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ABSTRACT

The application of a new technique for sound-scene analysis to
the segmentation of complex musical signals is presented.  This
technique operates by discovering common modulation behavior
among groups of frequency subbands in the autocorrelogram do-
main.  The algorithm can be demonstrated to locate perceptual
events in time and frequency when it is executed on ecological
music examples taken directly from compact disc recordings.  It
operates within a strict probabilistic framework, which makes it
convenient to incorporate into a larger signal-understanding test-
bed.   Only within-channel dynamic signal behavior is used to
locate events; therefore, the model stands as a theoretical alterna-
tive to methods that use pitch as their primary grouping cue. This
segmentation algorithm is one processing element to be included
in the construction of music perception systems that understand
sound without attempting to separate it into components.

1. INTRODUCTION

When human listeners are presented with musical signals, they
automatically and naturally begin to hear them as collections of
auditory objects.  The primitive features of each object, and sim-
ple relationships amongst the objects, determine the overall sur-
face features of the music.  From the surface features of the mu-
sic, the listener is able to make immediate judgments, such as
determining the tempo, genre, composer, performer, style, com-
plexity, and degree of polyphony in the music.  There is prelimi-
nary evidence that surface information is also adequate for de-
coding the emotive intent of the performer or composer [1].

While there are some similarities between the auditory segmenta-
tion process and attempts to build systems for polyphonic pitch-
tracking or automatic transcription, these processes are not iden-
tical.  In particular, while transcription systems typically founder
on the task of segregating “notes,” especially when the notes  bear
a harmonic relationship to each other, there is no evidence that
the human auditory system actually performs segregation to such
a fine degree [2].  Rather, musical segmentation in the general
case is performed only coarsely, and many times “notes” are left
grouped together in perception.  We often perceive chords holis-
tically rather than analytically.  Bregman [3, pp. 459-460] terms
the percept of many-grouped-notes a chimerical auditory object.

The construction of systems that can model the surface-analysis
process of music is an interesting problem in two domains.  Such
an effort may be treated as a scientific inquiry; there is little
known about the perception of complex sound scenes such as
those found in music, and efforts to build better models will fur-
ther our understanding of the hearing process in general.  It may
also be taken as an engineering inquiry; it has been argued [4]
that building models of musical hearing is the best way to ap-
proach the construction of music-analysis and music-retrieval
systems.

The present paper discusses a new technique for analyzing the
autocorrelogram sound-periodicity representation, and the appli-
cation of this technique to the analysis of musical signals.  By
calculating the cross-channel comodulation behavior of the auto-
correlogram, a complex musical signal may be partitioned into
perceptual segments suitable for feature analysis.  The comodula-
tion technique operates at a primitive, prefeature signal level, and
is thus a theoretical alternative to models that use pitch as a cue
for perceptual grouping.  This approach may be considered as a
step towards the construction of music-understanding systems.

2. APPROACH

It is not the goal of this research to perform “signal separation” in
the sense of producing multiple, cleanly synthesized output sig-
nals from a given musical scene.  Rather, the goal is modeled
after the ability of the human listener: to perform understanding
without separation in the musical domain.  The difference be-
tween the goal represented here and the goal represented by most
previous research into computational auditory-scene analysis
(CASA) systems is represented schematically in Figure 1.

In a traditional CASA system, the goal of sound-processing is to
extract multiple “component” sounds from a mixture.  The output
sounds can then be analyzed independently to compute their fea-
tures.  The sounds that are the output should be the same in some
perceptually important way as the sounds that acted as compo-
nents of the mixture.  A primary motivating factor for this ap-
proach is its potential application to automated speech recogni-
tion (ASR).  ASR systems today perform passably well on clean
speech without interference; this makes it attractive to imagine
“cleaning up” signals so that they can be used as input to un-
modified ASR systems.



Figure 1: Different models for computational auditory
scene analysis.  In (a), a sound separation system analyzes
a sound mixture to discover the sounds that comprise it.
In (b), a sound understanding system analyzes a sound
mixture to discover the features of the sounds that com-
prise it.

In contrast, the approach embodied by the present research is to
robustly extract features from complex scenes that are the same as
the features of the component sounds.  It is apparent that this task
is easier, since less time must be spent on achieving high-quality
synthesis of output sounds, and that it is more similar to the hu-
man hearing process, since human listeners do not maintain mul-
tiple independent time-domain signals as an intermediate repre-
sentation of complex signals.

The advantage of the understanding-without-separation approach
is most apparent in the case when one component signal destroys
information in another through masking or cancellation.  In a
sound-separation system, it is very difficult to deal with this
situation properly, since the obliterated sound must be invented
wholesale from models or a priori assumptions.  In an separa-
tionless approach, the required action is one of making feature
judgments from partial evidence, a problem that is treated fre-
quently in the pattern recognition and artificial intelligence lit-
erature.  Rather than having to invent a answer, the system can
delay decision-making, work probabilistically, or otherwise avoid
the problematic situation until a solution presents itself.

