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Abstract

A new algorithm s presented for the detection
and segmentation of multiple periodic motions
in tmage sequences. A periodicity measure which
provides an accurate quantitative measure of sig-
nal periodicity in the form of temporal harmonic
energy ratio 18 proposed. The periodicity tem-
plates which incorporate the segmented region
with the associated periodicity energy distribu-
tion and motion fundamental frequencies provide
a new means of periodic motion representation.
The algorithm is computationally simple and ro-
bust in the presence of noise. Real world exam-
ples are used to ilustrate the techniques.

1 Introduction

1.1 Overview

Periodic motion is common in the natural world. For in-
stance, locomotion often exhibits cyclic movement. Peri-
odicity is also an important cue in human motion percep-
tion. Information regarding the nature of a periodic mo-
tion, such as location, extent, and frequency, is important
for motion understanding. Techniques for periodic motion
detection and segmentation can assist in many applications
requiring object and activity recognition and representa-
tion.

The main body of work on periodic motion is model-
based (eg. [1][2]). More recently there is work on motion
recognition directly using low-level features of motion in-
formation (eg. [3][4][5]). However, to date, there has not
been a method which uses low-level motion features to de-
tect and segment periodic motion simultaneously. In this
work, we attempt to tackle this problem by using a Fourier
spectral based approach. The periodicity templates gen-
erated in the process incorporate the location, extent, and
other characteristic information, such as frequency, of a pe-
riodic motion. Therefore, the templates can also be used
for periodic motion representation.

1.2 Our Approach

The term temporal textureis defined in [4] as “the motion
patterns of indeterminate spatial and temporal extent”.
We would like to use “texture” to refer to any approxi-
mately homogeneous phenomenon. In this sense, periodic
temporal activity i1s a type of temporal texture.

*This work was supported in part by IBM and NEC.

The algorithm we present here is motivated by theory
for textured static images that assumes an underlying ran-
dom field representation for the data [4]. In particular,
1-D signals along the temporal dimension can be consid-
ered as stochastic processes. When assuming stationar-
ity, a stochastic signal can be decomposed into determin-
istic (periodic) and indeterministic (random) components
(Wold decomposition [6]). In the frequency domain, the
two components correspond to the singular and continu-
ous part of the Fourier spectra respectively. In practical
applications, this is to say that the repetitive structure in
the signal contributes only to the spectral harmonic peaks
and the random behavior to the smooth part of the spectra.
Therefore, the energy contained in the harmonic peaks is
a good measure of periodicity in the signal. In this work,
we apply this analysis to the temporal dimension of the
image sequences and propose a new measure of temporal
periodicity. This measure is then used to build a period-
icity template for simultaneous periodic motion detection
and segmentation.

The actual implementation of the approach above as-
sumes that the repetitiveness of an action is observable
along lines parallel to the temporal (T) axis. In other
words, the moving object needs to be tracked just like we
fix our eyes on a walking person. Typically, optical flow
based techniques are used for object tracking. However,
flow based methods are usually susceptible to noise. We
present here a non-flow-based procedure for foveating on
moving objects by frame alignment.

1.3 Related Work

Of the large amount of research in this area, the work
of Polana and Nelson on periodic motion detection [4] is
perhaps the most relevant to the approach presented in
this paper. In their work, reference curves, which are lines
parallel to the trajectory of the motion flow centroid, are
extracted and their power spectra computed. The period-
icity measure py of each reference curve is defined as the
normalized difference between the sum of the spectral en-
ergy at the highest amplitude frequency and its multiples
and the sum of the energy at the frequencies half way be-
tween. Besides the value of the periodicity measure itself,
there is no checking on the signal harmonicity along the
curve, which is a weakness of the method. The periodic-
ity measure for an entire sequence is the maximum of py
averaged among pixels whose highest power spectrum val-
ues appear on the same frequency. The final periodicity
measure 1s used to distinguish periodic and non-periodic
motion by thresholding.

In [3], flow based algorithms are used to transform the
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Figure 1: Frames 20, 40, 60, and 80 of the 97 frame se-
quence Walker. Frame size is 320 by 240.

image sequence so that the object in consideration stays
at the center of the image frame. Then flow magnitudes in
tessellated frame areas of periodic motion were used as fea-
ture vectors for motion classification. There is no precise
segmentation of regions of periodic motion involved.

