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Abstract

The theory of the ��D Wold decomposition of

homogeneous random �elds is e�ective in im�
age and video analysis� synthesis� and model�

ing� However� a robust and computationally ef�
�cient decomposition algorithm is needed for use

of the theory in practical applications� This pa�
per presents a spectral ��D Wold decomposition

algorithm for homogeneous and near homoge�
neous random �elds� The algorithm relies on

the intrinsic fundamental�harmonic relationship
among Fourier spectral peaks to identify har�

monic frequencies� and uses a Hough transfor�
mation to detect spectral evanescent components�

A local variance based procedure is developed to
determine the spectral peak support� Compared

to the two other existing methods for Wold de�
compositions� global thresholding and maximum�

likelihood parameter estimation� this algorithm is
more robust and �exible for the large variety of

natural images� as well as computationally more
e�cient than the maximum�likelihood method�

� Introduction

Characterizing the relatively homogeneous texture regions
in image and video data has always been an important
research area� with applications ranging from segmenta�
tion and coding to pattern matching and recognition� In
new applications such as content�based access of digital li�
braries� texture is one of the most commonly used low�level
features�

A textured image region can often be regarded as
a homogeneous �stationary� random �eld� The two�
dimensional ���D� Wold�like decomposition theory for ho�
mogeneous random �elds has previously been introduced
to texture analysis and synthesis in still images �	
 and
to periodic motion detection and segmentation in video
��
� The ��D Wold theory allows an image pattern to be
decomposed into three mutually orthogonal components�
The perceptual characteristics of these components can
be described as �periodicity�� �directionality�� and �ran�
domness�� agreeing closely with the dimensions of human
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texture perception identi�ed in ��
� It was shown in ��
�
compared to other state�of�the�art texture models� Wold�
based modeling o�ers perceptually more satisfying results
in image database retrieval� Furthermore� demonstrated
recently via a human study ��
� the Wold component en�
ergy provides a good computational measure for the top
dimension of human texture perception� the dimension of
repetitiveness vs� randomness�

A main challenge in Wold�based image modeling is to
develop an e�cient and robust ��DWold decomposition al�
gorithm� To date� the algorithms reported are either com�
putationally prohibitive for practical applications or not
robust enough to handle the large variety of natural im�
ages� This paper presents a new decomposition algorithm
that is computationally e�cient and robust for natural im�
age data�

� ��D Wold Decomposition

Consider a homogeneous and regular random �eld
fy�m�n�g� �m�n� � Z�� The ��D Wold decomposition
allows the �eld to be decomposed into two mutually or�
thogonal components ��
�

y�m�n� � v�m�n� �w�m�n�� �	�

where fv�m�n�g is deterministic and fw�m�n�g is inde�
terministic� The deterministic component can be further
decomposed into the mutually orthogonal harmonic com�
ponent fh�m�n�g and evanescent component fg�m� n�g�

v�m�n� � h�m�n� � g�m�n�� ���

In the frequency domain� the spectral distribution function
�SDF� of fy�m�n�g can be uniquely represented by the
SDF�s of its component �elds�

Fy��� �� � Fv��� �� � Fw��� ��� ���

where Fv��� �� � Fh��� ���Fg��� ��� and functions Fh��� ��
and Fg��� �� correspond to spectral singularities supported
by point�like and line�like regions� respectively� Examples
of natural textures containing di�erent prominent Wold
components are shown in Figure 	�

� Previous Work

Two decomposition methods have been proposed in the
literature ��
 �	
� The �rst is a maximum�likelihood direct
parameter estimation procedure� which provides paramet�
ric descriptions of image Wold components� Its developers
reported that the algorithm can be computationally ex�
pensive� especially when the number of spectral peaks is

	



