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Abstract

We develop a method for recognizing the emotional state
of a person who is deliberately expressing one of eight
emotions. Four physiological signals were measured and
six features of each of these signals were extracted. We
investigated three methods for the recognition: (1) Se-
quential floating forward search (SFFS) feature selection
with K-nearest neighbors classification, (2) Fisher projec-
tion on structured subsets of features with MAP classifi-
cation, and (3) A hybrid SFFS-Fisher projection method.
Each method was evaluated on the full set of eight emo-
tions as well as on several subsets. The SFFS attained
the highest rate for a trio of emotions, 2.7 times that of
random guessing, while the Fisher projection with struc-
tured subsets attained the best performance on the full
set of emotions, 3.9 times random. The emotion recogni-
tion problem is demonstrated to be a difficult one, with
day-to-day variations within the same class often exceed-
ing between-class variations on the same day. We present a
way to take account of the day information, resulting in an
improvement to the Fisher-based methods. The findings
in this paper demonstrate that there is significant infor-
mation in physiological signals for classifying the affective
state of a person who is deliberately expressing a small set
of emotions.

1 Introduction

This paper addresses emotion recognition, specifically the
recognition by computer of affective information expressed
by people. This is part of a larger effort in “affective com-
puting,” computing that relates to, arises from, or deliber-
ately influences emotions [1]. Affective computing has nu-
merous applications and motivations, one of which is giv-
ing computers the skills involved in so-called “emotional
intelligence,” such as the ability to recognize a person’s
emotions. Such skills have been argued to be more impor-
tant in general than mathematical and verbal abilities in
determining a person’s success in life [2]. Recognition of
emotional information is a key step toward giving comput-
ers the ability to interact more naturally and intelligently
with people.

The research described here focuses on recognition of
emotional states during deliberate emotional expression by
an actress. The actress, trained in guided imagery, used
the Clynes method of sentic cycles to assist in eliciting the
emotional states [3]. For example, to elicit the state of
“Neutral,” (no emotion) she focused on a blank piece of
paper or a typewriter. To elicit the state of “Anger” she
focused on people who aroused anger in her. This process
was adapted for the eight states: Neutral (no emotion)

(N), Anger (A), Hate (H), Grief (G), Platonic Love (P),

Romantic Love (L), Joy (J), and Reverence (R).

The specific states one would want a computer to recog-
nize will depend on the particular application. The eight
emotions used in this research are intended to be represen-
tative of a broad range, which can be described in terms
of the “arousal-valence” space commonly used by psycholo-
gists [4]. The arousal axis ranges from calm and peaceful to
active and excited, while the valence axis ranges from neg-
ative to positive. For example, anger was considered high
in arousal, while reverence was considered low. Love was
considered positive, while hate was considered negative.

There has been prior work on emotional expression
recognition from speech and from image and video; this
work, like ours, has focused on deliberately expressed emo-
tions. The problem is a hard one when you look at the few
benchmarks which exist. In general, people can recognize
affect in neutral-content speech with about 60% accuracy,
choosing from among about six different affective states
[5]. Computer algorithms can match this accuracy but
only under more restrictive assumptions, such as when the
sentence content is known. Facial expression recognition
is easier, and the rates computers obtain are higher: from
80-98% accuracy when recognizing 5-7 classes of emotional
expression on groups of 8-32 people [6, 7]. Facial expres-
sions are easily controlled by people, and easily exagger-
ated, facilitating their discrimination.

Emotion recognition can also involve other modalities
such as analyzing posture, gait, gesture, and a variety of
physiological features in addition to the ones described in
this paper. Additionally, emotion recognition can involve
prediction based on cognitive reasoning about a situation,
such as “That goal is important to her, and he just pre-
vented her from obtaining it; therefore, she might be angry
at him.” The best emotion recognition is likely to come
from pattern recognition and reasoning applied to a com-
bination of all of these modalities, including both low-level
signal recognition, and higher-level reasoning about the sit-
uation [1].

