa so going to propose un-
matched points — occlusion regions — and we need
to assign a cost for unmatched pixels in the vertica
and diagona jumps. Otherwise the “best path” would
be one that matches almost no pixels, and traverses the
DSl aternating between vertical and diagonal occlu-
sion regions.

5.2.  Assigning occlusion cost

Unfortunately, dight variations in the occlusion pixel
cost can change the globally minimum path through
the DSI¥ space, particularly with noisy data 14]. Be-
cause this cost isincurred for each proposed occluded
pixel, the cost of proposed occlusion regionislinearly
proportional to the width of the region. Consider the
exampleillustratedin Figure6. The*correct” solution
is the one which starts at region A, jumps forward di-
agonally 6 pixelsto region B where disparity remains
congtant for 4 pixels, and then jumps back vertically 6
pixels to region C. The occlusion cost for this path is
¢o * 6% 2Where ¢, isthepixel occlusion cost. If thee,
istoo great, astring of bad matches will be selected as
the lower-cost path, as shown. The fact that previous
DP solutions to stereo matching (e.g. [ 18]) present
results where they vary the occlusion cost from one
example to the next indicates the sensitivity of these
approaches to this parameter.

Inthe next section we derive an additional constraint
which greatly mitigates the effect of the choice of the
occlusion cost ¢,. In fact, al the results of the ex-
periments section use the same occlusion cost across
widely varying imaging conditions.

5.8, Ground control points

In order to overcome this occlusion cost sensitivity,
we need to impose another constraint in addition to
the occlusion and ordering constraints. However, un-
like previous approaches we do not want to bias the
solutiontowards any generic property such as smooth-
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M = Match state

Current state &
Location

V = Vertical occlusion
D = Horizontal occlusion

Fig.5. Statediagramof legal movesthe DP algorithm can makewhen processingthe DS| f . Fromthe match state, the path can movevertically
up to the vertical discontinuity state, horizontally to the match state, or diagonally to the diagonal state. From the vertical state, the path can
movevertically up to the vertical state or horizontally to the match state. From the diagonal state, the path can move horizontally to the match

state or diagonally to the diagonal state.

nessacrossocclusiong] 17], inter-scanline consistency|
25, 14], or intra-scanline “goodness’[ 14].

Instead, we use high confidence matching guesses:
Ground control points (GCPs). These points are used
toforce the solution path to make large disparity jumps
that might otherwise have been avoided because of
large occlusion costs. The basic ideais that if afew
meatches on different surfaces can identified before the
DP matching process begins, these points can be used
to drive the solution.

Figure 7 illustratesthisideashowing two GCPs and
anumber of possible pathsbetween them. Wenotethat
regardless of thedisparity path chosen, thediscretelat-
tice ensures that path-a, path-b, and path-c al require
6 occlusion pixels. Therefore, dl three paths incur
the same occlusion cost. Our agorithm will select the
path that minimizes the cost of the proposed matches
independent of where occlusion breaks are proposed
and (almost) independent of the occlusion cost value.
If thereisa single occlusion region between the GCPs
intheoriginal image, the path with the best matches is
similar to path-a or path-b. On the other hand, if the
region between the two GCPs is sloping gently, then
a path like path-c, with tiny, interspersed occlusion
jumps will be preferred, since it will have the better
matches.® The path through (x, disparity) space, there-
fore, will be constrained solely by the occlusion and
ordering constraints and the goodness of the matches
between the GCPs.

Of course, weare limited to how small theocclusion
cost can be. |If it is smaller than the typica value

of correct matches (non-zero due to noise)® then the
algorithm proposes additiona occlusion regions such
asin path-d of Figure 7. For real stereo images (such
as the JISCT test set [ 9]) the typica DSl value for
incorrectly matched pixelsis significantly greater than
that of correctly matched ones and performance of the
algorithm is not particularly sensitive to the occlusion
cost.

Also, we note that while we have attempted to re-
move smoothing influences entirely, there are situa
tionsin which the occlusion cost induces smooth solu-
tions. If no GCP is proposed on agiven surface, and if
the stereo solutionisrequired to make adisparity jump
across an occlusionregion toreach thecorrect disparity
level for that surface, thenif the occlusion cost ishigh,
the preferred solution will be aflat, “smooth” surface.
As we will show in some of our results, even scenes
with thin surfaces separated by large occlusion regions
tend to give rise to an adequate number of GCPs (the
next section describes our method for selecting such
points). This experience isin agreement with results
indicating asubstantial percentage of pointsin astereo
pair can be matched unambiguously, such asHannah's
“anchor points’ [ 19].