2 Method

2.1 Overview

Our system for periodic motion detection and segmenta-
tion consists of two stages: 1) foveating by frame align-
ment; 2) simultaneous detection and segmentation of re-
gions of periodic motion.

In this work, two types of image sequences are consid-
ered. (1) Each object which may have a periodic motion is
as a whole stationary to the camera, but the background
can be moving. (2) The relative motion between the cam-
era and the background is small, permitting minor shake
and gradual drift as in the hand-held situation, and each
moving object is as a whole moving approximately fron-
toparallel to the camera at relatively constant speeds and
in a translatory manner. In practice, large number of im-
age sequences containing natural periodic motions can be
categorized into one of the two types.

When watching a sequence of a person walking across
the image plane, we experience a notion of repetitive move-
ment. However, if examining the individual frames, there
would be no re-occurring scenes. Several frames of a se-
quence Walker are shown in Figure 1 (see also http://[web-
seq-1]). The reason why we see a periodic motion in the
sequence is due to our ability to focus our visual attention
on the moving object, or, foveat. The effect of foveating
can be accomplished computationally by frame alignment.
Obviously, foveating is not necessary for sequence type (1),
but in fact is a process of transforming sequences of type

(2) into type (1).
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Figure 2: Head and ankle level XT slices of the Walker
sequence. (a) Head leaves a straight track. (b) Walking
ankles make a crisscross pattern

In the second stage, 1-D Fourier transforms are per-
formed on each pixel location along the temporal dimen-
sion of the aligned frames. The spectral harmonic peaks
are then detected and used to compute harmonic energy
involved in each frame pixel location. A periodicity tem-
plate in frame size is generated based on the ratio between
the harmonic energy and the total energy. The original
sequence is then masked for regions of periodic motion.

In the following, we use the term data cube to refer to
the three dimensional (X: horizontal; Y: vertical; and T:
temporal) data volume formed by putting together all the
frames in a sequence, one behind the other. The XT and
YT slices of the data cube reveal the temporal behavior
usually hidden from the viewer. Figure 2 shows the head
and ankle level XT slices of the Walker sequence. The
head leaves a more or less straight track while the walking
ankles make a crisscross pattern. Throughout this section,
the Walker sequence will be used to illustrate the technical
points. More examples are given in Section 3.

2.2 Foveating by Frame Alignment

To align a sequence to a particular moving object, we need
first to detect the trajectory of the object. In existing
works, certain kinds of tracking techniques based on dif-
ferencing consecutive frames are usually used to locate the
moving objects. The flow-based methods are inevitably
subject to the noise sensitivity (which will be demonstrated
later) inherent in pairwise frame comparison. To avoid
these shortcomings, we take advantage of the two types of
restrictions on data and use a method similar to the one
in [7] to look directly in the data cube for tracks left by
the moving objects.

Since the background of the sequence changes slowly, a
1-D median filter can be applied to the data volume along
the temporal dimension T to exclude moving objects and
result in a sequence containing mostly the background.
Filter length of 11 was used in the Walker sequence. Sub-
tracting the background from the original sequence, we
obtain a difference sequence containing mainly the mov-
ing objects. By the condition (2) on data, the trajectories
of the objects as a whole in the difference cube should
be approximately linear. To obtain 2-D representations of
the trajectories, we simply compute the average of the XT
or the YT slices of the difference cube, which is equiva-
lent to collapsing the difference cube top down to the XT
plane or sideways to the YT plane. Next, lines in the 2-D
trajectory images are detected via the Hough transform.
The detected lines give the X or Y positions of the mov-
ing objects in each frame. These position values are called
alignment indices. The averaged X'T' image of the Walker
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Figure 3: (a) Averaged XT image of the Walker sequence
after background removal. (b) Line found in (a) by using
the Hough transform method.

difference sequence and the line found by the Hough trans-
form method are shown in Figure 3. Note that multiple
object trajectories can be detected simultaneously using
this procedure. An example of three walking persons is
shown in Section 3.

Using the alignment indices of an object, each frame
in the image sequence can be repositioned to center the
object to any specified position in the XY plane. After
alignment, the object should appear as moving in place.
For instance, after aligning the Walker sequence in the X
dimension (alignment in Y dimension is not necessary since
the overall Y position of the person does not change much),
the position of the walker’s torso remains in place, but the
surroundings move to the right. In effect, this is equivalent
to focusing our visual attention on an object when viewing
a sequence in which the object’s position changes frame by
frame. We call this process foveating by frame alignment.
The aligned sequences are passed on to the second stage
of the system.

