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Abstract

It is only very recently that systems have been de-
veloped that transcribe polyphonic music with more
than two voices in even limited generality. Two of
these systems[Kashino et al.1995, Martin 1996] have
been built within a blackboard framework, integrating
front ends based on sinusoidal analysis with musical
knowledge. These and other systemsto date rely on
instrument models for detecting octaves. Recent re-
sults have shown that an autocorrelation-based front
end may make bottom-up detection of octaves pos-
sible, thereby improving system performance as well
as reducing the distance between transcription models
and human audition. This report outlines the black-
board approach to automatic transcription and presents
anew system based on the log-lag correlogram of [El-
lis 1996]. Preliminary results are presented, outlining
the bottom-up detection of octaves and transcription of
simple polyphonic music.

1 Introduction

In this report, we present the basis of an automatic transcription
system. We describeacomputational framework (blackboard sys-
tems) that allows the integration of both bottom-up and top-down
processing, both of which seem to be required to explain a broad
range of human perception. We make a case for a correlation-
based front end rather than the sinusoidal analysis ususally em-
ployed in transcription systems. In particular, we argue that the
log-lag correlogram is an appropriate signal representation, one
that makes bottom-up detection of octavesfeasible without intro-
ducing explicit instrument models.

After giving a brief history of transcription systems, we intro-
duce blackboard systems and the log-lag correlogram. We then
present some implementation details of the current system, pre-
liminary experimental results, and directionsfor future work.

1.1 Transcription — past, present, future

Automatic transcription, in the senseof extracting notepitchesand
onset/offset times from an audio signal, has interested musicians
and computer scientists for over twenty-five years. Although
these data are not a sufficient representation for reproduction of
a perceptually equivalent “copy” of the origina performance, as
loudness and timbre are completely ignored (see [Scheirer 1995]
for an attempt to achieve perceptua equivalencein score-guided
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*The content of this report differs from the abstract printed in
the meeting program; [Martin 1996] corresponds more closely to
the printed abstract. Thisreport highlightsthe differencesbetween
our approach and the one described in [Kashino et al.1995].

transcriptions of piano performances), they go along way toward
forming auseful symbolic representation of the music.

Monophonic transcription (equivalently dubbed “pitch-
tracking” in this context) is a mature field, with many well-
understood a gorithmsincluding time-domain techniquesbased on
zero-crossings and autocorrelation, and frequency-domain tech-
niques based on the discrete Fourier transform and the cepstrum
(c.f., [Brown and Zhang 1991, Brown 1992, Brown and Puckette
1993]). Polyphonic transcription (analysis of signalswith multi-
plesimultaneously sounding notes) hasenjoyed much lessrel ative
suCCess.

Inthe early 1970s, Moorer built asystem for transcribing duets
[Moorer 1975]. Hissystemwaslimited, succeedingonly onmusic
with two instruments of different timbres and frequency ranges,
and with strict limitations on the allowable simultaneous musical
intervalsin the performance; it was unableto detect octavesor any
other intervals in which the fundamental frequency of the higher
note corresponds to the frequency of one of the overtones of the
lower note.

In 1993, Hawley described a system which he purported could
transcribe polyphonic piano performances [Hawley 1993]. His
approach was based on a differential spectrum analysis (similar
to taking the difference of two adjacent FFT frames in a short-
time Fourier transform) and was reported to be fairly successful,
largely because piano notes do not modulate in pitch. His system
is an example of atranscription engine with very limited scope,
showingthat transcription systemscan be successful by narrowing
the range of input signalsthey consider and by relying on special
characteristics of those signals, which may not be present in a
more general class of signals.

While automatic music transcription has been a research goal
for over 25 years, it is only in the last few years that systems
have been demonstrated that are capableof transcribing morethan
two simultaneous musical voicesin even limited generality (c.f.,
[Katayoseand Inokuchi 1989, Kashino et al.1995, Martin 1996]).
Systemsto date have relied on signal processing front ends that
can be characterized as extracting individual partials of musical
notes by frequency-domain analysis. The transcription problem
then becomes one of explaining the set of isolated partials as
componentsof notes. In thisreport, wewill try to make a casefor
adifferent approach to front end signal processing that may have
more in common with human physiology.

