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Abstract

The theory of the 2-D Wold decomposition of
homogeneous random fields is effective in tm-
age and video analysis, synthesis, and model-
ing. However, a robust and computationally ef-
ficient decomposition algorithm is needed for use
of the theory in practical applications. This pa-
per presents a spectral 2-D Wold decomposition
algorithm for homogeneous and near homoge-
neous random fields. The algorithm relies on
the intrinsic fundamental-harmonic relationship
among Fourier spectral peaks to identify har-
monic frequencies, and uses a Hough transfor-
mation to detect spectral evanescent components.
A local vartance based procedure is developed to
determine the spectral peak support. Compared
to the two other existing methods for Wold de-
compositions, global thresholding and maximum-
likelthood parameter estimation, this algorithm is
more robust and flexible for the large variety of
natural images, as well as computationally more
efficient than the mazimum-likelthood method.

1 Introduction

Characterizing the relatively homogeneous texture regions
in image and video data has always been an important
research area, with applications ranging from segmenta-
tion and coding to pattern matching and recognition. In
new applications such as content-based access of digital li-
braries, texture is one of the most commonly used low-level
features.

A textured image region can often be regarded as
a homogeneous (stationary) random field. The two-
dimensional (2-D) Wold-like decomposition theory for ho-
mogeneous random fields has previously been introduced
to texture analysis and synthesis in still images [1] and
to periodic motion detection and segmentation in video
[2]. The 2-D Wold theory allows an image pattern to be
decomposed into three mutually orthogonal components.
The perceptual characteristics of these components can
be described as “periodicity”, “directionality”, and “ran-
dommness”, agreeing closely with the dimensions of human
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texture perception identified in [3]. Tt was shown in [4],
compared to other state-of-the-art texture models, Wold-
based modeling offers perceptually more satisfying results
in image database retrieval. Furthermore, demonstrated
recently via a human study [5], the Wold component en-
ergy provides a good computational measure for the top
dimension of human texture perception, the dimension of
repetitiveness vs. randomness.

A main challenge in Wold-based image modeling is to
develop an efficient and robust 2-D Wold decomposition al-
gorithm. To date, the algorithms reported are either com-
putationally prohibitive for practical applications or not
robust enough to handle the large variety of natural im-
ages. This paper presents a new decomposition algorithm
that is computationally efficient and robust for natural im-
age data.

2 2-D Wold Decomposition

Consider a homogeneous and regular random field
{y(m,n)}, (m,n) € Z2. The 2-D Wold decomposition
allows the field to be decomposed into two mutually or-
thogonal components [6]:

y(m,n) = v(m,n) + w(m,n). (1)

where {v(m,n)} is deterministic and {w(m,n)} is inde-
terministic. The deterministic component can be further
decomposed into the mutually orthogonal harmonic com-
ponent {h(m,n)} and evanescent component {g(m, n)}:

v(m,n) = h(m,n)+ g(m,n). (2)

In the frequency domain, the spectral distribution function
(SDF) of {y(m,n)} can be uniquely represented by the
SDF’s of its component fields:

Fy(fﬂ?) :Fv(f,n)+Fw(f,77), (3)
where F\,(€,n) = Fr(&, )+ F4(€,n), and functions Fp (¢, n)

and Fy(&,n) correspond to spectral singularities supported
by point-like and line-like regions, respectively. Examples
of natural textures containing different prominent Wold
components are shown in Figure 1.

3 Previous Work

Two decomposition methods have been proposed in the
literature [7] [1]. The first is a maximum-likelihood direct
parameter estimation procedure, which provides paramet-
ric descriptions of image Wold components. Its developers
reported that the algorithm can be computationally ex-
pensive, especially when the number of spectral peaks is



(a) (b) (c)
Figure 1: Examples of natural textures with different
prominent Wold components. Top row: originals. Bottom
row: Fourier magnitudes. (a) Sweater, with a strong har-
monic component (spectral peaks supported by point-like
regions). (b) Brodatz texture D78, with a strong evanes-
cent component (spectral peaks supported by line-like re-
gions). (c) Brodatz texture D32, with mostly an indeter-
ministic component (relatively smooth spectrum).

large or the energy in the spectral peaks is not very high
compared to that in the neighboring Fourier frequencies
[7]. Unfortunately, these situations often arise in natural
images. The second method is a spectral decomposition
procedure [1]. Tt applies a global threshold to the image
periodogram, and the Fourier frequencies with magnitude
values larger than the threshold are considered to be the
harmonic or the evanescent components. Although this
method is computationally efficient, it is not robust enough
for the large variety of natural texture patterns. As shown
in Figure 2, the support region of a harmonic peak in a
natural texture periodogram is usually not a point, but a
small spread surrounding the central frequency. Therefore,
two issues are essential for a decomposition scheme: locat-
ing the spectral peak central frequencies, and determining
the peak support regions. In the example in Figure 2, the
Brodatz texture [8] D11 has some high frequency spectral
peaks that are only locally large in magnitude. Global
thresholding yields either poor segmentation of the peak
supports as in Figure 2 (c) or inaccurate peak identifica-
tion as in Figure 2 (d). In natural textures, this type of
spectra abounds. Hence, a new algorithm is needed.