2.3 Detection and Segmentation

In this stage, we only deal with sequences already aligned
to a particular object. To save computation and storage,
an aligned sequence can be cropped to limit processing to
the object and its vicinity. It will become clear later that
the cropping has no effect on the estimation of periodic
motion. The location and size of the cropping window
is estimated from the average XY image of the difference
sequence which is first aligned to the particular object.
Figure 4 shows the averaged aligned XY image and the
aligned and cropped Walker sequence with splits near the
center of the frames to show the inside of the data cube.

Facing the data cube, a line can be drawn from a pixel
(z0,yo) in the first frame all the way through the cube to
arrive at pixel (zo, yo) in the last frame. Clearly, this line
contains pixel (o, yo) of all frames. We name this line the
temporal line at (o, yo), which is of essential importance
to our discussion. If the frame size is N, by N, then there
are Ny x N, temporal lines in the data cube.

Since the image sequence is aligned to a particular ob-
ject, the object should be moving in place. Apparently, if
the object i1s moving cyclically in any manner, the period-
icity will be reflected in some of the temporal lines. The
top two images of Figure 5 shows the head and ankle level
XT slices of 64 frames (Frame 17 to 80) of the data cube
in Figure 4 (b). These slices are in fact the aligned and
cropped version of the two XT slices in Figure 2. Every
column in the two images is a temporal line. The Fourier
power spectra of these temporal lines are the columns of
the corresponding bottom two images in Figure 5. Note

Figure 4: (a) Averaged XY image of the aligned Walker se-
quence after background removal. (b) Aligned and cropped
Walker sequence with splits near the center of the frames
to show the inside of the data cube.

that the power spectrum values are normalized among all
temporal lines in the data cube. While the spectra of the
head slice shows no harmonic peaks, the periodicity of the
moving ankles is captured by the spectral harmonic peaks.
We refer to the spectral energy corresponding to these har-
monic peaks as the temporal harmonic energy and propose
using the ratio between the harmonic energy and the total
energy of a temporal line (temporal harmonic energy ratio)
as a measure of temporal periodicity at the corresponding
pixel location.

In [8], a method was presented to detect spectral har-
monic peaks in 2-D random fields. Here the algorithm is
adapted to use for 1-D signals. Given a temporal line, it
is first zero-meaned and Gaussian tapered, then its power
spectrum values are computed via a fast Fourier trans-
form. To locate the harmonic peaks, local maxima of the
spectrum values (excluding values below 10% of the value
range in the data cube) are found by searching a size 7
neighborhood of each frequency sample. These local max-
ima provide candidate locations of harmonic peaks. A lo-
cal maximum marks the location of a harmonic peak only
when its spectral frequency is either a fundamental or a
harmonic. A fundamental is defined as a frequency which
can be used to linearly express the frequencies of some
other local maxima. A harmonic is a frequency which can
be expressed as a linear combination of some fundamen-
tals. Starting from the lowest frequency to the highest,
each local maxima is checked first for its harmonicity —
if its frequency can be expressed as a linear combination
of the existing fundamentals, and then for its fundamen-
tality — if the multiples of its frequency, combined with
the multiples of existing fundamentals, coincide with the
frequency of another local maximum. A tolerance of one
sample point is used in the frequency matching.

Due to the nature of the natural temporal signal and the
windowing effect in spectra computation, a harmonic peak
usually does not appear as a single impulse. Therefore the
procedure so far only provides the summit location of each
peak. The support of a peak is determined by growing
outward from the summit location along the frequency axis
until the spectrum value is below certain small value (5% of
the spectrum value range in this work). After the harmonic
peaks are identified, it is straightforward to compute the
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Figure 5: Temporal lines and their normalized power spec-
tra at the head and ankle level of the aligned Walker data
cube. Top row: XT slices, every column in the images is
a temporal line. Bottom row: power spectra, each column
is the power spectra of the corresponding column in the
XT slice. (a) Head level, showing no harmonic peaks. (b)
Ankle level, periodicity of the moving ankles is captured
by the harmonic peaks in spectra.

harmonic energy ratio of the temporal line.