The major difficulty of this approach is evaluating the behavior of
systems that embody it.  When the goal of a system is to extract
clean-sounding independent components, it is easy to listen to the
outputs to see if the system is doing the right thing.  When the
goal is to extract perceptual features, for which there may or may
not be any ground truth to be measured from the signal, it is nec-
essary to continually compare the behavior of the system with
that of human listeners.  Although results of human listening ex-
periments will not be presented here, comparison with human
judgments is an essential part of evaluating the performance of
any purportedly perceptual computing system.

3. PROCESSING

A sound-analysis system is being developed to explore new tech-
niques of musical signal processing and to refine the understand-
ing-without-separation paradigm.  This section describes the op-
eration of the system; due to space restrictions, the description is
necessarily very concise.

The core representation in this system is the log-lag autocorre-
logram [5].  The autocorrelogram is the volumetric function
mapping time, cochlear channel, and lag to the amount of peri-
odic energy in a signal at that point in time, frequency, and perio-

dicity.  The autocorrelogram and similar models of subband pe-
riodicity [6-8] are similar to the Licklider [9] “duplex” model of
pitch perception. This is now the preferred model of early audi-
tory processing due to the accuracy with which it explains the
available experimental data on pitch perception.  Ellis [5] sug-
gested logarithmic scaling of the lag axis on the basis of main-
taining similarity to pitch perception, this variant also presents
additional advantages that will become clear below.

Several techniques have been proposed for the analysis of simul-
taneous sounds in periodicity representations.  Many of them [5,
8, 10] use pitch as a cue for grouping, typically in a residual-
driven approach: the dominant pitch of the mixture is calculated,
a signal with this pitch is subtracted, the dominant pitch of the
remaining material is calculated, and so forth.

3.1. Amplitude and period modulation

Rather than follow a pitch-driven approach, the present system
follows a qualitative observation regarding the correlogram that
was first reported by Duda et al. [11].  When the correlogram is
viewed as a movie, showing one “frame” of lag × frequency data
after another, cochlear channels that correspond to the same
auditory object can be seen to undergo coherent visual motion.
The coherent motion appears either as amplitude modulation, in
which several channels all get louder and softer together, or as
period modulation, in which the autocorrelation functions of sev-
eral channels all are stretched and squashed at the same rate.

Period modulation is not the same as frequency modulation, since
the former is a within-channel feature and the latter is an across-
channel feature.  Frequency modulations in signals give rise to
period modulations in the correlogram; as the frequency domi-
nating a particular cochlear channel changes, the periodic rate of
modulation of the channel output changes correspondingly.  This
leads to a fairly strong hypothesis, which could be tested empiri-
cally, about the perception of frequency modulation: frequency
modulation is only detected and incorporated into perceptual
processing to the extent that it has within-band period and am-
plitude modulation effects.

An in-depth report of a processing model that can measure the
dynamic behavior of the autocorrelogram has been recently pre-
sented [12].  In brief, the amplitude modulation for each channel
is calculated by comparing the output power in that channel over
one time interval to the output power over the next.  The period
modulation for each channel is calculated by finding the peak
cross-correlation between the autocorrelation function at one
point in time and the autocorrelation function at the next. The
cross-correlation technique for estimating period modulation
works because of the use of the log-lag autocorrelogram. When
the lag axis is calculated with logarithmic spacing,  the stretch-
squash behavior of period modulation is represented as simple
shifts of the channel to the left or right.

The complete report of this method shows its detailed operation
on a sound that is perceptually segregated due to common-
frequency-modulation cues (the “McAdams oboe”). The period-
modulation-estimation method for analyzing the correlogram is
similar in some ways to the method presented by Mellinger [13],
for grouping “partials” based on their frequency-modulation be-
havior.  It is different in important aspects, however; notably, the
Mellinger technique is a cross-channel integration technique,
while the period-modulation analysis is a within-channel tech-
nique.  Also, the system presented here is not based on “partials”
or other primitive objects.
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3.2. Dynamic clustering

The two primitive “prefeatures” (amplitude and period modula-
tion) are presented to an untrained dynamic clustering framework,
which groups together channels to form object masks that may be
applied to the cochleagram or autocorrelogram.   The dynamic
clustering operates in two stages: an instantaneous estimation of
cluster density, followed by a Viterbi procedure that analyzes the
dynamic changes in group membership of the cochlear channels.

The cluster density process operates on a frame-by-frame basis,
by using the EM algorithm [14] to estimate the parameters of a
Gaussian mixture model [15].  In each frame, the two prefeatures
span a two-dimensional feature space within which each cochlear
channel is a point (since an ordered pair—the two prefeatures—is
calculated for each channel).  The Gaussian mixture model de-
termines a probability density function around centers of common
modulation in this feature space and the a posteriori likelihood
that each channel is a member of each cluster. Currently, the
number of clusters is set intuitively, but this could be extended to
include a more principled approach in the future.

