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Abstract
It is only very recently that systems have been de-
veloped that transcribe polyphonic music with more
than two voices in even limited generality. Two of
these systems [Kashino et al.1995, Martin 1996] have
been built within a blackboard framework, integrating
front ends based on sinusoidal analysis with musical
knowledge. These and other systems to date rely on
instrument models for detecting octaves. Recent re-
sults have shown that an autocorrelation-based front
end may make bottom-up detection of octaves pos-
sible, thereby improving system performance as well
as reducing the distance between transcription models
and human audition. This report outlines the black-
board approach to automatic transcription and presents
a new system based on the log-lag correlogram of [El-
lis 1996]. Preliminary results are presented, outlining
the bottom-up detection of octaves and transcription of
simple polyphonic music.

1 Introduction
In this report, we present the basis of an automatic transcription
system. We describe a computational framework (blackboard sys-
tems) that allows the integration of both bottom-up and top-down
processing, both of which seem to be required to explain a broad
range of human perception. We make a case for a correlation-
based front end rather than the sinusoidal analysis ususally em-
ployed in transcription systems. In particular, we argue that the
log-lag correlogram is an appropriate signal representation, one
that makes bottom-up detection of octaves feasible without intro-
ducing explicit instrument models.

After giving a brief history of transcription systems, we intro-
duce blackboard systems and the log-lag correlogram. We then
present some implementation details of the current system, pre-
liminary experimental results, and directions for future work.

1.1 Transcription — past, present, future
Automatic transcription, in the senseof extracting note pitches and
onset/offset times from an audio signal, has interested musicians
and computer scientists for over twenty-five years. Although
these data are not a sufficient representation for reproduction of
a perceptually equivalent “copy” of the original performance, as
loudness and timbre are completely ignored (see [Scheirer 1995]
for an attempt to achieve perceptual equivalence in score-guided
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transcriptions of piano performances), they go a long way toward
forming a useful symbolic representation of the music.

Monophonic transcription (equivalently dubbed “pitch-
tracking” in this context) is a mature field, with many well-
understood algorithms including time-domain techniques based on
zero-crossings and autocorrelation, and frequency-domain tech-
niques based on the discrete Fourier transform and the cepstrum
(c.f., [Brown and Zhang 1991, Brown 1992, Brown and Puckette
1993]). Polyphonic transcription (analysis of signals with multi-
ple simultaneously sounding notes) has enjoyed much less relative
success.

In the early 1970s, Moorer built a system for transcribing duets
[Moorer 1975]. His system was limited, succeedingonly on music
with two instruments of different timbres and frequency ranges,
and with strict limitations on the allowable simultaneous musical
intervals in the performance; it was unable to detect octaves or any
other intervals in which the fundamental frequency of the higher
note corresponds to the frequency of one of the overtones of the
lower note.

In 1993, Hawley described a system which he purported could
transcribe polyphonic piano performances [Hawley 1993]. His
approach was based on a differential spectrum analysis (similar
to taking the difference of two adjacent FFT frames in a short-
time Fourier transform) and was reported to be fairly successful,
largely because piano notes do not modulate in pitch. His system
is an example of a transcription engine with very limited scope,
showing that transcription systems can be successful by narrowing
the range of input signals they consider and by relying on special
characteristics of those signals, which may not be present in a
more general class of signals.

While automatic music transcription has been a research goal
for over 25 years, it is only in the last few years that systems
have been demonstrated that are capable of transcribing more than
two simultaneous musical voices in even limited generality (c.f.,
[Katayose and Inokuchi 1989, Kashino et al.1995, Martin 1996]).
Systems to date have relied on signal processing front ends that
can be characterized as extracting individual partials of musical
notes by frequency-domain analysis. The transcription problem
then becomes one of explaining the set of isolated partials as
components of notes. In this report, we will try to make a case for
a different approach to front end signal processing that may have
more in common with human physiology.

1.2 One reason that transcription is hard
One of the fundamental difficulties for automatic transcription
systems, as evidenced by Moorer’s and later systems, is the prob-
lem of detecting octaves. Simple Fourier series theory dictates
that if two periodic signals are related by an octave interval, the
note of higher relative pitch will share all of its partials with the
note of lower pitch. Without making strong assumptions about
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the strengths of the various partials (i.e., some kind of instrument
model), it will not be possible to detect the higher-pitched note.