For the research described here, four physiological sig-
nals of an actress were recorded during deliberate emo-
tional expression. The signals measured were electromyo-
gram (EMQG) from the jaws, representing muscular tension
or jaw clenching, blood volume pressure (BVP) and skin
conductivity (GSR) from the fingers, and respiration from
chest expansion. Data was gathered for each of the eight
emotional states for approximately 3 minutes each. This
process was repeated for several weeks. The four physiolog-
ical waveforms were each sampled at 20 samples a second.
The experiments below use 2000 samples per signal, for
each of the eight emotions, gathered over 20 days (Fig. 1).
Hence there are a total of 32 signals a day, and 80 signals
per emotion.
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Figure 1: Examples of four physiological signals mea-

sured from an actress while she intentionally expressed
anger (left) and grief (right). From top to bottom: elec-
tromyogram (microvolts), blood volume pressure (percent
reflectance), galvanic skin conductivity (microSiemens),
and respiration (percent maximum expansion). The sig-
nals were sampled at 20 samples a second. Each box shows
100 seconds of response. The segments shown here are vis-
ibly different for the two emotions, which was not true in
general.

Very little work has been done on pattern recognition
of emotion from physiological signals, and there is contro-
versy among emotion theorists whether or not emotions do
occur with unique patterns of physiological signals. Some
psychologists have argued that emotions might be recogniz-
able from physiological signals given suitable pattern recog-
nition techniques [8], but nobody has yet to demonstrate
which physiological signals, or which features of those sig-
nals, or which methods of classification, give reliable indi-
cations of an underlying emotion, if any. This paper sug-
gests signals, features, and pattern recognition techniques
for solving this problem, and presents results that emotions
can be recognized from physiological signals at significantly
higher than chance probabilities.

2 Choice of Features

A very important part in recognizing emotional states, as
with any pattern recognition procedure, is to determine
which features are most relevant and helpful. This helps
both in reducing the amount of data stored and in improv-
ing the performance of the recognizer. recognition prob-
lem.

Let the four raw signals, the digitized EMG, BVP, GSR,
and Respiration waveforms, be designated by (S%),i =
1,2,3,4. Each signal is gathered for 8 different emotions
each session, for 20 sessions. Let S;, represent the value of
the n'" sample of the i*" raw signal, where n = 1...N and
N = 2000 samples. Let S refer to the normalized signal
(zero mean, unit variance), formed as:

where p' and o' are the means and standard deviations
explained below. We extract 6 types of features for each
emotion, each session:

1. the means of the raw signals (4 values)
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2. the standard deviations of the raw signals (4 values)
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3. the means of the absolute values of the first differences
of the raw signals (4 values)
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4. the means of the absolute values of the first differences
of the normalized signals (4 values)

ot

N—1 .

% 1 & aip_ b

51=N_1 E |Shp1 — Sl = = i=1,..,4. (4)
n=1

5. the means of the absolute values of the second differ-
ences of the raw signals (4 values)
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6. the means of the absolute values of the second differ-
ences of the normalized signals (4 values)
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Therefore, each emotion is characterized by 24 features,
corresponding to a point in a 24-dimensional space. The
classification can take place in this space, in an arbitrary
subspace of it, or in a space otherwise constructed from
these features. The total number of data in all cases is 20
points per class for each of the 8 classes, 160 data points
in total.

Note that the features are not independent; in particu-
lar, two of the features are nonlinear combinations of the
other features. We expect that dimensionality reduction
techniques will be useful in selecting which of the proposed
features contain the most significant discriminatory infor-
mation.

3 Dimensionality reduction

There is no guarantee that the features chosen above are
all appropriate for emotion recognition. Nor is it guar-
anteed that emotion recognition from physiological signals
is possible. Furthermore, a very limited number of data
points—20 per class—is available. Hence, we expect that



the classification error may be high, and may further in-
crease when too many features are used. Therefore, reduc-
tions in the dimensionality of the feature space need to be
explored, among with other options. In this paper we fo-
cus on three methods for reducing the dimensionality, and
evaluate the performance of these methods.

3.1 Sequential Floating Forward Search
The Sequential Floating Forward Search (SFFS) method

[9] is chosen due to its consistent success in previous evalu-
ations of feature selection algorithms, where it has recently
been shown to outperform methods such as Sequential For-
ward and Sequential Backward Search (SF'S, SBS), Gener-
alized SFS and SBS, and Max-Min, [10] in several bench-
marks. Of course the performance of SFFS is data depen-
dent and the data here is new and difficult; hence, the SFFS
may not be the best method to use. Nonetheless, because
of its well documented success in other pattern recognition
problems, it will help establish a benchmark for the new
field of emotion recognition and assess the quality of other
methods.