5.4. Why ground control points provide addi-
tional constraint

Before proceeding it is important to consider why
ground control pointsprovideany additiona constraint
to the dynamic programming solution. Given that they
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A Path chosen if occlusion cost too high
> s> > C
N 2 .
- (bold arrow) = Path selected using good
N T matches and occlusion pixels
N 1’
Y (light arrow) = Bad matches substituted

3 for occlusion pixels

AN L [7]= Occluded Pixel

[ 1 [3]>]=]2

Desired path

Fig.6. Thetotal occlusion cost for an object shifted D pixelscan becost ,ecivsion * D * 2. If the cost becomeshigh, astring of bad matches
may be aless expensive path. To eliminate this undesirable effect, we must impose another constraint.

Path A Path C
>33 22222y
N dld R Il = Ground Control Point
N 2
N N [[]= occluded Pixel
N DRI
= N | 22y N | Paths A,B, and C have 6 occluded
ﬁlth B ﬁth D pixels.
N N Path D has 14 occluded pixels.
N N BEEN
N N + N
N N + N
N N + N
RN | BD >

Fig. 7. Once a GCP hasforced the disparity path through some disparity-shifted region, the occlusion will be proposed regardlessof the cost
of the occlusionjump. The path between two GCPs will depend only upon the good matchesin the path, since the occlusion cost is the samefor
each path A,B, and C. path D is an exception, since an additional occlusion jump has been proposed. While that path is possible, it is unlikely
the globally optimum path through the space will have any more occlusion jumps than necessary unless the data supporting a second occlusion

jump s strong.

represent excellent matches and therefore have very
low match costs it is plausible to expect that the low-
est cost paths through disparity space would naturally
include these points. While thisis typically the case
when the number of occlusion pixes is smal com-
pared to the number of matched pixels, it is not true
ingeneral, and is particul arly problematicin situations
with large disparity regions.

Consider again Figure 6. Let us assume that region
B represents perfect matches and therefore has amatch
cost of zero. These are the types of points which will
normally be selected as GCPs (as described in the next
section). Whether the minimal cost path from A to C
will go through region B is dependent upon the rela-

tive magnitude between the occlusion cost incurred via
the diagonal and vertical jumps required to get to re-
gion B and the incorrect match costs of the horizontal
path from A to C. It is precisaly this sengitivity to the
occlusion cost that has forced previous approaches to
dynamic programming solutionsto enforce a smooth-
ness constraint.

5.5, Selecting and enforcing GCPs

If weforcethedisparity path through GCPs, their sel ec-
tion must be highly reliable. We use severa heuristic
filters to identify GCPs before we begin the DP pro-
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Fig.8. Theuseof multiple GCPs per column. Each path through the two outside GCPs have exactly the same occlusion cost, 6¢,. Aslong as
the path passes through one of the 3 multi-GCPs in the middle column it avoids the (infinite) penalty of the prohibited pixels.

cessing; severa of these are similar to those used by
Hannah [ 19] to find highly reliable matches. The first
heuristic requires that a control point be both the best
[eft-to-rightand best right-to-left match. IntheDSI ap-
proach these pointsare easy to detect since such points
are those which are the best match in both their diag-
onal and vertical columns. Second, to avoid spurious
“good” matches in occlusion regions, we also require
that a control point have match value that is smaller
than the occlusion cost. Third, we require sufficient
texture in the GCP region to eiminate homogeneous
patchesthat match adisparity range. Finaly, to further
reduce the likelihood of a spurious match, we exclude
any proposed GCPs that have no immediate neighbors
that are also marked as GCPs.

Once we have a set of control points, we force our
DP agorithm to choose a path through the points by
assigning zero cost for matching with a control point
and a very large cost to every other path through the
control point’s column. In the DSIZ, the path must
pass through each column at some pixel in some state.
By assigning a large cost to al paths and states in a
column other than amatch at the control point, we have
guaranteed that the path will pass through the point.