For this reason, it is necessary to rely upon another form of
knowledge about musical signals in order to resolve the poten-
tial ambiguity. As mentioned above, one reasonable approach
is to rely on instrument models (assumptions about the relative
strengths of the various partials of a note played by a particular in-
strument, or a generative/synthetic model of the instrument sound).
A second possibility is to apply musical knowledge, perhaps in
the form of production rules for counterpoint music, or in simple
heuristics for harmonic and melodic motion. Both approaches are
equally valid.

To make use of such knowledge, it is necessary to have a
computational framework capable of organizing it and applying it
in the right context.

1.3 Blackboard systems in brief
Contemporaneously with early automatic transcription efforts, so-
called “blackboard” systems were developed as a means to in-
tegrate various forms of knowledge for the purpose of solving
ill-posed problems. The name “blackboard” comes from the
metaphor of a group of experts standing in front of a physical
blackboard, working together to solve a problem. The experts
watch the solution evolve, and each individual expert makes addi-
tions or changes to the blackboard when his particular expertise is
required. In a computational blackboard system, there is a central
workspace/dataspace (the blackboard) which is usually structured
in an abstraction hierarchy, with “input” at the lowest level and a
solution or interpretation at the highest. Continuing the metaphor,
the system includes a collection of “knowledge sources” corre-
sponding to the experts. An excellent introduction to the history
of blackboard systems may be found in [Nii 1986].

It is notable that the systems described in both [Kashino et
al.1995] and [Martin 1996] are built within a blackboard frame-
work. Music has a natural hierarchical structure which lends
itself to the type of data abstraction hierarchy typically used in
blackboard systems (a portion of one possible musical hierarchy
is shown in Figure 1). The power of the blackboard framework for
transcription is that it provides an environment in which it is possi-
ble to integrate both signal processing and musical knowledge into
a single system with ease. Blackboard systems are also easy to
expand — adding new knowledge amounts to coding a handful of
procedural routines and registering them with the control system.

Blackboard systems are notable also for their ability to per-
form both bottom-up (data-driven) and top-down (expectation-
or explanation-driven) processing. [Scheirer 1996] points out that
top-down, or predictive, processing is necessary to account for hu-
man music perception, and as [Slaney 1995] and [Bregman 1995]
have noted, both top-down and bottom-up processing appear to
be necessary to explain human auditory scene analysis, of which
music transcription can be viewed as a special case (one which
requires a great deal of expert musical knowledge, however!).

1.4 A pitch perception model as front end
Human pitch perception is a complex phenomenon that has re-
ceived a great deal of attention in the psychoacoustics literature.
Over the years, a number of models have been proposed to ac-
count for the many known “oddities” of human pitch perception,
including the missing fundamental phenomenon and weak pitch
perception arising from interrupted noise. The best known of
these models have been based on resolving individual partials
with narrow filters, on envelope modulation due to the “beating”
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Figure 1: A portion of one possible data abstraction hierarchy for
musical signals, which might be employed within a blackboard
transcription system.

of multiple partials in a wider filter, on the alignment of subhar-
monics, and on autocorrelation (c.f., [Goldstein 1973, Terhardt
1979, Patterson 1987]).

The model which seems to most compactly explain the widest
range of psychoacoustic phenomena is the one proposed in [Med-
dis and Hewitt 1991], which is related to the “correlogram” de-
scribed in [Slaney and Lyon 1993]. In the pitch perception model,
the audio signal is first decomposed into frequency bands by a
model of basilar membrane mechanics (implemented by a gam-
matone filter bank). Each filter channel is further processed by
a model of inner hair cell (IHC) dynamics. The IHC model has
complicated behavior, but can be viewed as half-wave rectifica-
tion followed by smoothing (to eliminate carrier frequenciesabove
the phase-locking limit of the hair cells) and onset enhancement.
The output of each IHC is analyzed by short-time autocorrelation,
yielding an estimate of periodic energy in each filter channel as
a function of lag, or inverse pitch. Finally, the autocorrelations
are summed across the filter bank channels, and the lag with the
resultant largest peak is chosenas the “pitch percept”. The Meddis
and Hewitt model accounts not only for pitch perception of normal
musical notes, but also for the missing fundamental phenomenon
and several of the “weak pitch” phenomena.