1.2 Onereason that transcription ishard

One of the fundamental difficulties for automatic transcription
systems, as evidenced by Moorer’s and later systems, is the prob-
lem of detecting octaves. Simple Fourier series theory dictates
that if two periodic signals are related by an octave interval, the
note of higher relative pitch will share al of its partials with the
note of lower pitch. Without making strong assumptions about



the strengths of the various partials (i.e., somekind of instrument
model), it will not be possibleto detect the higher-pitched note.

For this reason, it is necessary to rely upon another form of
knowledge about musical signals in order to resolve the poten-
tial ambiguity. As mentioned above, one reasonable approach
isto rely on instrument models (assumptions about the relative
strengthsof the various partials of anoteplayed by aparticular in-
strument, or agenerative/synthetic model of theinstrument sound).
A second possibility is to apply musical knowledge, perhapsin
the form of production rulesfor counterpoint music, or in simple
heuristicsfor harmonic and melodic motion. Both approachesare
equally valid.

To make use of such knowledge, it is necessary to have a
computational framework capable of organizing it and applying it
intheright context.

1.3 Blackboard systemsin brief

Contemporaneoudy with early automatic transcription efforts, so-
caled “blackboard” systems were developed as a means to in-
tegrate various forms of knowledge for the purpose of solving
ill-posed problems. The name “blackboard” comes from the
metaphor of a group of experts standing in front of a physical
blackboard, working together to solve a problem. The experts
watch the solution evolve, and each individual expert makes addi-
tionsor changesto the blackboard when hisparticular expertiseis
required. In acomputational blackboard system, thereis acentral
workspace/dataspace (the blackboard) which isusually structured
in an abstraction hierarchy, with “input” at the lowest level and a
solution or interpretation at the highest. Continuing the metaphor,
the system includes a collection of “knowledge sources’ corre-
sponding to the experts. An excellent introduction to the history
of blackboard systems may be found in [Nii 1986].

It is notable that the systems described in both [Kashino et
al.1995] and [Martin 1996] are built within a blackboard frame-
work. Music has a natural hierarchical structure which lends
itself to the type of data abstraction hierarchy typically used in
blackboard systems (a portion of one possible musical hierarchy
isshowninFigure1). Thepower of the blackboard framework for
transcriptionisthat it providesan environmentinwhichit ispossi-
bleto integrate both signal processing and musical knowledgeinto
asingle system with ease. Blackboard systems are also easy to
expand — adding new knowledge amountsto coding a handful of
procedural routines and registering them with the control system.

Blackboard systems are notable also for their ability to per-
form both bottom-up (data-driven) and top-down (expectation-
or explanation-driven) processing. [Scheirer 1996] points out that
top-down, or predictive, processingisnecessary to account for hu-
man music perception, and as[Slaney 1995] and [Bregman 1995]
have noted, both top-down and bottom-up processing appear to
be necessary to explain human auditory scene analysis, of which
music transcription can be viewed as a specia case (one which
requiresagreat deal of expert musical knowledge, however!).

1.4 A pitch perception model asfront end

Human pitch perception is a complex phenomenon that has re-
ceived a great deal of attention in the psychoacoudtics literature.
Over the years, a number of models have been proposed to ac-
count for the many known “oddities’ of human pitch perception,
including the missing fundamental phenomenon and weak pitch
perception arising from interrupted noise. The best known of
these models have been based on resolving individual partials
with narrow filters, on envelope modulation due to the “beating”
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Figure1: A portion of one possible data abstraction hierarchy for
musical signals, which might be employed within a blackboard
transcription system.

of multiple partials in a wider filter, on the alignment of subhar-
monics, and on autocorrelation (c.f., [Goldstein 1973, Terhardt
1979, Patterson 1987]).

The model which seemsto most compactly explain the widest
range of psychoacoustic phenomenais the one proposedin [Med-
dis and Hewitt 1991], which is related to the “correlogram” de-
scribedin [Slaney and Lyon 1993]. In the pitch perception model,
the audio signal is first decomposed into frequency bands by a
model of basilar membrane mechanics (implemented by a gam-
matone filter bank). Each filter channel is further processed by
amodel of inner hair cell (IHC) dynamics. The IHC model has
complicated behavior, but can be viewed as half-wave rectifica-
tion followed by smoothing (to eliminate carrier frequenciesabove
the phase-locking limit of the hair cells) and onset enhancement.
Theoutput of each IHC is analyzed by short-time autocorrelation,
yielding an estimate of periodic energy in each filter channel as
afunction of lag, or inverse pitch. Finaly, the autocorrelations
are summed across the filter bank channels, and the lag with the
resultant largest peak is chosenasthe “ pitch percept”. TheMeddis
and Hewitt model accountsnot only for pitch perception of normal
musical notes, but also for the missing fundamental phenomenon
and several of the “weak pitch” phenomena.