The SFFS method takes as input the values of n features.
It then does a non-exhaustive search on the feature space
by iteratively adding and subtracting features. It outputs
one subset of m features for each m, 2 < m < n, together
with its classification rate. The algorithm is described in
detail in [9].

3.2 Fisher Projection

Fisher projection is a well-known method of reducing the
dimensionality of the problem in hand, which involves less
computation than SFFS. The goal is to find a projection of
the data to a space of fewer dimensions than the original
where the classes are well separated.

Due to the nature of the Fisher projection method, the
data can only be projected down to ¢ — 1 (or fewer if one
wants) dimensions, assuming that originally there are more
than ¢ — 1 dimensions and c¢ is the number of classes.

It is important to keep in mind that if the amount of
training data is inadequate, or the quality of some of the
features is questionable, then some of the dimensions of the
Fisher projection may be a result of noise rather than a
result of differences among the classes. In this case, Fisher
might find a meaningless projection which reduces the error
in the training data but performs poorly in the testing
data. For this reason, projections down to fewer than ¢—1
dimensions are also evaluated in the paper.

Furthermore, since 24 features is high for the amount of
training data here, and since the nature of the data is so
little understood that these features may contain superflu-
ous measures, we decided to try an additional approach:
applying the Fisher projection not only to the original 24
features, but also to several “structured subsets” of the
24 features, which are described further below. Although
in theory the Fisher method finds its own most relevant
projections, the evaluation conducted below indicates that
better results are obtained with the structured subsets ap-
proach.

Note that if the number of features n is smaller than the
number of classes ¢, the Fisher projection is meaningful
only up to at most n — 1 dimensions. Therefore in general
the number of Fisher projection dimensions d is 1 < d <
min(n, c) — 1. For example, when 24 features are used on
all 8 classes, all d = [1,7] are tried. When 4 features are

used on 8 classes, all d = [1, 3] are tried.

3.3 Hybrid SFFS with Fisher Projection
(SFFS-FP)

As mentioned above, the SFFS algorithm proposes one sub-
set of m features for each m, 2 < m < n. Therefore, instead
of feeding the Fisher algorithm with all 24 features or with
structured subsets, we can use the subsets that the SFFS
algorithm proposes as our input to the Fisher Algorithm.
Note that the SFFS method is used here as a simple pre-
processor for reducing the number of features fed into the
Fisher algorithm, and not as a classification method. We

call this hybrid method SFFS-FP.

4 Evaluation

We now describe how we obtained the results shown in
Table 1. A discussion of these results follows below.

4.1 Methodology

The Maximum a Posteriori (MAP) classification is used for
all Fisher Projection methods. The leave-one-out method
is chosen for cross validation because of the small amount
of data available. More specifically, here is the algorithm
that is applied to every data point:

1. The data point to be classified (the testing set only
includes one point) is excluded from the data set. The
remaining data set will be used as the training set.

2. In the case where a Fisher projection is to be used, the
projection matrix is calculated from only the training
set. Then both the training and testing set are pro-
jected down to the d dimensions found by Fisher.

3. Given the feature space, original or reduced, the data
in that space is assumed to be Gaussian. The respec-
tive means and covariance matrices of the classes are
estimated from the training data.

4. The posterior probability of the testing set is calcu-
lated: the probability the test point belongs to a spe-
cific class, depending on the specific probability dis-
tribution of the class and the priors.

5. The data point is then classified as coming from the
class with the highest posterior probability.

The above algorithm is first applied on the original 24
features (Fisher-24). Because this feature set was ex-
pected to contain a lot of redundancy and noise, we also
chose to apply the above algorithm on various “structured
subsets” of 4, 6 and 18 features defined as follows:

Fisher-4 All combinations of 4 features are tried, with
the constraint that each feature is from a different sig-
nal (EMG, BVP, GSR, Respiration). This gives a total of
6* = 1296 combinations, which substantially reduces the
(24 choose 4)=10626 that would result if all combinations
were to be tried. The results of this evaluation may give
us an indication of which type of feature is most useful for
each physiological signal.