One may argue that the technique discussed above will
fail when a temporal line contains only a sinusoidal signal
which produces only a single spectral peak. Theoretically,
this 1s correct. However, this situation almost never arises
in the image sequences of natural scenes and objects. To
explain this, we trace back to the formation of the signal on
a temporal line. Since a temporal line corresponds to a par-
ticular pixel in the image plane, having a pattern moving
across the pixel 1s equivalent to having the pixel scanning
across the pattern. When will this scan create a sinusoidal
signal? The answer is only when the pattern has a sinu-
soidal profile. (An example is to translate horizontally a
vertical sine grating pattern frontoparallel to the camara in
a constant speed.) However, natural edges, patterns, and
surfaces hardly ever have such a profile. Therefore, it is
safe to say that higher harmonics will usually accompany
the fundamentals in the Fourier Spectra of the temporal
lines.

Applying the peak detection procedure to all temporal
lines in a data cube and registering the temporal harmonic
energy ratio at each pixel location as gray level values in
a blank plane of frame size, a periodicity template for pe-
riodic motion is built for the aligned sequence. The larger
the template value, the more periodic energy at the loca-
tion. At places where no periodic motion is involved, the
template value remains zero. Under circumstances such
as a noisy background, some speckle noise may appear in
the template. Simple morphological closing and opening
operations can be applied to the template to clean up the
speckle.

Figure 6 (a) is the periodicity template of the Walker
sequence after one closing and one opening operation with
a 3 pixel diameter circular structuring element. As ex-

Figure 6: (a) Periodicity template generated from the
aligned Walker sequence of Figure 4 (b). The value at
each pixel is that of the temporal harmonic energy ratio
of the corresponding temporal line. High value indicates
more periodic energy at the location. (b) Using the peri-
odicity template to mask the original sequence. The four
frames in Figure 1 are masked and stacked together into
one frame.

pected, the brightest region is the wedge shape created by
the walking legs. The head, the shoulder, and the outline
of the backpack are shown because the walker bounces.
The hands appear at the front of the body since in most
parts of the sequence the walker was fixing his gloves and
moving his hands in a rather periodic manner. Note that
the moving background and parts of the walker do not ap-
pear in the template since there is no periodic motion in
those areas.

Since the non-periodic motion of the background does
not light up in the templates, it is clear that the sequence
cropping earlier in the second stage does not effect the
algorithm itself, but only increases the computational effi-
ciency.

Using the alignment indices generated at the first stage,
the periodicity template can also be applied to the original
sequence to mask the regions of periodic motion in each
frame. The masked frames corresponding to the ones in
Figure 1 are stacked together and shown in Figure 6 (b)
(see also http://[web-seq-2]).

3 Examples

Three example sequences are used in this paper. One is the
Walker sequence. Another walking sequence is Trio, where
three people walking and passing each other. The last one
is an aerobics sequence called Jumping Jack. Walker and
Trio are taken by a hand-held consumer-grade camcorder
during a snow storm. Camera drift and the influence of
breathing of the cameraman are visible in the sequences.
Jumping jack is taken by a fixed Betacam camera in an
indoor setting. These examples are used to demonstrate
1) the effectiveness of the new algorithm in the detection
and segmentation of both single and multiple objects with
periodic motions; 2) the robustness of the algorithm un-
der noisy conditions; 3) the noise sensitivity of optical
flow based estimation methods, which are used for tra-
jectory detection in many existing works, and avoided by
the method proposed here.
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Figure 7: Left column: frames 40, 61, and 88 of the 156
frame sequence Trio, with frame size 320 by 240. Right
column: frames 40, 61, and 88 masked by the periodicity
templates of three individuals.

3.1 Trio

Trio is a 156 frame sequence of three people walking and
passing each other. Frames 40, 61, and 88 of the se-
quence are shown in the left column of Figure 7 (see also
http://[web-seqg-3]).

As in the Walker example, a temporal median filter is
used to extract the background. After the background is
largely removed from the sequence, the averaged XT image
is computed. The lines in the XT image are then detected
via Hough transform. Figure 8 shows the averaged XT
image and the lines detected from the image. The detected
lines provide the alignment indices of each objects. Note
that the alignment indices of all three objects are estimated
simultaneously.