In his dissertation, Ellis presents a signal processing algorithm
that can be viewed as a variant of the Meddis and Hewitt model
[Ellis 1996]. Ellis computes a “log-lag” correlogram, where the
three axes of the the correlogram volume are: filter channel fre-
quency, lag (or inverse pitch) on a logarithmic scale, and time (see
Figure 2). The output of each frequency/lag “cell” is computed
by a simple filter structure, as shown in Figure 3. To compute the
“pitch percept”, Ellis normalizes the output of each frequency/lag
cell by the energy in that filter bank channel (given by the output
for that channel at zero lag), and averages across the filter bank
channels, yielding what he calls the summary autocorrelation, or
periodogram. The log-lag (log-pitch) axis is an improvement over
standard correlograms in that it more closely relates to the varia-
tion in pitch resolution ability of humans as a function of pitch. A
variant of Ellis’s model serves as the “front-end” for the system
presented in this paper.

It is our contention that transcription systems built with a
correlation-based front end will be more robust than systems with
“sinusoid-based” front ends, in that they will not require explicit

2



time

lag

freq

A correlogram slice at a particular time
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Figure 2: A sketch showing the three axes of the correlogram volume. From [Ellis 1996], reprinted with permission.
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Figure 3: A schematic drawing of the signal processing network underlying the correlogram calculation. From [Ellis 1996], reprinted
with permission.

instrument models (or may, in fact, be able to acquire their own
instrument models without explicit training).

2 Implementation
In this section, the implementation details of the transcription sys-
tem are presented. The signal processing underlying the system’s
front end is described, followed by descriptions of the blackboard
system control structure, data abstraction hierarchy and knowl-
edge base.

2.1 The front end
As described in the Introduction, the front end signal processing
in the current system is modeled after the log-lag correlogram of
[Ellis 1996], which may be viewed as a variant of the correlogram
of Slaney and Lyon and of the pitch perception model of Meddis
and Hewitt. In the current implementation, the filter bank is
made up of forty gammatone filters (six per octave), with center
frequencies ranging from 100 Hz to 10 kHz, spaced evenly in log
frequency. The standard Patterson-Holdsworth filter parameters
have been used, yielding filter bandwidths based on the ERB scale

[Patterson and Holdsworth 1990].

The lag axis of the correlogram volume is sampled at 48
lags/octave, from 20 Hz to approximately 1 kHz, which yields
adequate resolution for most musical signals. The time axis is
downsampled to 220.5 Hz before being processed by the black-
board system. The correlogram implementation is identical to that
described in [Ellis 1996], with the exception that the envelope fol-
lower lowpass filter cutoff frequency is decreased with increasing
lag, such that the correlogram output is nearly critically sampled
(in lag) at all lags (Ellis chose a single cutoff as a compromise
between oversampling at short lags and undersampling at long
lags).

As mentioned previously, a summary autocorrelation or peri-
odogram is computed from the correlogram by normalizing each
frequency/lag cell by the zero-lag energy in the same frequency
band and then averaging across the frequency bands. An example
of correlogram output and corresponding summary autocorrela-
tion is shown in Figure 4.
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Figure 4: Log-lag correlogram and summary autocorrelation for
a 100 Hz impulse train. When a single pitch is present in the
input signal, the summary autocorrelation is characterized by a
sharp peak at the pitch (inverse lag) of the signal as perceived by
humans, and at its subharmonics. In this figure and in all following
correlogram-based figures, the lag axis has been inverted and
labeled pitch for convenience. The linearly-spaced axis beneath
the pitch axis correspondsto MIDI note, included for convenience
in later figures.

2.2 Blackboard control structure
As described in the Introduction, blackboard systems usually con-
sist of a central dataspace (the blackboard), a set of so-called
knowledge sources (KSs), and a scheduler. This is the implemen-
tation style that has been adopted for the current system. It is
shown schematically in Figure 5.