Animportant feature of thismethod of incorporating
GCPsisthat it alows us to have more than one GCP
per column. Instead of forcing the path through one
GCP, we force the path through one of afew GCPsin
acolumn asillustrated in Figure 8. Even if using mul-
tiplewindows and | eft-to-right, right-to-left matching,
it is still possible that we will label a GCP in error
if only one GCP per column is permitted. It is un-
likely, however, that none of severa proposed GCPsin
a column will be the correct GCP. By alowing multi-
ple GCPs per column, we have eliminated the risk of

forcing the path through a point erroneously marked as
high-confidence due image noise without increasing
complexity or weakening the GCP congtraint. This
technique aso alows us to handle the “wallpaper”
problem of matching in the presence of arepeated pat-
terninthe scene: multiple GCPs allow the el ements of
the pattern to repeatedly matched (locally) with high
confidence while ensuring a global minimum.

5.6.  Reducing complexity

Without GCPs, the DP agorithm must consider one
node for every point in the DSI, except for the bound-
ary conditions near the edges. Specification of a GCP,
however, essentially introduces an intervening bound-
ary pointand preventsthe solutionpathfromtraversing
certain regions of the DSI. Because of the occlusion
and monotonicity constraints, each GCP carves out
two complimentary triangles in the DS| that are now
not valid. Figure 9 illustrates such pairs of triangles.
The total area of the two triangles, A, depends upon at
what disparity d the GCP is located, but is known to
lie within the range D?/4 < A < D?/2 where D is
the alowed disparity range. For the 256 pixel wedding
cakeimage, 506 < A < 1012. Sincethetota number
of DP nodesfor that imageis 11,520 each GCP whose
congtraint triangles do not overlap with another pair of
GCP constraint triangles reduces the DP complexity
by about 10%. With several GCPs the complexity is
less than 25% of the origina problem.

6. Results using GCPs

Input to our algorithm consists of a stereo pair. Epipo-
lar lines are assumed to be known and corrected to
correspond to horizontal scanlines. We assume that



GCP 1

77 11

D = Legal Area D: Excluded Area . Ground Control Point

Fig.9. GCP constraint regions. Each GCP removesa pair of similar triangles from the possible solution path. If the GCPis at one extreme of
the disparity range (GCP 1), then the area excluded is maximized at D2/2. If the GCP is exactly in the middle of the disparity range (GCP 2)

the areasis minimized at D?/4.

additive and multiplicative photometric bias between
theleft and right imagesisminimized allowing the use
of asubtraction DSI for matching. Asmentioned, such
biases can be handled by using the appropriate corre-
lation operator. The birch tree example shows that the
subtraction DSI performs well even with significant
additive differences.

The dynamic programming portion of our algorithm
is quite fast; almost all time was spent in creating the
correlation DSI used for finding GCPs. Generation
time for each scanline depends upon the efficiency
of the correlation code, the number and size of the
masks, and the size of the origina imagery. Running
on a HP 730 workstation with a 515x512 image using
nine 7x7 filters and a maximum disparity shift of 100
pixels, our current implementati on takes afew seconds
per scanline. However, sincethe most time consuming
operationsare simplewindow-based cross-correl ation,
the entire procedure could be made to run near rea
time with simple dedicated hardware. Furthermore,
this step was used solely to provide GCPs, a faster
high confidence match detector would €liminate most
of thisoverhead.

Theresultsgenerated by our algorithm for the noi se-
free wedding cake are shown in Figure 10a. Computa-
tion was performed on the DSTF but the results have
been shifted to the cyclopean view. The top layer of
the cake has a disparity with respect to the bottom of
84 pixels. Our agorithm found the occlusion bresks
at the edge of each layer, indicated by black regions.
Sloping regions have been recovered as matched re-
gionsinterspersed with tiny occlusion jumps. Because
of homogeneous regions many paths have exactly the

same tota cost so the exact assignment of occlusion
pixelsindopingregionsisnotidentica from onescan-
line to the next, and is sensitive to the position of the
GCPs in that particular scanline. Figure 10b shows
the results for the sloping wedding cake with a high
amount of artificialy generated noise noise (SNR =
18 dB). The agorithm still performs well at locating
occlusion regions.