In his dissertation, Ellis presentsasignal processing algorithm
that can be viewed as a variant of the Meddis and Hewitt model
[Ellis 1996]. Ellis computesa “log-lag” correlogram, where the
three axes of the the correlogram volume are: filter channel fre-
quency, lag (or inverse pitch) on alogarithmic scale, and time (see
Figure 2). The output of each frequency/lag “cell” is computed
by asimplefilter structure, as shownin Figure 3. To compute the
“pitch percept”, Ellis normalizes the output of each frequency/lag
cell by the energy in that filter bank channel (given by the output
for that channel at zero lag), and averages across the filter bank
channels, yielding what he calls the summary autocorrelation, or
periodogram. Thelog-lag (log-pitch) axisisan improvement over
standard correlogramsin that it more closely relates to the varia-
tionin pitch resolution ability of humansasafunction of pitch. A
variant of Ellis's model serves as the “front-end” for the system
presented in this paper.

It is our contention that transcription systems built with a
correlation-based front end will be more robust than systemswith
“sinusoid-based” front ends, in that they will not require explicit
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with permission.

instrument models (or may, in fact, be able to acquire their own
instrument models without explicit training).

2 Implementation

Inthis section, theimplementation details of the transcription sys-
tem are presented. The signal processing underlying the system’s
front endis described, followed by descriptions of the blackboard
system control structure, data abstraction hierarchy and knowl-
edge base.

2.1 Thefront end

As described in the Introduction, the front end signal processing
in the current system is modeled after the log-lag correlogram of
[Ellis 1996], which may be viewed asavariant of the correlogram
of Slaney and Lyon and of the pitch perception model of Meddis
and Hewitt. In the current implementation, the filter bank is
made up of forty gammatone filters (six per octave), with center
frequenciesranging from 100 Hz to 10 kHz, spaced evenly in log
frequency. The standard Patterson-Holdsworth filter parameters
have been used, yielding filter bandwidths based on the ERB scale

[Patterson and Holdsworth 1990].

The lag axis of the correlogram volume is sampled at 48
lags/octave, from 20 Hz to approximately 1 kHz, which yields
adequate resolution for most musical signals. The time axis is
downsampled to 220.5 Hz before being processed by the black-
board system. Thecorrelogram implementationisidentical to that
describedin [Ellis 1996], with the exception that the envel opefol-
lower lowpassfilter cutoff frequency is decreased with increasing
lag, such that the correlogram output is nearly critically sampled
(in lag) at al lags (Ellis chose a single cutoff as a compromise
between oversampling at short lags and undersampling at long
lags).

As mentioned previously, a summary autocorrelation or peri-
odogramis computed from the correlogram by normalizing each
frequency/lag cell by the zero-lag energy in the same frequency
band and then averaging acrossthe frequency bands. An example
of correlogram output and corresponding summary autocorrela-
tion isshownin Figure4.
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Figure 4: Log-lag correlogramand summary autocorrelation for
a 100 Hz impulse train. When a single pitch is present in the
input signal, the summary autocorrelation is characterized by a
sharp peak at the pitch (inverselag) of the signal as perceived by
humans, and at its subharmonics. Inthisfigureandinall following
correlogram-based figures, the lag axis has been inverted and
labeled pitch for convenience. The linearly-spaced axis beneath
the pitch axis correspondsto MIDI note, included for convenience
in later figures.

2.2 Blackboard control structure

Asdescribed in the Introduction, blackboard systemsusually con-
sist of a central dataspace (the blackboard), a set of so-called
knowledge sources (K Ss), and ascheduler. Thisisthe implemen-
tation style that has been adopted for the current system. It is
shown schematically in Figure 5.