The Viterbi procedure computes maximum-likelihood paths for
each channel, using the posterior grouping probabilities calcu-
lated in the clustering step and ad hoc prior probabilities for the
movement of channels from object to object.  This procedure it-
self is divided into two stages.  In the first stage, the association
of clusters with objects is computed.  This stage is necessary
since the EM procedure does not produce any correspondence
from frame to frame concerning which cluster is labeled “Cluster
#1.” The Viterbi algorithm [15] is used to compute the maxi-
mum-likelihood path of cluster-to-object associations under the
assumption that every channel stays in the same group from time-
step to time-step.  The result of this looks something like “at time
1, object A is cluster 1 and object B is cluster 2, while at time 2,
object A is cluster 2 and object B is cluster 1”.  In the second
stage, given the associations computed in the first stage, the
Viterbi algorithm is used again to compute the maximum-
likelihood membership of each cochlear channel at each time.

The final result of this processing is a membership function F(n,t)
that maps from a cochlear channel n and a time step t to the iden-
tity of the object to which that channel belongs to at that time.
This is an exclusive allocation (to use the term of Bregman [3])
model in which each cochlear channel belongs only to one object
at a time.  The set of time/frequency points Mk for object k

Mk = { (n,t) : F(n,t) = k }

may be taken as a mask that can be used to select a particular re-
gion of the time-frequency space for analysis.

Each object, according to the corresponding mask, may be ana-
lyzed for features directly from the masked data.  No attempt is
made to “clean up” the masks for resynthesis; any cleanup neces-
sary for perceptually modeling should be applied in the feature-
estimation process.  The masks, as shown in the next section, are
not intended to separate the sounds such that there is no leakage
from one object into another.  If they must be given an acoustic
interpretation at all, they could be considered as enhancing one
part of the signal relative to another.  Within the present ap-
proach, it is preferred simply to consider them as the “places to
look” in the signal to estimate features.

4. EXAMPLES

This section graphically presents results produced by the seg-
mentation algorithm.  The sound examples used, along with a
variety of similar images, can be found on the author’s WWW
page at <http://sound.media.mit.edu/~eds>.  An appro-
priate evaluation of these results has not yet been undertaken,
since it involves a fair amount of work with human subjects to
determine if the grouping results presented here are in accord
with the perceptions of listeners.  These results only serve to
demonstrate the sort of scene partitioning that is currently
achieved by the system.  The plots should not be interpreted as an
attempt to convince the reader that the system “works.”

Figure 2 shows three different musical excerpts automatically
converted into object masks.  Each of the excerpts is an “ecologi-
cal” music signal sampled directly from radio tuner input at 22
kHz sampling rate.  Simply by inspecting the features of the ob-
ject masks, we can correctly interpret many aspects of the musical
signals: the first is the most complex, the second has sporadic
broadband energy (snare drum hits), and so forth.  However, it is
also apparent that the sequential grouping of the algorithm is
rather poor.  This is highlighted more clearly in Figure 3.

Figure 2: Object masks for three different musical excerpts.  Top,
a rock example, partitioned into three objects; middle, a jazz pi-
ano trio, partitioned into four objects, and bottom, a Mozart sym-
phony, partitioned into three objects.  The “background” is one of
the objects in each case.  Each color corresponds to one object
mask – that is, the algorithm asserts that all the black-colored
time-frequency cells belong together in one object, all the dark
gray cells in another, and so on.  When these masks are inspected
in comparison to the sound of the acoustic signals, it is apparent
that many of the perceptual objects have been located.
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Figure 3: Object #2 from the middle (jazz) example
above.  It is seen (through hand-analysis) that many of the
individual time segments correspond to individual per-
ceptual objects; however, objects from different sources
have been grouped together.  (a) is a cymbal sound; (b)
and (e) are piano chords; (c) is a bass note; and (d) is a
run of piano notes.

It is unsurprising that the sequential grouping behavior is not ac-
curate, since the method presented has essentially no way to make
these judgments.  Inclusion of the sort of feature-extraction capa-
bilities necessary to correctly perform sequential integration is
one of the tasks for future research.

Although only three examples have been presented here, validat-
ing the performance of music-signal-processing systems requires
continuing attention to a variety of input signals.  It is insufficient
to claim good performance based on a few carefully-chosen tests
– a convincing argument must be produced that the technique
functions for all signals in the domain under investigation.  This
is an continuing goal of the present research project.

5. FUTURE WORK

There is a great deal more work that must be undertaken in order
to demonstrate a robust understanding-without-separation system.
It is to be emphasized that the present paper is only one compo-
nent of a large project still in progress.  Fundamental questions
remain to be addressed with regard to both the engineering as-
pects of the system, and the further evaluation of the system as a
model for the hearing process.

From an engineering perspective, immediate work is focused on
improving sequential-integration aspects of the system.  This will
take two forms.  This first is the construction of an improved
model for associating the clusters in the prefeature space to audi-
tory objects.  This will include a “birth/death” model of dynamic
changes to the number of clusters.  Second, more attention to the
features of auditory objects in this framework will lead to better
models for knowing when two objects in the scene should be se-
quentially connected together.  Top-down information may also
play a role in this stage.

From a scientific perspective, it is a natural step to examine the
application of this grouping model to the known data on fre-
quency modulation detection, frequency-modulation based segre-
gation, comodulation release from masking, and related phenom-
ena.  If the model could be used to concisely explain these data
and make new testable predictions, then it could be viewed as a
contribution toward a better model of the hearing process.
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