For the “kids’ and “birch” results displayed in this
paper, we used a subtraction DSI for our matching
data. The 9-window correlation DSI was used only to
find the GCPs. Since our agorithm will work prop-
erly using the subtraction DSI, any method that finds
highly-reliable matches could be used to find GCPs,
obviating the need for the computationally expensive
cross correlation. All our results, including the “kids’
and “birch” examples were generated using the same
occlusion cost, chosen by experimentation.

Figure 11ashowsthe“birch” image from the JISCT
stereo test set[ 9]. The occlusion regions in thisim-
age are difficult to recover properly because of the
skinny trees, some texture-less regions, and a 15 per-
cent brightnessdifference between images. The skinny
trees make occlusion recovery particularly sensitive to
occlusion cost when GCPsare not used, sincethereare
relatively few good matches on each skinny tree com-
pared with the size of the occlusion jumpsto and from
eachtree. Figurellbshowstheresultsof our agorithm
without using GCPs. The occlusion cost prevented the
path on most scanlines from jumping out to some of
the trees. Figure 11c showsthe agorithm run with the
same occlusion cost using GCPs.”

Most of the occlusion regions around the trees are
recovered reasonably well since GCPs on the tree sur-
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Fig. 10. Results of our algorithm for the (a) noise-free and (b) noisy sloping wedding cake.

faces eiminated the dependence on the occlusion cost.
There are some errors in the image, however. Sev-
eral shadow regions of the birch figure are compl etely
washed-out with intensity values of zero. Conse-
quently, some of these regions have led to spurious
GCPswhich caused incorrect disparity jumpsin our fi-
nal result. Thisproblem might be minimized by chang-
ing the GCP sdlection agorithm to check for texture
wherever GCPs are proposed. On some scanlines, no
GCPs were recovered on some trees which led to the
scanline gaps in some of the trees.

Note the large occlusion regions generated by the
third tree from the left. This example of small fore-
ground object generating a large occlusion region is
aviolation of the ordering constraint. As described
previoudly, if the DP solutionincludesthe treesit can-
not aso include the common region of the building.
If there are GCPs on both the building and the trees,
only one set of GCPs can be accommodated. Because
of the details of how we incorporated GCPs into the
DP agorithm, the surface with the greater number will
dominate. In the tree example, the grass regions were
highly shadowed and typicaly did not generate many
GCPs?8

Figure 12ais an enlarged version of the left image
of Figure 1. Figure 12b shows the results obtained
by the agorithm developed by Cox et al.[ 14]. The
Cox agorithm is a similar DP procedure which uses
inter-scanline consistency instead of GCPs to reduce
sensitivity to occlusion cost.

Figure 12c shows our results on the same image.
These images have not been converted to the cyclo-
pean view, so black regions indicate regions occluded
in the left image. The Cox agorithm does a reason-

ably good job at finding the major occlusion regions,
although many rather large, spuriousocclusionregions
are proposed.

When the algorithm generates errors, the errors are
more likely to propagate over adjacent lines, since
inter-and intra-scanline consistency are used[ 14]. To
be able to find the numerous occlusions, the Cox algo-
rithmrequiresarelatively low occlusion cost, resulting
in false occlusions. Our higher occlusion cost and use
of GCPsfindsthe major occlusion regionscleanly. For
example, theman’shead isclearly recovered by our ap-
proach. The agorithm did not recover the occlusion
created by theman’sleg aswell ashoped sinceit found
no good control points on the bland wall between the
legs. The wall behind the man was picked up well by
our algorithm, and the structure of the people in the
scene isquite good. Most importantly, we did not use
any smoothness or inter- and intra-scanline consisten-
cies to generate these results.

We should note that our a gorithm does not perform
as well on images that only have short match regions
interspersed with many disparity jumps. In such im-
agery our conservative method for sel ecting GCPsfails
to provide enough constraint to recover the proper sur-
face. However, the results on the birch imagery illus-
trate that in real imagery with many occlusion jumps,
thereare likely to be enough stableregionsto drivethe
computation.

7. Edges in the DSI

Figure 13 displays the DS1} for a scanline from the
man and kids stereo pair in Figure 12; this particular
scanline runs through the man’s chest. Both vertica
and diagonal striationsarevisibleinthe DS| datastruc-
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Fig. 11. (&) The"birch" stereo image pair, which is a part of the J SCT stereo test set[ 9], (b) Results of our stereo algorithm without using
GCPs, and (c) Results of of our algorithm with GCPs.
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Fig. 12. Results of two stereo algorithms on Figure 1. (a) Original left image. (b) Cox et al. algorithm[ 14], and (c) the algorithm described
in this paper.