�a� �b� �c�
Figure 	� Examples of natural textures with di�erent
prominent Wold components� Top row� originals� Bottom
row� Fourier magnitudes� �a� Sweater� with a strong har�
monic component �spectral peaks supported by point�like
regions�� �b� Brodatz texture D��� with a strong evanes�
cent component �spectral peaks supported by line�like re�
gions�� �c� Brodatz texture D��� with mostly an indeter�
ministic component �relatively smooth spectrum��

large or the energy in the spectral peaks is not very high
compared to that in the neighboring Fourier frequencies
��
� Unfortunately� these situations often arise in natural
images� The second method is a spectral decomposition
procedure �	
� It applies a global threshold to the image
periodogram� and the Fourier frequencies with magnitude
values larger than the threshold are considered to be the
harmonic or the evanescent components� Although this
method is computationally e�cient� it is not robust enough
for the large variety of natural texture patterns� As shown
in Figure �� the support region of a harmonic peak in a
natural texture periodogram is usually not a point� but a
small spread surrounding the central frequency� Therefore�
two issues are essential for a decomposition scheme� locat�
ing the spectral peak central frequencies� and determining
the peak support regions� In the example in Figure �� the
Brodatz texture ��
 D		 has some high frequency spectral
peaks that are only locally large in magnitude� Global
thresholding yields either poor segmentation of the peak
supports as in Figure � �c� or inaccurate peak identi�ca�
tion as in Figure � �d�� In natural textures� this type of
spectra abounds� Hence� a new algorithm is needed�

� New Decomposition Algorithm

The new algorithm takes a spectral decomposition ap�
proach� It decomposes an image by extracting its Fourier
spectral peaks supported by point�like and line�like re�
gions� As discussed before� a spectral approach needs to
locate the peak central frequencies as well as to estimate
the peak supports� Hence the new algorithm consists of
four parts� harmonic peak detection� evanescent line de�
tection� peak support estimation� and decomposition�

��� Harmonic Peak Detection

The harmonic peaks are detected in the Fourier magnitude
image� The quadrants of the image are rearranged such

�a� �b�

�c� �d�
Figure �� Spectral peak detection of Brodatz texture D		
using global thresholding� �a� Original� �b� Fourier mag�
nitudes� �c� A high threshold gives poor estimates of peak
support� �d� A low threshold gives better peak support
but picks up indeterministic frequencies� See Figure � �a�
for results from the new algorithm�

�a� �b�
Figure �� Fundamental�harmonic relationship among har�
monic peaks� �a� ��D sine grating and its Fourier mag�
nitudes� having two frequencies� �b� Checkerboard pat�
tern and its Fourier magnitudes� having two fundamentals
�with the same frequencies as in �a�� and a series of har�
monics� Edges in natural patterns usually fall in between
these extreme cases� hence the fundamental�harmonic re�
lationship usually exists�

that the zero frequency is at the center� To reduce the
edge e�ect� a Gaussian taper can be used when computing
the image Fourier transforms� Since for real images the
magnitude values are symmetric to the zero frequency� only
half of the frequency plane needs to be considered�

As shown previously� spectral peaks can be locally but
not globally large� Hence� local maxima are �rst found
in the magnitude image using a � � � neighborhood�
Values below �� of the entire magnitude range are ig�
nored� To identify the true harmonic peaks from the local
maxima� the intrinsic fundamental�harmonic relationship
among the harmonic peaks is used� This relationship is
illustrated in Figure �� A local maximum quali�es as a
harmonic peak only when its frequency is either a funda�
mental or a harmonic� A fundamental is a frequency that
can be used to linearly express the frequencies of some
other local maxima� A harmonic is a frequency that can
be represented as a linear combination of some fundamen�
tals�

Due to the sampling e�ect of discrete Fourier trans�
forms� the frequency samples may not align to the true
peaks of the continuous spectrum� Small sampling errors

�



Figure �� Spectral harmonic peak detection on Brodatz
texture D�� �top row� and D�� �bottom row�� Left� orig�
inal� Center� Fourier magnitudes� Right� detected har�
monic peaks�

�a� �b� �c�

�d�
Figure �� Example of spectral evanescent line detection�
�a� Brodatz texture D��� �b� Fourier magnitudes of �a��
�c� Lines found in �b�� �d� Hough transform of �b�� Lines
in �c� correspond to the six large local maxima in �d��

in the fundamentals can cause misidenti�cation of their
high frequency harmonics� To reduce the sampling e�ect�
each fundamental frequency value is re�ned to subsample
precision using the harmonics found at the multiples of the
fundamental� and a tolerance of two sample points in both
row and column directions is used for frequency matching�

Examples of harmonic peak detection are shown in Fig�
ure ��

��� Evanescent Line Detection

The Hough transformation method for line detection ��
 is
used to detect the evanescent lines in the Fourier magni�
tude images� Prior to applying the Hough transform� any
large spectral values associated with the harmonic peaks
should be removed� An example of evanescent line detec�
tion is shown in Figure �� where six lines are found for the
Brodatz texture D���

Figure �� Left� spectral harmonic peaks detected in Bro�
datz texture D		� Right� estimated peak support �white�
and the corresponding adjacent �light gray� and ambient
�dark gray� areas after � iterations� The original and its
Fourier magnitude image are in Figure ��
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Figure �� Fourier magnitude local standard deviation ra�
tios of 	� Brodatz textures in the �rst � iterations�

��� Peak Support Estimation

An iterative procedure is used to estimate the spectral
peak support regions in a Fourier magnitude image� The
process is initialized by the detected harmonic peaks and
evanescent lines� Along the lines� frequencies with mag�
nitude values less than �� of the magnitude range are
omitted� At the beginning of each iteration� a ��D Gaus�
sian surface is �tted to the magnitude image to coarsely
model the relatively smooth �background�� Based on the
local variance of the �tting residual� new support frequen�
cies are identi�ed and removed� and the magnitude image
becomes �smoother�� This smoothness is measured by the
ratio between the averaged local standard deviations ����
estimation window� in the areas adjacent to the estimated
peak support regions and that in the ambient areas� Fig�
ure � illustrates the technique and Figure � shows how the
local standard deviation ratio reduces after each iteration�
The iterative process terminates when the change of the
local standard deviation ratio between two iterations is less
than ��	� Further details of this iterative procedure can be
found in ��
�

��� Decomposition

The �nal decomposition of a homogeneous random �eld is
based on the decomposition of its spectral Wold compo�
nents� Denote the image�s ��D discrete Fourier transform
�DFT� as Y �k� l�� the corresponding frequency plane as D�
and the set of spectral peak and peak support frequencies

�



�a� �b� �c�
Figure �� Decomposition of �a� Brodatz texture D		� �b�
Sweater pattern� and �c� Brodatz texture D��� The orig�
inals and their Fourier magnitudes are in Figure 	 and
Figure �� Top row� harmonic or evanescent components�
Middle row� indeterministic components� Bottom row�
identi�ed spectral peak frequencies�

identi�ed in the previous stages as Dv� The DFT of the
random �eld can be then decomposed into the determinis�
tic component

V �k� l� �

�
Y �k� l�� �k� l� � Dv

�� �k� l� � D� �k� l� �� Dv
���

and the indeterministic component

W �k� l� �

�
Y �k� l�� �k� l� � D� �k� l� �� Dv

�� �k� l� � Dv
���

The deterministic �eld v�m�n� and the indeterministic
�eld w�m�n� are obtained by computing the inverse DFT
of V �k� l� and W �k� l�� respectively� Note that� when nec�
essary� the deterministic component can be further decom�
posed into the harmonic and the evanescent components
in a similar manner�

��� Examples

Three decomposition examples are shown in Figure �� The
originals� shown in Figure 	 and Figure �� have size ����
���� The computing time ranges from 	� to �� seconds on
a HP�������� Workstation�

� Conclusions

A spectral ��D Wold decomposition algorithm for ho�
mogeneous and near homogeneous random �elds is pre�
sented� This algorithm relies on the intrinsic fundamental�
harmonic relationship among image Fourier spectral peaks

to identify harmonic frequencies� and uses a Hough trans�
formation to detect spectral evanescent components� A
local variance based procedure is developed to determine
the spectral peak support� Compared to the two other ex�
isting Wold decomposition algorithms� the global thresh�
olding and the maximum�likelihood parameter estimation�
this algorithm is more robust and �exible for the large va�
riety of natural images� as well as computationally more
e�cient than the maximum�likelihood method�
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