Next, as in the Walker example, the original sequence is
aligned and cropped for each of the three moving individ-
uals. All aligned sequences contain 64 frames. Then the
aligned sequences go though the process of power spec-
trum estimation and harmonic peak detection. Finally,
the temporal harmonic energy ratio at each pixel location
is computed to generate the periodicity templates. Fig-
ure 9 shows example frames of each aligned sequences and
the periodicity templates. The templates are then used
to mask the original sequence. Examples of masked se-
quence are shown in the right column of Figure 7 (see also
http://[web-seq-4]).

Notice that, besides the center person, there is a second

(b)

Figure 8: (a) Averaged XT image of the Trio sequence
after background removal. (b) Lines found in (a) by using
the Hough transform method.

or even a third person passing through in all three aligned
sequences. However, their appearance has no effect on the
result of periodic motion detection and segmentation. This
is because, to any individual temporal line, these passersby
are one-time event and do not contribute to the temporal
harmonic energy of the temporal line. The Trio example
demonstrates that the proposed algorithm is well suited
for the detection and segmentation of multiple periodic
motions, even under the circumstances of temporary ob-
ject occlusion.

3.2 Jumping Jack

In the Jumping Jack sequence, there is no translatory mo-
tion involved and most part of the background is very
smooth. We use this sequence and the noisy versions of
it to demonstrate the robustness of the new algorithm un-
der noisy conditions and also to show the sensitivity of
the optical flow based motion estimation to noise. There
are three different kinds of input given to the system: the
original sequence and the sequences corrupted by additive
Gaussian white noise (AGWN) with variance 100 and 400.
The length of the sequences used in power spectrum esti-
mation is increased to 128 due to the cycle of the jumping
motion. All the data related to the Jumping Jack sequence
are shown in Figure 10 (see also http://[web-seq-5] to [web-
seq-10]).

The second row in Figure 10 are the 57th TY (not YT!)
image of each data cube. They show the tracks left by the
right hand and leg. The rows in these images are temporal
lines and the corresponding power spectra are shown in the
third row of the figure. The periodicity templates can be
found in the fourth row of the figure. Although the noise
does cause some degradation in the arm region, other areas
of the templates are well preserved.

The reason why the proposed algorithm is not affected
by certain amount of white noise in the input is that white
noise only contributes to the continuous component of the
power spectrum. As long as the noise energy is not so
high that it overwhelms the spectral harmonic peaks, the
algorithm works.

Most of the related works use flow based methods to ex-
tract spatiotemporal surfaces or curves to locate the mov-
ing objects in a sequence, but we would like to demonstrate
here that the noise sensitivity of the flow based method
can be a drawback in real applications. The optical flow
magnitudes are estimated here by using the hierarchical
least-squares algorithm [9] which is based on a gradient
approach described by [10] [11]. Two pyramids are built,



Figure 9: Example frames of aligned sequences and the
corresponding periodicity templates for each individuals
of the Trio sequence. Two left columns: example frames.
Right column: periodicity templates.

one for each of the two consecutive frames, and motion pa-
rameters are progressively refined by residual motion esti-
mation from coarse images to the higher resolution images.
This algorithm is representative of the existing optical flow
estimation techniques.

The last row of images in Figure 10 is the optical flow
magnitudes of frame 61 in the sequences. When given a
clean input such as the original Jumping Jack sequence,
the flow magnitudes can be used to segment out the mov-
ing object. However, under the noisy condition, the algo-
rithm is mostly ineffective.

3.3 Walker

The detection and segmentation results of the Walker se-
quence are mostly shown in the previous section. Here
we show the results from noisy inputs. Additive Gaussian
white noise of variance 100 and 400 was used to corrupt
the original sequence. The length of the aligned sequences
for power spectrum estimation is 64. The resulting period-
icity templates in Figure 11 clearly show that the proposed
algorithm is robust in the presence of noise.

Original

GWN Var=100
—

Figure 10: Data of 128 frame Jumping Jack sequence with
frame size 155 by 170. Left column: original sequence.
Middle column: corrupted by AGWN with variance 100.
Right column: corrupted by AGWN with variance 400.
Row 1: frame 61 of Jumping Jack sequence. Row 2: TY
slice 57, showing the tracks left by the right hand and
leg; each row of these images is a temporal line. Row
3: temporal line power spectra of TY slice 57. Row 4:
periodicity templates. Row 5: optical flow magnitudes of
frame 61.