/1.

7y // I

-
L

Fig. 13. A subtraction DSIL for the imagery of Figure 12, where 7 is a scanline through the man's chest. Notice the diagonal and vertical
striationsthat forminthe DST f dueto the intensity changesin the image pair. These edge-lines appear at the edges of occlusion regions.
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Fig. 14. (a) A cropped, subtraction DST lL . (b) Thelines correspondingto the line-like striationsin (a). (c) The recovered path. (d) The path
and the image from (b) overlayed. The paths along occlusions correspond to the paths along lines.

ations correspond to large changes in intensity in I*
and the diagonal striations correspond to changes in
I®. Since the interior regions of objects tend to have
less intensity variation than the edges, the subtraction
of an interior region of onelinefrom an intensity edge
of the other tends to leave the edge structure in tact.
The persistence of the edge traces alinear structurein
theDSl. Werefer tothelinesinthe DSl as*edge-lines.”

As mentioned in the introduction, occlusion bound-
aries tend to induce discontinuitiesin image intensity,
resulting in intensity edges. Recdl that an occlusion
is represented in the DS by the stereo solution path
containing either a diagond or vertical jump. When
an occlusion edge coincides with an intensity edge,
then the occlusion gap in the DS stereo solution will
coincide with the DS edge-line defined by the corre-
sponding intensity edge. Figures 14a and 14b show a
DSl and the “edge-lines’ image corresponding to the
line-like striations. Figure 14c displays the solution
recovered for that scanline, and Figure 14d shows the
recovered solution overlayed on thelinesimage. The
vertical and diagonal occlusionsinthe DS travel along
lines appearing in the DSI edge-lineimage.

In the next section we develop a technique for in-
corporating these linesinto the dynamic programming

solution devel oped in the previous section. Thegoa is
to bias the solution so that nearly al major occlusions
proposed will have a corresponding intensity edge.

Before our stereo algorithm can exploit edge infor-
mation, we must first detect the DS| edge-lines. Line
detection in the DS| is arelatively simple task since,
in principal, an agorithm can search for diagonal and
vertical lines only. For our initial experiments, we
implemented such an edge finder. However, the com-
putational inefficiencies of finding edgesin theDSI for
every scan lineled usto seek aone pass edge detection
algorithm that would approximate the explicit search
for linesin every DSI.

Our heuristicisto useastandard edge-finding proce-
dure on each image of the original image pair and use
the recovered edges to generate an edge-lines image
for each DSI. We have used a simplified Canny edge
detector to find possible edges in the left and right
image{ 10] and combined the vertical components of
those edges to recover the edge-lines.

The use of a standard edge operator introduces a
congtraint into the stereo solution that we purpose-
fully excluded until now: inter-scanline consistency.
Because any spatia operator will tend to find coher-
ent edges, the result of processing one scanline will
no longer be independent of its neighboring scanlines.
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However, since the inter-scanline consistency is only
encouraged with respect to edges and occlusion, we
are willing to include this bias in return for the com-
putationally efficiency of single pass edge detection.

8. Using Edges with the DSI Approach

Our god is to incorporate the DSI edge information
into the dynamic programming solution in such away
as to 1) correctly bias the solution to propose occlu-
sions at intensity edges; 2) not violate the occlusion
ordering constraints developed previoudly; and 3) not
significantly increase the computational cost of the
path-finding algorithm.

As shown, occlusion segments of the solution path
paths through the DS usualy occur along edge-lines
of the DSI. Therefore, a simple and effective strategy
for improving our occlusion finding a gorithm that sat-
isfies our three criteria above is to reduce the cost of
an occlusion aong paths in the DSI corresponding to
the edge-lines.

Figure 15 illustrates this cost reduction. Assume
that a GCP or aregion of good matchesisfound on ei-
ther side of an occlusion jump. Edge-linesin the DSI,
corresponding to intensity edges in the scanlines, are
shown in the diagram as dotted lines. The light solid
lines show some possi blepaths consi stent with the bor-
der boundary constraints. If the cost of an occlusionis
significantly reduced along edge-lines, however, then
the path indicated by the dark solidlineis least expen-
sive, and that path will place the occlusion region in
the correct location.