4 New Decomposition Algorithm

The new algorithm takes a spectral decomposition ap-
proach. It decomposes an image by extracting its Fourier
spectral peaks supported by point-like and line-like re-
gions. As discussed before, a spectral approach needs to
locate the peak central frequencies as well as to estimate
the peak supports. Hence the new algorithm consists of
four parts: harmonic peak detection, evanescent line de-
tection, peak support estimation, and decomposition.

4.1 Harmonic Peak Detection

The harmonic peaks are detected in the Fourier magnitude
image. The quadrants of the image are rearranged such

(c) (d)
Figure 2: Spectral peak detection of Brodatz texture D11
using global thresholding. (a) Original. (b) Fourier mag-
nitudes. (c) A high threshold gives poor estimates of peak
support. (d) A low threshold gives better peak support
but picks up indeterministic frequencies. See Figure 8 (a)
for results from the new algorithm.

(a) (b)

Figure 3: Fundamental-harmonic relationship among har-
monic peaks. (a) 2-D sine grating and its Fourier mag-
nitudes, having two frequencies. (b) Checkerboard pat-
tern and its Fourier magnitudes, having two fundamentals
(with the same frequencies as in (a)) and a series of har-
monics. Edges in natural patterns usually fall in between
these extreme cases, hence the fundamental-harmonic re-
lationship usually exists.

that the zero frequency is at the center. To reduce the
edge effect, a Gaussian taper can be used when computing
the image Fourier transforms. Since for real images the
magnitude values are symmetric to the zero frequency, only
half of the frequency plane needs to be considered.

As shown previously, spectral peaks can be locally but
not globally large. Hence, local maxima are first found
in the magnitude image using a 5 X 5 neighborhood.
Values below 5% of the entire magnitude range are ig-
nored. To identify the true harmonic peaks from the local
maxima, the intrinsic fundamental-harmonic relationship
among the harmonic peaks is used. This relationship is
illustrated in Figure 3. A local maximum qualifies as a
harmonic peak only when its frequency is either a funda-
mental or a harmonic. A fundamentalis a frequency that
can be used to linearly express the frequencies of some
other local maxima. A harmonicis a frequency that can
be represented as a linear combination of some fundamen-
tals.

Due to the sampling effect of discrete Fourier trans-
forms, the frequency samples may not align to the true
peaks of the continuous spectrum. Small sampling errors



Figure 4: Spectral harmonic peak detection on Brodatz
texture D34 (top row) and D82 (bottom row). Left: orig-
inal. Center: Fourier magnitudes. Right: detected har-
monic peaks.

(d)
Figure 5: Example of spectral evanescent line detection.
(a) Brodatz texture D64. (b) Fourier magnitudes of (a).
(c) Lines found in (b). (d) Hough transform of (b). Lines

in (c) correspond to the six large local maxima in (d).

in the fundamentals can cause misidentification of their
high frequency harmonics. To reduce the sampling effect,
each fundamental frequency value is refined to subsample
precision using the harmonics found at the multiples of the
fundamental, and a tolerance of two sample points in both
row and column directions is used for frequency matching.

Examples of harmonic peak detection are shown in Fig-
ure 4.

4.2 Evanescent Line Detection

The Hough transformation method for line detection [9] is
used to detect the evanescent lines in the Fourier magni-
tude images. Prior to applying the Hough transform, any
large spectral values associated with the harmonic peaks
should be removed. An example of evanescent line detec-
tion is shown in Figure 5, where six lines are found for the
Brodatz texture D64.

Figure 6: Left: spectral harmonic peaks detected in Bro-
datz texture D11. Right: estimated peak support (white)
and the corresponding adjacent (light gray) and ambient
(dark gray) areas after 4 iterations. The original and its
Fourier magnitude image are in Figure 2.
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Figure 7: Fourier magnitude local standard deviation ra-
tios of 13 Brodatz textures in the first 7 iterations.