On a given blackboard time step?, the control system selects
a Focus of Attention (FOA), which may be a particular hypoth-
esis currently on the blackboard, or a particular region of the
blackboard (e.g., a particular node of the data abstraction hierar-
chy). Knowledge source (K S) preconditions are then selected and
tested, based on their potential applicability to the FOA. If KSs
are activated (signalled by adding their action procedures to an
execution list), the action component of the KS with the highest
“expected benefit rating” is executed. If no KSs are activated the
FOA selection processisiterated until a suitable FOA isfound.

When an acceptableK Sactionisfound and executed, the black-
board makes note of what has changed on the blackboard and
notifies all KSs that have registered interests in those types of
events. Inthisway, KSscan betriggered in an interrupt- or event-
driven fashion, which can potentially cut down on computational
reguirements.

As mentioned above, each knowledge source is made up of
a precondition/action pair, encoded procedurally. Each KS is

!Blackboard time steps have no fixed relation to time within
the musical signal, though there is usually a strong correlation.
Generally, the system runs through some small number of black-
board time stepsfor each frame of input data, however, the system
is allowed to reprocess difficult portions of the input dataif new
information arises.
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Figure5: Thecontrol structureof the blackboardsystemdescribed
inthisreport.

also responsiblefor registering “interests’ with the blackboard (a
particular KS, for example, might be interested in all new Note
hypotheses, or all changesmadeto aparticular Chord hypothesis).
Each KS maintains a set of instantiations, each of which has
a stimulus frame and a response frame. The stimulus/response
frames are used by the blackboard to test whether a given KS
instantiation is applicable to a particular FOA.

2.3 Blackboard data abstraction hierarchy

In the current implementation, the blackboard workspace is ar-
ranged in a hierarchy, with the log-lag correlogram input at the
lowest (least abstract) level and notes at the highest. The general
outline is shown in Figure 6 with planned extensions in dashed
boxes.

Each blackboard level is home to hypotheses of a particular
type. In the current system, hypotheses are implemented in a
frame-like manner. All hypotheses share a common set of slots
(data) and methods (code), including lists of supported and sup-
porting hypotheses at neighboring blackboard levels. Addition-
ally, each type of hypothesis has its own internal rating scheme,
divided into two components: a support rating and an explanation
rating. The internal ratings are collapsed to a six point ordinal
scale, which is accessible by the KSs and the control system.
Changesin the support rating of aparticular hypothesisare passed
upward to any supported hypotheses. Similarly, changesin expla-
nation rating are passed downward to supporting hypotheses.

2.3.1 Correlogram Frame

At the lowest level of abstraction lie the Correlogram Frame
hypotheses. Each contains a “slice” of the correlogram volume
at a particular time. The correlogram is considered the “ground
truth” inthe system and istherefore given, by definition, amaximal
support rating. Correlogram Frame hypotheseshave accessmeth-
ods for the individual lag/frequency cells, as well as a graphical
interface method currently called from a Tcl/Tk shell.
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Figure 6: The data abstraction hierarchy in the current black-
board implementation. Regionswith dashed bordersare planned
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2.3.2 Summary autocorrelation/periodogram

Above each Correlogram Frame lies a single Summary Au-
tocorrelation hypothesis, formed by averaging the energy of the
lag/frequency cells across frequency. Summary Autocorrelation
hypotheses provide access methods for their values at particu-
lar lags. Additionally, a graphical interface method for use with
Tcl/Tk has been implemented. Since the Summary Autocorre-
lation is derived algorithmically from the Correlogram Frame, it
shares the maximal support rating of the supporting Correlogram
Frame.

2.3.3 Peaks

The local maxima of each Summary Autocorrelation frame
form Peak hypotheses, which have dots for the peak frequency,
height, and the average height in a one-octave neighborhood
around the maximum. Pesks are merely an intermediate step
between the Summary Autocorrelation and Periodicity hypothe-
ses, used for programming convenience. It islikely that they will
beeliminated in future revisionsof the system. The supportrating
of each Peak hypothesis is based on the ratio of its height to its
average neighborhood height.

2.3.4 Periodicities

A Periodicity hypothesisisacollection of Peak hypothesesthat
may persist across multiple Correlogram frames. As mentioned
in the section describing the front end, a pitched input signal will
result in a subharmonic series in the Summary Autocorrelation.
A Periodicity hypothesis may then be thought of as a “pitch”
hypothesis, formed by gathering together Peak hypotheseswhich
form a subharmonic series. Periodicity hypotheses have a pitch

slot, aswell as a“strength” score, based on the average ratio of
Peak height to neighborhood average height.