By reducing the cost along thelines, weimprove oc-
clusion recovery without adding any additional com-
putational cost to our agorithm other than a pre-
processing computation of edges in the original image
pair. Matching is till driven by pixel databut isinflu-
enced, where most appropriate, by edge information.
And, ground control points prevent non-occlusion in-
tensity edges from generating spurious occlusions in
the least cost solution. The only remaining issue is
how to reduce the occlusion cost aong the edge-lines.
The fact that the GCPs prevent the system from gen-
erating wildly implausible solution gives us additional
freedom in adjusting the cost.

8.1.  Zero cost for occlusion at edges: degenerate
case

A simplemethod for lowering the occlusion cost along
edge-lines would be simply to reduce the occlusion
pixel cost if the pixd sits on either a vertica or di-
agona edge-line. Clearly, reducing the cost by any
amount will encourage proposing occlusions that co-
incide with intensity edges. However, unless the cost
of occlusion along some lineisfree, there isa chance
that somewhere aong the occlusion path a stray false,
but good, match will break the occlusion region. In
Figure 15, the proposed path will more closely hug the
dotted diagonal line, but still might wiggle between oc-
clusion state to match state depending upon the data.
More importantly, simply reducing the occlusion cost
in this manner re-introduces a sensitivity to the value
of that cost; the goal of the GCPs was the elimination
of that sensitivity.

If the dotted path in Figure 15 were free, however,
spurious good matches would not affect the recov-
ered occlusion region. An agorithm can be defined
in which any vertical or diagona occlusion jump cor-
responding to an edge-line has zero cost. Thismethod
would certainly encourage occlusions to be proposed
along thelines.

Unfortunately, thismethod isadegenerate case. The
DP agorithm will find a solution that maximizes the
number of occlusion jumpsthrough the DSI and mini-
mizes the number of matches, regardless of how good
the matches may be. Figure 16aillustrateshow azero
cost for both vertica and diagona occlusion jumps
leadsto nearly no matches begin proposed. Figure 16b
shows that this degenerate case does correspond to a
potentialy real camera and object configuration. The
algorithm has proposed a feasible solution. The prob-
lem, however, is that the algorithm is ignoring huge
amounts of well-matched data by proposing occlusion
everywhere,

8.2.  Focusing on occlusion regions

In the previous section we demonstrated that one can-
not allow the traversal of both diagona and vertical
lines in the DSI to be cost free. Also, a compromise
of simply lowering the occlusion cost a ong both types
of edges re-introduces dependencies on that cost. Be-
causeone of thegoal sof our approach istherecovery of
the occlusion regions, we choose to make the diagonal
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Fig. 15. Thisfigureillustrates how reducing the cost along lines that appear in the lines DSI (represented here by dotted lines) can improve
occlusion recovery. Given the data between the two GCPs is noisy, the thin solid lines represent possible paths the algorithm might choose. If
the cost to propose an occlusion has been reduced, however, the emphasized path will most likely be chosen. That path will locate the occlusion

region cleanly with start and end pointsin the correct locations.
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Fig. 16. (a) When the occlusion cost along both vertical and diagonal edge-linesis set to zero, the recovered path will maximize the number
of proposed occlusions and minimize the number of matches. Although real solutions of this nature do exist, an exampleof whichis shownin
(b), making both vertical and diagonal occlusion costs free generatesthese solutions even when enough matching data exists to support a more

likely result.

occlusion segments free, while the vertical segments
maintai nthenormal occlusion pixel cost. The expected
result isthat the occlusion regions correspondingto the
diagonal gaps in the DS| should be nicely delinested
while the occlusion edges (the vertical jumps) are not
changed. Furthermore, we expect no increased sensi-
tivity to the occlusion cost.®

Figure 17a shows a synthetic stereo pair from the
JISCT test set[ 9] of some trees and rocks in afield.
Figure 17b shows the occlusion regions recovered by
our agorithm when line information and GCP infor-
mation isnot used, comparabl e to previous approaches
(e.g. [ 14]). The black occlusion regions around the
trees and rocks are usualy found, but the boundaries
of the regions are not well defined and some major
errors exist. Figure 17c displays the results of using
only GCPs, with no edge information included. The
dramatic improvement again illustrates the power of
the GCP constraint. Figure 17d shows the result when
both GCPs and edges have been used. Though theim-
provement over GCPs aloneis not nearly as dramatic,

the solutionisbetter. For example, the streaking at the
left edge of the crown of the rightmost tree has been
reduced. In general, the occlusion regions have been
recovered almost perfectly, with little or no streaking
or false matches within them. Although the overal
effect of using the edgesissmall, it isimportant in that
it biases the occlusion discontinuities to be proposed
in exactly theright place.