Fisher-6 All combinations of 6 features are tried, with
the constraint that each feature has to be of a different
type: (1)-(6). This gives a total of 4° = 4096 combinations
instead of (24 choose 6)=134596 if all combinations were
to be tried. The results of this evaluation may give us an
indication which physiological signal is most useful for each
type of feature.



Fisher-18 All possible combinations of 18 features are
tried, with the constraint that exactly 3 features are chosen
from each of the types (1)-(6). That again gives a total of
4% = 4096 combinations, instead of (24 choose 18)=134596
if all combinations were to be tried. The results of this
evaluation may give us an indication which physiological
signal is least useful for each feature.

The SFFS software we used included its own evaluation
method, K-nearest neighbors, in choosing which features
were best. For the SFFS-FP method, the procedure below
was followed: The SFFS algorithm outputs one set of m
features for each 2 < m < n, and for each 1 < k < 20.
All possible Fisher projections are then calculated for each
such set.

Another case, not shown in Table 1, was investigated.
Instead of using a Fisher projection, we tried all possi-
ble 2-feature subsets, and evaluated their class accord-
ing to the maximum a posteriori probability, using cross-
validation. The best classification in this case was con-
sistently obtained when using the mean of the EMG sig-
nal (feature p' above) and the mean of the absolute value
of the first difference of the normalized Respiration signal
(feature 5‘11 above) as the 2 features. The only result almost
comparable to other methods was obtained when discrim-
inating among Anger, Joy and Reverence where a linear
classifier scores 71.66% (43/60). When trying to discrim-
inate among more than 3 emotions, the results were not
significantly better than random guessing, while the algo-
rithm consumed too much time in an exhaustive search.

Attempting to discriminate among 8 different emotional
states is unnecessary for many applications, where 3 or 4
emotions may be all that is needed. We therefore evalu-
ated the three methods here not only for the full set of
eight emotion classes, but also for sets of three, four, and
five classes that seemed the most promising in preliminary
tests.

4.2 Results

The results of all the emotion subsets and classification al-
gorithms are shown in Table 1. All methods performed
significantly better than random guessing, indicating that
there is emotional discriminatory information in the phys-
iological signals.

When Fisher was applied to structured subsets of fea-
tures, the results were always better than when Fisher was
applied to the original 24 features.

3 emotions In runs using the Fisher-24 algorithm, the
two best 3-emotion subsets turned out to be the Anger-
Grief-Reverence (AGR) and the Anger-Joy-Reverence
(AJR). All the other methods are applied on just these
two triplets for comparison.

4 emotions In order to avoid trying all the possible
quadruplets with all the possible methods, we use the fol-
lowing arguments for our choices:

Anger-Grief-Joy- Reverence (AGJR): These are the emo-
tions included in the best-classified triplets. Furthermore,
the features used in obtaining the best results above were
not the same for the two cases. Therefore a combination
of these features may be discriminative for all 5 emotions.
Finally, these emotions can be seen as placed in the four
corners of a valence-arousal plot, a common taxonomy used
by psychologists in categorizing the space of emotions:
Anger: High Arousal, Negative Valence
Grief: Low Arousal, Negative Valence

Number of | msrrs | msrrs—rp
Emotions
8 13 17
5 (NAGIR) | 1217 15
1T (NAGR) | 9-15,18 19
T(AGIR) | 78 12
3 (AGR) 216 12
3 (AIR) 614 7

Table 2: Number of features m used in the SFFS algo-
rithms which gave the best results. When a range is shown,
this indicates that the performance was the same for the
whole range.

Joy: High Arousal, Positive Valence
Reverence: Low Arousal, Positive Valence

Neutral- Anger- Grief- Reverence (NAGR) In results from
the 8-emotion classification using the Fisher-24 algorithm,
the resulting confusion matrix shows that Neutral, Anger,
Grief, and Reverence are the four emotions best classified
and least confused with each other.

5-emotions The 5-emotion subset examined is the one
including the emotions in the 2 quadruplets chosen above,
namely the Neutral-Anger-Grief-Joy-Reverence (NAGJR)
set.

The best classification rates obtained by SFFS and
SFFS-FP are reported in Table 1, while the number of
features used in producing these rates can be seen in Ta-
ble 2. We can see that in SFFS a small number msrrs of
the 24 original features gave the best results. For SFFS-FP
a slightly larger number msprs—_rpp of features tended to
give the best results, but still smaller than 24. These ex-
tra features found useful in SFFS-FP, could be interpreted
as containing some useful information, but together with
a lot of noise. That is because feature selection methods
like SFFS can only accept/reject features, while the Fisher
algorithm can also scale them appropriately, performing a
kind of “soft” feature selection and thus making use of such
noisy features.