Figure 11: Periodicity templates of the Walker sequence:
(a) from original sequence; (b) with AGWN of variance
100; (c) with AGWN of variance 400. The proposed algo-
rithm is robust in the presence of noise.

4 Discussion
4.1 Algorithm

Compared to the one used in [4], the periodicity measure
proposed here in the form of the temporal harmonic en-
ergy ratio is a more accurate and reliable measure of signal
periodicity. It not only can indicate the presence of the pe-
riodic behavior, but also gives a quantitative measure of
how much energy at each pixel location is contributed by
the periodicity.

The use of the periodicity template allows the detec-
tion and segmentation of the periodic motion to be accom-
plished simultaneously. Since the fundamental frequencies
of the temporal lines are extracted in the process of com-
puting the templates, they can be registered to the tem-
plates as well. Using this information, areas involved in
periodic motion with different cycles can be easily dis-
tinguished. This is useful in situations such as a person
walking in front of a picket fence. When the sequence is
aligned to the person, the fence will be moving in the back-
ground and leave a periodic signature on some temporal
lines. Consequently, the fence area will light up in the pe-
riodicity template. However, the fundamental frequency
of the moving fence is usually quite different from the one
of the walker.

The proposed algorithm can also be considered as a pe-
riodic motion filter. At first, all moving objects are targets
for foveating, but then only the ones exhibiting periodic
motions remain. Consider an input of a street with cars
and pedestrians, the system would filter out the cars and
keep the pedestrians.

Existing related work often uses flow based methods to
extract the trajectories of moving objects. Since flow based
methods can be susceptible to noise, we instead use foveat-
ing by frame alignment to focus on individual objects. This
approach not only helps to improve the performance of the
system in the presence of noise, but also is efficient in that
it generates alignment parameters of all moving objects at
once.

The method introduced here is not computationally
taxing. The most machine intensive part of the algorithm
is the 1-D fast Fourier transform used in power spectrum
computation. However, when the motion cycle is reason-

ably short, such as walking in normal speed, sequence
length of 64 suffices. Cropping of aligned sequences also
helps to speed up the processing.

In the current work, we put restrictive conditions on
data. The steady background condition in the translatory
moving object case is for the background subtraction. The
system actually tolerates small camera movement quite
well. When an object is not moving in a translatory man-
ner with respect to the camera, its trajectory will not be
linear in the data cube and a scheme more sophisticated
than the Hough line detection will have to be used for the
frame alignment. If the object is not moving frontopar-
allel to the camera, the perspective effect will change the
size of the object in the sequence. However, this change
should not be large during the period of 64 frames when
the distance between the camera and the object is suf-
ficiently large comparing to the size of the camera, and
in many practical situations, this is the case. When the
data is reasonably clean, flow based tracking and scaling
methods such as the one in [3] can also be used for frame
alignment.

4.2 Applications

Among other possible applications, the proposed algorithm
can be applied readily to motion classification and recog-
nition. In [5], the shape of the active region in a sequence
was used for activity recognition. In [3], the sum of the
flow magnitudes in tessellated frame areas of periodic mo-
tion were used as feature vectors for motion classification.
The periodicity templates produced by the algorithm in-
troduced here can provide both distinct shapes of regions
of periodic motion, such as the wedge for the walking mo-
tion and the snow angle for the jumping jack, and accurate
pixel-level description of a periodic action in the form of
temporal harmonic energy ratio and motion fundamental
frequencies.

The characterization of periodic motion is also impor-
tant to video database related applications. The presence,
position, extent, and frequency information of a periodic
motion can be used for video representation and retrieval.

5 Summary

We have presented a new method for detecting and seg-
menting multiple periodic motions in image sequences.
The method consists of two main parts: 1) frame align-
ment to foveate on individual moving objects; 2) Fourier
spectral harmonic peak detection and energy computation
to identify regions of periodic motion. This method detects
and segments a periodic motion simultaneously and is not
computationally taxing. We illustrated the technique us-
ing real-world examples and demonstrated its robustness
to noise.

A new periodicity measure in the form of temporal har-
monic energy ratio is proposed. Compared to the period-
icity measure used in other work, this is a more accurate
quantitative measure of how much energy at each pixel
location is contributed by the signal periodicity.

The periodicity templates contain information of the
segmented region as well as the associated energy distri-
bution and characteristic cyclic frequencies. The templates
can be used as a means of periodic motion representation.
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