9. Conclusion
9.1. Summary

We have presented a stereo agorithm that incorpo-
rates the detection of occlusion regions directly into
the matching process, yet does not use smoothness or
intra- or inter-scanline consistency criteria. Employ-
ing a dynamic programming solution that obeys the
occlusion and ordering constraints to find a best path
through the disparity space image, we eiminate sensi-
tivity to the occlusion cost by the use of ground con-



18 22

(b)

Fig. 17. (a) Synthetic trees left image, (b) occlusion result without GCPs or edge-lines, (c) occlusion result with GCPs only, and (d) result

with GCPs and edge-lines.

trol points (GCPs)— high confidence matches. These
points improve results, reduce complexity, and mini-
mize dependence on occlusion cost without arbitrarily
restricting the recovered solution. Finaly, we extend
the technique to exploit the relationship between oc-
clusion jumps and intensity edges. Our method is to
reduce the cost of proposed occlusion edges that coin-
cide with intensity edges. The result is an agorithm
that extractslarge occlusionregionsaccurately without
requiring external smoothness criteria

9.2.  Relation to psychophysics

As mentioned at the outset, there is considerable psy-
chophysical evidence that occlusion regions figure
somewhat prominently in the human perception of
depth from stereo (eg. [ 27, 24]). And, it has be-

come common (e.g. [ 18]) to cite such evidence in
support of computational theories of stereo matching
that explicitly model occlusion.

However, for the approach we have presented here
we beieve such reference would be a bit disingenu-
ous. Dynamic programming is a powerful tool for a
seriad machine attacking alocally decided, globa op-
timization problem. But given the massively paralel
computations performed by the human vision system,
it seems unlikely that such an approach is particularly
relevant to understanding human capabilities.

However, we note that the two novel ideas of this
paper — the use of ground control pointsto drive the
stereo solution in the presence of occlusion, and the
integration of intensity edges into the recovery of oc-
clusion regions — are of interest to those considering
human vision.



One way of interpreting ground control pointsis as
unambiguous matches that drive the resulting solution
such that points whose matches are more ambiguous
will be correctly mapped. The agorithm presented
in this paper has been constructed so that relatively
few GCPs (one per surface plane) are needed to re-
sult in an entirely unambiguous solution. This result
is consistent with the “pulling effect” reported in the
psychophysical literature (e.g. [ 21]) inwhichvery few
unambiguous“bias’ dots(aslittleas 2%) are needed to
pull an ambiguous stereogram to the depth plane of the
unambiguous points. Although several interpretations
of this effect are possible (eg. see [ 1]) we simply
notethat it is consistent with the idea of afew cleanly
matched points driving the solution.

Second, there has been recent work [ 1] demon-
strating the importance of edges in the perception of
occlusion. Besides providing some wonderful demon-
strationsof theimpact of intensity edgesin the percep-
tion of occlusion, they aso develop a receptive-field
theory of occlusion detection. Their receptive fields
requireavertical decorrelation edge where ononeside
of the edge theimages are correl ated (matched), while
on the other they are not. Furthermore, they find ev-
idence that the strength the edge directly affects the
stability of the perception of occlusion. Though the
mechanism they propose is quite different than those
discussed here, thisisthefirst strong evidence we have
seen supporting the importance of edges in the per-
ception of occlusion. Our interpretation is that the
human visua system is exploiting the occlusion edge
constraint developed here: occlusion edgesusually fall
along intensity edges.

9.3.  Open questions

Finally we mention a few open questions that should
be addressed if thework presented hereisto be further
developed or applied. The first involves the recovery
of the GCPs. As indicated, having a well distributed
set of control points mostly eliminates the sensitivity
of the algorithm to the occlusion cost, and reduces the
computational complexity of the dense match. Our
initial experiments using a robust estimator similar to
[ 19] have been successful, but we fed that a robust
estimator explicitly designed to provide GCPs could
be more effective.