In Table 3 one can see that for greater numbers of emo-
tions and greater numbers of features, the best-performing
number of Fisher dimensions tends to be less than the max-
imum number of dimensions Fisher can calculate, confirm-
ing our earlier expectations (Section 3.2).

5 Day Dependence

As mentioned previously, the data were gathered in 20 dif-
ferent sessions, one session each day. During their clas-
sification procedure, we noticed high correlation between
the values of the features of different emotions in the same
session. In this section we quantify this phenomenon in an
effort to use it to improve the classification results, by first
building a day (session) classifier.

5.1 Day Classifier

We use the same set of 24 features, the Fisher algorithm,
and the leave-one-out method as before, only now there are
¢ = 20 classes instead of 8. Therefore the Fisher projection
is meaningful from 1 to 19 dimensions. The resulting “day
classifier” using the Fisher projection and the leave-one-
out method with MAP classification, yields a classification



Number of Random SFFS | Fisher-24 Structured subsets (%) SFFS-FP
Emotions Guessing (%) (%) (%) 4-feature | 6-feature | 18-feature (%)
8 12.50 40.62 40.00 34.38 41.25 48.75 46.25
5 (NAGJR) 20.00 64.00 60.00 53.00 63.00 71.00 65.00
4 (NAGR) 25.00 70.00 61.25 61.25 70.00 72.50 68.75
4 (AGJR) 25.00 72.50 60.00 58.75 70.00 68.75 67.50
3 (AGR) 33.33 83.33 71.67 75.00 83.33 81.67 80.00
3 (AJR) 33.33 88.33 66.67 73.33 83.33 81.67 83.33
Table 1: Classification rates for several algorithms and emotion subsets.
Number of Structured subsets Fisher-24 | SFFS-FP | Ratio
Emotions 4-feature | 6-feature | 18-feature
8 3/3 3/5 5]7 6/7 157 T1
5 (NAGIR) 3/3 /1 3/1 3/1 3/4 3:2
1 (NAGR) 3/3 3/3 3/3 3/3 3/3 05
1 (AGIR) 3/3 2/3 2,373 3/3 2/3 3:2
3 (AGR) 2/2 2/2 272 2/2 2/2 05
3 (ATR) 2/2 2/2 2/2 /2 2/2 T4
Ratio 0:6 2:4 3:3 3:3 3:3 11:19

Table 3: Number of dimensions used in the Fisher Projections which gave the best results, over the maximum number of
dimensions that could be used. The last row and column give the ratio of cases where these two values were not equal,

over the cases that they were.

accuracy of 133/160 (83%), when projecting down to 6,9,10
and 11 Fisher dimensions. This is better than all but one
of the results reported above, and far better than random
guessing (5%). We note the following on this result:

o Tt should be expected that a more sophisticated algo-
rithm would give even better results. For example we
only tried using all 24 features, rather than a subset
of them.

e Fither the signals or the features extracted from them
are highly dependent on the day the experiment is
held.

o This can be because, even if the actress is intentionally
expressing a specific emotion, there is still an under-
lying emotional and physiological state which affects
the overall results of the day.

e This may also be related to technical issues, like the
amount of gel used in the sensing equipment (for the
BVP and GSR signals), or external issues like the tem-
perature in a given day, affecting the perspiration and
possibly the blood pressure of the actress.

Whichever the case, a possible model for the emotions
could then be thought of as follows: At any point in time
the physiological signals are a combination of a long-term
slow-changing mood (for example a day-long frustration)
or physiological situation (for example lack of sleep) and of
a short-term emotion caused by changes in the environment
(for example the arrival of some bad news). In the current
context, it seems that knowledge of the day (as part of the
features) may help in establishing a baseline which could
in turn help in recognizing the different emotions within
a day. This baseline may be as simple as subtracting a
different value depending on the day, or something more
complicated.