235 Envelope

Envelope hypotheses are a second part of the “ground truth”
derived from an input signal. For each of the correlogram filter
bank channels, azero-lag correlation is cal cul ated, corresponding
to a running estimate of the energy in that channel. As with
Correlogram Frames, Envel ope hypotheseshave maximal support
ratings.

2.3.6 Onsets

Onset hypotheses are derived directly from the Envelope sig-
nals. A first difference approximation of the Envel opesiope (mea-
sured in dB) is calculated and local maxima become new Onset
hypotheses. In addition to slots for onset time and envel opeslope,
Onset hypotheses have a slot for the energy reached at the next
local maxima in the envelope signal. The Onset hypothesis sup-
port rating is based upon both the slope and the peak energy of the
onset.

2.3.7 Notes

Note hypothesesconsist of oneor more Periodicity hypotheses,
combined with one Onset hypothesis. In addition to a frequency
slot filled in by a weighted average of the frequencies of the sup-
porting Periodicity hypotheses, Note hypotheseshave apitch class
method and a MIDI-note method, used for generating output in
theform of aMIDI file, symbolic score output, or piano roll nota-
tion. The Note hypothesis support score is based upon the slope
and maximal energy of the component Onset, aswell as the sup-
port ratings of the component Periodicity hypotheses. In addition,
Note hypotheses have several internal flags, which may be set by
KSs, giving Note hypotheses accessto limited information about
their neighbors. These flags can affect ratings, as will be seenin
the section describing the knowledge base.

2.4 Blackboard knowledge base

The current implementation of the transcription system is still in
its infancy. It was only recently that it was thought feasible to
use a correlation-based front-end, and very little of the previous
implementation [Martin 1996] wasreusable. At present, only five
knowledge sources are present in the system, and they act almost
entirely in a bottom-up, or data-driven, fashion. Of the five KSs,
thefirst threemay be combinedin the next revision, asthey operate
together in a strictly algorithmic manner, and their combination
will make it possible to eliminate the Peak hypotheses from the
systemaltogether. The K Ssare shownin astylized representation,
overlaid on the data hierarchy, in Figure 7.

Asmentioned in the section describing the control system, KSs
are made up of three essential components: their “interests’, a
precondition component, and an action component. The KSsin
the current implementation will be described from this standpoint.

24.1 Read Correlogram Frame

The Read Correlogram Frame KS has no declared interests,
but rather acts as a daemon, remaining in the precondition queue
at al times. Its precondition is satisfied whenever the blackboard
FOA isatime step of theinput signal for which thereis not cur-
rently aCorrelogram Frame hypothesis. TheKSsactionissimply
to read the datafrom disk (the front end analysisis performed of-
fline and stored in adatafile), and to create a Correlogram Frame
hypothesisalong with a supported Summary Autocorrelation hy-
pothesis, and to extend the Envel ope hypothesisto include the new
frame.
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Figure 7: A graphical representation of the knowledge base as
a whole. It shows the hypothesis abstraction hierarchy used in
the system with the knowledge sources overlaid. Each KS is
represented as a connected graph of nodes, where each nodeis a
hypothesison the blackboard, and the arrows represent a support
relationship.

242 Summary Autocorrelation Peaks

The Summary Autocorrelation PeaksKS is interested in all
new Summary Autocorrelation hypotheses. Its precondition is
automatically satisfied by a new Summary Autocorrelation hy-
pothesis, and its action is simply to propose Peak hypothesesfor
each local maximum in the Summary Autocorrelation.

2.4.3 ProposePeriodicities

ThePropose PeriodicitiesKSisinterestedin all new Peak hy-
potheses. Its precondition is automatically satisfied if it has been
notified of any new Peaks but hasn’t yet acted upon them. Its
action consists of two parts. First, the KS looksfor existing Peri-
odicity hypotheseson the blackboard. If any arefound, new Peak
hypotheses which fit the subharmonic series of any Periodicity
are added as additional support. After thisfirst round of analysis,
remaining “unexplained” Peak hypothesesare considered for the
formation of new Periodicity hypotheses. Starting with the Peak
of highest frequency (shortest lag), potential subharmonic series
are evaluated. Any series with sufficient support is added to the
blackboard as a new Periodicity hypothesis.