Second, we are not satisfied with the awkward man-
ner in which lattice matching techniques — no sub-
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pixel matches and every pixd is either matched or oc-
cluded — handle sloping regions. While a staircase of
matched and occluded pixelsis to be expected (math-
ematically) whenever a surface is not parald to the
image plane, its presence reflects the inability of the
lattice to match aregion of oneimage to a differently-
sized region in the other. [ 7] suggests using super
resolution to achieve sub-pixel matches. While this
approach will alow for smoother changes in depth,
and should help with matching by reducing aliasing, it
doesnot really addresstheissueof non-constant di spar-
ity. Aswe suggested here, one could apply an iterative
warping technique as in [ 26], but the computational
cost may be excessive.

Finaly, there isthe problem of order constraint vio-
lations as in some of the birch tree examples. Because
of the dynamic programming formulation we use, we
cannot incorporate these exceptions, except perhapsin
a post hoc analysis that notices that sharp occluding
surfaces actually match. Because our main emphasis
is on demonstrating the eff ectiveness of GCPswe have
not energetically explored this problem.
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Notes

1. Typical set up is two CCD cameras, with 12mm focal length
lenses, separated by a baseline of about 30cm.

2. Belhumeur and Mumford [ 7] refer to these regions as “half-
occlusion” areas as they are occluded from only one eye. How-
ever, since regions occluded from both eyes don’t appear in any
image, we find the distinction unnecessary here and use “oc-
cluded region” to refer to pixelsvisiblein only one eye.

3. For example, given a 256 pixel-wide scan-line with a maximum
disparity shift of 45 pixelsthere are 3e+191 possiblelegal paths.

4. For a subtraction DS, we are assigning a cost of the absolute
imageintensity differences. Clearly squared values, or any other
probabilistically motivated error measure (e.g. [ 17, 18]) could
be substituted. Our experimentshave not shown great sensitivity
to the particular measure chosen.
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5.

29

There is a problem of semantics when considering sloping re-
gionsin alattice-based matching approach. Asis apparent from
the state diagram in Figure 5 the only depth profile that can be
represented without occlusion is constant disparity. Therefore a
continuous surface which is not fronto-parallel with respect to
the camera will be represented by a staircase of constant dis-
parity regions interspersed with occlusion pixels, even though
there are no “occluded” pixelsin the ordinary sense. In [ 18]
they refer to these occlusionsas|attice-induced, and recommend
using sub-pixel resolution to finesse the problem. An aternative
would be to use an iterative warping technique as first proposed
in[ 26].

Actualy, it only has to be greater than half the typical value of
thecorrect matches. Thisisbecauseeach diagonal pixel jumping
forward must have a corresponding vertical jump back to end up
at the same GCP.

The exact value of ¢, depends upon the range of intensities in
animage. For a256 grey level imageweusec, = 12. Thegoa
of the GCPs isinsensitivity to the exact value of this parameter.
In our experiments we can vary ¢, by afactor of ailmost three
before seeing any variation in results.

In fact the birch tree exampleis a highly pathological case be-
cause of the unbalanced dynamic range of the two images. For
examplewhile 23% of the pixelsin the left image have an inten-
sity value of 0 or 255, only 6% of the pixelsin the right image
weresimilarly clipped. Such extremeclipping limited the ability
of the GCP finder to find unambiguousmatchesin theseregions.
Theadlternative choiceof makingthevertical ssgmentsfree might
be desired in the case of extensive limb edges. Assume the
system is viewing a sharply rounded surface (e.g. a telephone
pole) in front of some other surface, and consider the image
from the left eye. Interior to left edge of the pole as seen in
the left eye are some pole pixels that are not viewed by the
right eye. From a stereo matching perspective, these pixels are
identical to the other occlusion pixels visible in the left but not
right eyes. However, the edgeis in the wrong place if focusing
onthe occlusion regions, e.g. the diagonal disparity jumpsin the
left image for the left side of the pole. In theright eye, the edge
is at the correct place and could be used to bias the occlusion
recovery. Using the right eye to establish the edges for a left
occlusion region (visible only in the |eft eye) and visaversa, is
accomplished by biasing the vertical lines in the DSI. Because
we do not have imagery with significant limb boundaries we
have not experimented with this choice of bias.
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