It is also relevant to consider conditioning the recogni-
tion tests on only the day’s data, as there are many appli-
cations where the computer wants to know the person’s
emotional response right now so that it can change its
behavior accordingly. In such applications, not only are
interactive-time recognition algorithms needed, but they
need to be able to work based on only present and past
information, i.e., causally. In particular, they will prob-
ably need to know what range of responses is typical for
this person, and base recognition upon deviations from this
typical behavior. The ability to estimate a good “baseline”
response, and to compare the present state to this baseline
is important.

5.2 Establishing a day-dependent
baseline

According to the results of the previous section, the fea-
tures extracted from the signals are highly dependent on
the day the experiment was held. Therefore, we would like
to augment the set of features to include both the Original
set of 24 features and a second set incorporating informa-
tion on the day the signals were extracted. A Day Matrix
was constructed, which includes a 20-number long vector
for each emotion, each day. It is the same for all emotions
recorded the same day, and differs among days. There are
several possibilities for this matrix. In this work, we chose
the 20-number vector as follows: For all emotions of day 2
all entries are equal to 0 except the ¢’th entry which is equal
to a given constant C. This gives a 20x20 diagonal matrix
for each emotion.

It must be noted that when the feature space includes
the Day Matrix, the Fisher projection algorithm encoun-
ters manipulations of a matrix which is close to singular.
We can still proceed with the calculations but they will
be less accurate. Nevertheless, the results are consistently



Feature Space SFFS | Fisher | SFFS-FP
(%) | (%) (%)
Original (24) 40.62 40.00 46.25
Original+Day (44) | N/A 49.38 50.62

Table 4: Classification Rates for the 8-emotion case using
several algorithms and methods for incorporating the day
information. The “N/A” is to denote that SFFS feature
selection is meaningless if applied to the Day Matrix.

Feature Space SFFS | Fisher | SFFS-FP
(%) | (%) (%)
Original (24) 42.86 39.29 45.00
Orig.+Day (44) N/A 39.29 45.71
Orig.+Base. (48) 49.29 40.71 54.29
Orig.+Base.+Day (68) | N/A 35.00 49.29

Table 5: Classification Rates for the 7-emotion case using
several algorithms and methods for incorporating the day
information. The “N/A” is to denote that SFFS feature
selection is meaningless if applied to the Day Matrix.

better than when the Day Matrix is not included. A way to
get around the problem is the addition of small-scale noise
to C'. Unfortunately this makes the results dependent on
the noise values, in such an extent that consecutive runs
with just different random values of noise coming from the
same distribution give results with up to about 3% fluctu-
ations in performance.

Another approach that we investigated involves con-
structing a Baseline Matrix where the Neutral (no emo-
tion) features of each day are used as a baseline for (sub-
tracted from) the respective features of the remaining 7
emotions of the same day. This gives an additional 24x20
matrix for each emotion.

The complete 8-emotion classification results can be seen
in Table 4, while the 7T-emotion classification results can be
seen in Table 5. Random guessing would be 12.50% and
14.29% respectively. The results are several times that
for random guessing, indicating that significant emotion
classification information has been found in this data.

6 Conclusions & Further work

As one can see from the results, these methods of affect
classification demonstrate that there is significant infor-
mation in physiological signals for classifying the affective
state of a person who is deliberately expressing a small set
of emotions. Nevertheless more work has to be done until
a robust and easy-to-use emotion recognizer is built. This
work should be directed towards:

Experimenting with other signals: Facial, vocal, ges-
tural, and other physiological signals should be investigated
in combination with the signals used here.

Better choice of features: Besides the features already
used, there are more that could be of interest. An example
is the overall slope of the signals during the expression of
an emotional state (upward or downward trend), for both
the raw and the normalized signals.

Real-time emotion recognition Emotion recognition
can be very useful if it occurs in real time. That is, if
the computer can sense the emotional state of the user the

moment he actually is in this state, rather than whenever
the data is analyzed. Therefore we are interested in exam-
ining the possibility of online recognition. This should be
considered in combination with the model of an underlying
mood, which may change over longer periods of time. In
that respect, the classification rate of a time window using
given a previous time window can yield useful informa-
tion. The question is how frequently should the estimates
of the baseline be updated to accommodate for the changes
in the underlying mood. In addition, it appears that al-
though the underlying mood changes the features’ values
for all emotions, it affects much less the relative positions
with respect to each other. We are currently investigating
ways of exploring this, expecting much higher recognition
results.
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