24.4 Note Support

The Note Support KSisinterested in all New Periodicity hy-
potheses. It maintains an internal list of al currently active Peri-
odicity hypotheses. Its preconditionis satisfiedwhen aPeriodicity
hypothesis has ended (i.e., there has been no support for severa
input frames). The KSs action consists of evaluating the support
of each Periodicity that satisfied the precondition and adding new
Note hypothesesto the blackboard or augmenting existing Note
hypotheses as appropriate. The support evaluation is heuristic;
Periodicities that persist over alarge number of input frames are
consideredto be strongly supported, asare Periodicities supported
by Peak hypotheseswith strong support ratings.

2.45 PruneNotes

It turns out that the Note Support KS creates many more Note
hypothesesthan there are notes present in atypical musical exam-
ple (sometimesthisis dueto chancecorrelationsin anoisy signal,
but more often it is due to strong subharmonic series arising from
chords and from harmonics/subharmonicsof actual notes). Thus
the PruneNotesKSis used to prune avay many of the obviously
incorrect note hypotheses.

The Prune Notes KS is interested in new Note hypotheses.
Like the Note Support KS, its precondition is satisfied when a
hypothesisit isinterested in hasended (i.e., when some number of
input frameshas el apsed sincethelast timeagiven Note hypothesis
was extended by anew Periodicity).

The Prune Notes action is both complex and heuristic. It is
intended to eliminate both harmonics and subharmonics of actual
notes without eliminating octaves, which may at first appear to
be harmonics. First, the KS assembles a list of existing Note
hypotheseswhich overlap (in time support) the Note hypothesisof
interest. Next, the KS finds the maximum onset energy associated
with the collection of Note hypotheses. If the onset energy of
the Note hypothesis of interest is 25 dB below the maximum
(a rather arbitrary threshold — one could certainly look to the
psychoacousticsliterature for amore perceptual ly relevant cutoff),
the Note hypothesis is labeled with a “Too Weak” flag, which
reducesits support rating.

The second portion of the KS action looks for harmonic re-
lations between found Note hypotheses. A frequency ratio is
formed between the Note hypothesis of interest and each of the
overlapping Note hypotheses, and octave relations are noted. If
any are found, Note durations are compared for the relevant hy-
potheses, and if the duration of Note hypothesisis much shorter
than another, the hypothesis of shorter duration is labeled with a
“Harmonic” flag, which reducesits support rating. Additionally,
if thelower notein an octaverel ation has more component Period-
icities than the upper note, and they have weaker support ratings,
the lower note is labeled with a “ Subharmonic” flag, which re-
duces its support rating. Similarly, if the upper note has more
component Periodicities, and its Onset rating is less than that of
the lower note, it is labeled with a“Superharmonic” flag, which
reducesits support rating. These heuristics are based on empiri-
cal observation and will be developed more rigorously before the
model is further extended.

3 Reaults

3.1 Bottom-up octave detection

The correlogram/periodogram representation may offer an advan-
tage over sinusoidal representations for detecting the presence of
octaves. As a simple example, consider two sounds: the note
corresponding to MIDI note 48 (a C pitch) struck on a piano, and
the same note struck simultaneously with the note corresponding
to MIDI note 60 (a C, one octave higher). The difference be-
tween the two sounds s clearly audible, and a person can easily
tell which oneis an octave and which is a single note (it is worth
pointing out that a person who is unfamiliar with the piano tim-
bre might mistake the octave relation for a single note with pitch
corresponding to that of the lower C, particularly if the context
of the single note is not provided). Figures 8 and 9 show the
correl ogram/summary autocorrel ation representationsfor the two
cases mentioned above, based on samplesfrom an acoustic piano.

By comparing the values of the summary autocorrelation at the
subharmonics of MIDI note 60 in Figures 8 and 9 it is clear that
whilethe presenceof MIDI note 60isnot obviousat afirst glancein
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Figure 8: Correlogram slice and summary autocorrelation of a
singlepiano note, correspondingto MIDI note48, with lines over-
laid at the subharmonicsfor MIDI note 60, whichisnot presentin
the signal. Note the absence of local maxima, particularly at the
fundamental frequency and second subharmonic for MIDI note
60.