4.3 Peak Support Estimation

An iterative procedure is used to estimate the spectral
peak support regions in a Fourier magnitude image. The
process is initialized by the detected harmonic peaks and
evanescent lines. Along the lines, frequencies with mag-
nitude values less than 5% of the magnitude range are
omitted. At the beginning of each iteration, a 2-D Gaus-
sian surface is fitted to the magnitude image to coarsely
model the relatively smooth “background”. Based on the
local variance of the fitting residual, new support frequen-
cies are identified and removed, and the magnitude image
becomes “smoother”. This smoothness is measured by the
ratio between the averaged local standard deviations (5 x5
estimation window) in the areas adjacent to the estimated
peak support regions and that in the ambient areas. Fig-
ure 6 illustrates the technique and Figure 7 shows how the
local standard deviation ratio reduces after each iteration.
The iterative process terminates when the change of the
local standard deviation ratio between two iterations is less
than 0.1. Further details of this iterative procedure can be
found in [5].

4.4 Decomposition

The final decomposition of a homogeneous random field is
based on the decomposition of its spectral Wold compo-
nents. Denote the image’s 2-D discrete Fourier transform
(DFT) as Y(k, 1), the corresponding frequency plane as D,
and the set of spectral peak and peak support frequencies
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Figure 8: Decomposition of (a) Brodatz texture D11, (b)
Sweater pattern, and (c) Brodatz texture D78. The orig-
inals and their Fourier magnitudes are in Figure 1 and
Figure 2. Top row: harmonic or evanescent components.
Middle row: indeterministic components. Bottom row:
identified spectral peak frequencies.

identified in the previous stages as D,. The DFT of the
random field can be then decomposed into the determinis-
tic component

Yk, 1), k1) €D,
Vi(k,1) = { 0,( : gklg g p.(kygD, W

and the indeterministic component

Wk, 1 :{ VkD,  (BDED BDED

The deterministic field v(m,n) and the indeterministic
field w(m,n) are obtained by computing the inverse DFT
of VI(k,1) and W (k, 1), respectively. Note that, when nec-
essary, the deterministic component can be further decom-
posed into the harmonic and the evanescent components
in a similar manner.

4.5 Examples

Three decomposition examples are shown in Figure 8. The
originals, shown in Figure 1 and Figure 2, have size 256 x
256. The computing time ranges from 15 to 20 seconds on
a HP9000/735 Workstation.

5 Conclusions

A spectral 2-D Wold decomposition algorithm for ho-
mogeneous and near homogeneous random fields is pre-
sented. This algorithm relies on the intrinsic fundamental-
harmonic relationship among image Fourier spectral peaks

to identify harmonic frequencies, and uses a Hough trans-
formation to detect spectral evanescent components. A
local variance based procedure is developed to determine
the spectral peak support. Compared to the two other ex-
isting Wold decomposition algorithms, the global thresh-
olding and the maximum-likelihood parameter estimation,
this algorithm is more robust and flexible for the large va-
riety of natural images, as well as computationally more
efficient than the maximum-likelihood method.

References
[1] J. M. Francos, A. Zvi Meiri, and B. Porat. A unified

texture model based on a 2-D Wold-like decomposition.
IFEE T. Sig. Proc., pages 2665—2678, August 1993.

[2] F. Liu and R. W. Picard. Finding periodicity in space
and time. In Proc. Int. Conf. on Computer Vision,
pages 376-383, Bombay, India, January 4-7 1998.

[3] A. R. Rao and G. L. Lohse. Towards a texture nam-
ing system: identifying relevant dimensions of texture.
Vision Research, 36(11):1649-1669, 1996.

[4] F. Liu and R. W. Picard. Periodicity, directionality,
and randomness: Wold features for image modeling
and retrieval. IFEE T. Pat. Analy. and Machine Intel.,
18(7):722-733, July 1996.

[5] F. Liu. Modeling Spatial and Temporal Textures. PhD
thesis, Massachusetts Institute of Technology, 1997.

[6] J. M. Francos. Orthogonal decompositions of 2-D ran-
dom fields and their applications in 2-D spectral esti-
mation. In N. K. Bose and C. R. Rao, editors, Signal
Processing and Its Applications, Handbook of Statis-
tics, Vol. 10, pages 207-227. North Holland, 1993.

[7] J. M. Francos, A. Narasimhan, and J. W. Woods. Max-
imum likelihood parameter estimation of discrete ho-
mogeneous random fields with mixed spectral distribu-
tions. IEEE T. Sig. Proc., 44(5):1242-1255, May 1996.

[8] P. Brodatz. Textures: A Photographic Album for
Artists and Designers. Dover, New York, 1966.
[9] R. M. Haralick and L. G. Shapiro. Computer and Robot

Vision, volume 1. Addison-Wesley Publishing Com-
pany, Inc., 1992.