Figure9, it isvisibleunder closer scrutiny. Thisresultisduetothe
effect of multiple partials contributing to theautocorrelation within
asingle frequency band. In the single note case, several channels
exhibit beating between two adjacent partials, resulting in strong
peaksat their common subharmonics, but weak and/or displaced
peaksat the pitchescorrespondingto the partial frequencies. Inthe
octave example, the partials belonging to the upper note reinforce
the even partials of the lower note, causing them to dominate
the odd partials somewhat, resulting in more clear peaks at the
subharmonicscorresponding to the higher C pitch.

This reasoning corresponds to an implicit instrument model,
making thetacit assumptionthat harmonic energy variessmoothly
with frequency (a reasonable assumption for many sounds). The
implicit assumptionis a part of the pitch perception model rather
than of the system’s knowledge base, however. The model makes
the prediction that as the strength of a note’s even partiads is
increased relative to the strength of the odd partials, the note will
sound more and more like an octave, and will eventually (when
the even partials are much stronger than the odd partials) have a
perceived pitch one octave higher. This behaviour corresponds
with our intuitions about pitch perception.

3.2 A monophonic transcription example

To show that the correlogram processing is extracting sufficient
information for transcription, it is worth looking at its output
for a monophonic signa. In this section we consider an short
excerpt from a recorded performance of Bach’'s Well-Tempered
Clavier (the introduction of the G-minor fugue from Book I).
Music notation for the excerpt is shown in Figure 10.

As can be seen from the piano-roll output shown in Figure 12,
the first eight notes have been correctly extracted by the system,
along with four “extra’ note hypotheses which have not been
pruned. The additional hypotheses are al close harmonic rela-
tions (octaves, fourths and fifths below) of the actual notesin the

15 20 25 30 3 40 45 50 55 60 65 70 75 80

Figure9: Correlogramdlice and summary autocorrelation of two
piano notes, one octave apart, corresponding to MIDI notes 48
and 60, with lines overlaid at the subharmonics for MIDI note
60, which is present in the signal. Note the presence of local
maxima in the summary correlation at all pitches (inverse lags)
corresponding to the subharmonicsfor MIDI note 60.

recording. Asthe pruning algorithm was hand-tuned for the poly-
phonic example which follows, this encouraging but not perfect
performanceis to be expected. is not surprising.

3.3 A polyphonic transcription example

One of the test signals we have been working with is a short seg-
ment from the introduction of a Bach chorale (Erschienenist der
herrlich’ Tag). Traditional music notation for the first phrase of
thepieceisshownin Figure 13. The samplewasgenerated from a
flat MIDI score, using samplesfrom aBosendorfer acoustic piano.
This piece is an example of the type of simple polyphonic music
that it is our ultimate goal to transcribe. Figures 14 and 15 show
the correlogram/periodogram analysis at two time slices, corre-
sponding respectively to portions of the first and second chords of
the piece.

As can be seenin the piano-roll output shown in Figure 16, al
of the notesin thefirst five beats of the piece have been correctly
identified, and all extraneous note hypotheses have been pruned
successfully. Thesuccessful pruning result isdueto careful setting
of thresholds in the Prune Notes KS. In the rest of the example,
pruningislesssuccessful. Thisresult seemsto beduein large part
to achangefrom closed-form chordsto open-form chords around
the fifth beat. Encouragingly, nearly all of the notes in the piece
appear as Note hypotheses (with the conspicuousexception of the
high E [MIDI note 76], whose absence seemsto bedueto implicit
assumptionsmade in the Propose Periodicity KS).

4 Conclusions

Whilethefew resultsmentionedin thelast section are hardly com-
pelling, we are encouraged by them. The knowledge integration
approach so far hasignored much of the information containedin
the summary autocorrelation representation. One obvious exam-
pleof thisis the extremely sharp peaksexhibited at subharmonics
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Figure 10: Music notation for an excerpt from Bach’s Well-Tempered Clavier (the introduction of the G-minor fugue from Book I).
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Figure 13: Music notation for the first phrase of a Bach chorale written in the style of 18th century counterpoint. The piece is titled

Erschienenist der herrlich’ Tag.
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Figure 11: CorrelogranVperiodogram analysis during the first
note of the monophonic excerpt. It clearly represents a single
pitch at MIDI note 62 (D).
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Figure 12: MIDI scorerepresentation and partial analysis of an
excerpt from a recording of Bach’s Well Tempered Clavier. All
of the notes in this portion of the recording have been identified,
alongwith a few spuriousnote hypotheses, which would be pruned
by applying musical knowledge in a more complete system. The
time scales of the input MIDI file and extracted output have been
hand-aligned for easeof comparison (the MIDI file correspondsto
aflat interpretation of the score, whereasthe output was extracted
from a human performance, so the MIDI-file timescale is only
approximate.
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Figure 15: Correlogramyperiodogramanalysis of a portion of the
second chord of the Bach chorale example. Therearenotesin the
signal correspondingto MIDI notes 59, 63, and 66. The rather
large peak at MIDI note 35 correspondsto a subharmonic of the
chord root.
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Figure 16: MIDI scorerepresentation and partial analysis of an
excerpt from a synthesi zed recording of Bach’s Erschienenist der
herrlich’ Tag. All of the notesin this portion of the recording have
been identified, and all extraneous note hypotheses have been
pruned by careful setting of thresholdsin the Prune Notes KS.
Analysis breaks down for the rest of the first phrase of the piece,
due to the particular thresholds set in the pruning heuristics, as
well asthe lack of musical knowledgein the system.



of the chord root (which are predicted by early pitch and chord
perception modelsand clearly show up in the examples). In poly-
phonic transcription, it certainly makes senseto take advantage of
this strong indicator of chord root in order to constrain the search
for the chord’s component notes.

Without doubt, many improvements could be madein the cur-
rent bottom-up methods for forming Note hypotheses. We are
currently investigating more robust and principled methods for
performing this analysis (the present system is essentially an ad
hoc first attempt), and we expect that performance will improve
greatly.

4.1 Arewejust trading harmonics for
subhar monics?

A questionthat might beaskedin referenceto thiswork iswhether
the correlation-based front end merely exchangesthe problem of
dealing with harmonic series in the frequency domain for one of
dealing with subharmonic seriesin “lag” — what isto be gained?

Our answer is twofold. First, even on this surface level, some
ground has been gained. In sinusoidal analysis, a principal prob-
lem is that of resolving the overtones of a pitch. Often, this
problem is “solved” by using extremely narrow filters (with cor-
respondingly sluggish time-responses). The correlogram analysis
does not require such narrow filters, and the pitch resolution for
the musical exampleswe have examined (as evidenced by the fig-
ures in this report) is on the order of one semitone®. The “lag
peaks’ are quite robust, making subharmonic series detection a
fairly simple task.

Second, the discussion of bottom-up octave detection reveals
adistinct advantage of the correlation-based approach over sinu-
soidal approachesfor the detection of octaveswithout introducing
an instrument model beyond what isimplied by human pitch per-
ception.

4.2 Where dowegofrom here?

Thereare many directionsin which this research can be extended.
Work is planned on proving the mathematical validity of bottom-
up octave detection, psychophysica validation of the implied
model of human octave perception, as well as the extension of
the current system’s knowledge base, introducing the capacity for
automatic acquisition of instrument models.

4.2.1 Integration of musical knowledge

In order to build auseful transcription system, it is necessary to
incorporate a great deal of musical knowledge. Even if the goal
is to generate a MIDI representation of the musical information,
musical knowledge is necessary to eliminate all spurious “pitch
percepts’ from the correlogram analysis. This knowledge may
take the form of hypotheses regarding the number and type of
instrumentsin a performanceaswell as melodic/harmonic motion
of the piece. Some of these ideas have been implemented in
[Kashino et al.1995], and it will be fruitful to apply the same
approach to this system.

4.2.2 Automatic acquisition of instrument models

[Ellis and Rosenthal 1995] and [Ellis 1996] describe a novel
representational element for pitched signals, called theweft, which

2|t should be noted that the “width” of pesks in the sum-
mary autocorrelation can be reduced by introducing additional
smoothing to the correlogram cal culation after the multiplication,
and by reducing smoothing before multiplication (in the envelope
follower).
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is based on correlogram analysis. The weft is, in essence, a
sourceffilter model, and Ellis's extraction techniques might be
used to extract excitation signals and time-varying filters (charac-
terizing the formant structure) from simultaneous pitched sounds.
It isour goal to incorporate weft analysisinto a blackboard tran-
scription systemfor the twofold purposeof recognizing previously
heard instrument soundsand for acquiring new instrument models
based on their time-varying formant structure.
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