On a given blackboard time step1, the control system selects
a Focus of Attention (FOA), which may be a particular hypoth-
esis currently on the blackboard, or a particular region of the
blackboard (e.g., a particular node of the data abstraction hierar-
chy). Knowledge source (KS) preconditions are then selected and
tested, based on their potential applicability to the FOA. If KSs
are activated (signalled by adding their action procedures to an
execution list), the action component of the KS with the highest
“expected benefit rating” is executed. If no KSs are activated the
FOA selection process is iterated until a suitable FOA is found.

When an acceptableKS action is found and executed, the black-
board makes note of what has changed on the blackboard and
notifies all KSs that have registered interests in those types of
events. In this way, KSs can be triggered in an interrupt- or event-
driven fashion, which can potentially cut down on computational
requirements.

As mentioned above, each knowledge source is made up of
a precondition/action pair, encoded procedurally. Each KS is

1Blackboard time steps have no fixed relation to time within
the musical signal, though there is usually a strong correlation.
Generally, the system runs through some small number of black-
board time steps for each frame of input data, however, the system
is allowed to reprocess difficult portions of the input data if new
information arises.

The Blackboard /
Hypothesis
Hierarchy

(see Figure 6)

Scheduler

Knowledge
Source

Knowledge
Source

Knowledge
Source

Knowledge
Source

Knowledge
Source

Figure 5: The control structureof the blackboardsystem described
in this report.

also responsible for registering “interests” with the blackboard (a
particular KS, for example, might be interested in all new Note
hypotheses, or all changesmade to a particular Chord hypothesis).
Each KS maintains a set of instantiations, each of which has
a stimulus frame and a response frame. The stimulus/response
frames are used by the blackboard to test whether a given KS
instantiation is applicable to a particular FOA.

2.3 Blackboard data abstraction hierarchy

In the current implementation, the blackboard workspace is ar-
ranged in a hierarchy, with the log-lag correlogram input at the
lowest (least abstract) level and notes at the highest. The general
outline is shown in Figure 6 with planned extensions in dashed
boxes.

Each blackboard level is home to hypotheses of a particular
type. In the current system, hypotheses are implemented in a
frame-like manner. All hypotheses share a common set of slots
(data) and methods (code), including lists of supported and sup-
porting hypotheses at neighboring blackboard levels. Addition-
ally, each type of hypothesis has its own internal rating scheme,
divided into two components: a support rating and an explanation
rating. The internal ratings are collapsed to a six point ordinal
scale, which is accessible by the KSs and the control system.
Changes in the support rating of a particular hypothesis are passed
upward to any supported hypotheses. Similarly, changes in expla-
nation rating are passed downward to supporting hypotheses.

2.3.1 Correlogram Frame

At the lowest level of abstraction lie the Correlogram Frame
hypotheses. Each contains a “slice” of the correlogram volume
at a particular time. The correlogram is considered the “ground
truth” in the system and is therefore given, by definition, a maximal
support rating. Correlogram Frame hypotheses have access meth-
ods for the individual lag/frequency cells, as well as a graphical
interface method currently called from a Tcl/Tk shell.
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Figure 6: The data abstraction hierarchy in the current black-
board implementation. Regions with dashed borders are planned
extensions.

2.3.2 Summary autocorrelation/periodogram

Above each Correlogram Frame lies a single Summary Au-
tocorrelation hypothesis, formed by averaging the energy of the
lag/frequency cells across frequency. Summary Autocorrelation
hypotheses provide access methods for their values at particu-
lar lags. Additionally, a graphical interface method for use with
Tcl/Tk has been implemented. Since the Summary Autocorre-
lation is derived algorithmically from the Correlogram Frame, it
shares the maximal support rating of the supporting Correlogram
Frame.

2.3.3 Peaks

The local maxima of each Summary Autocorrelation frame
form Peak hypotheses, which have slots for the peak frequency,
height, and the average height in a one-octave neighborhood
around the maximum. Peaks are merely an intermediate step
between the Summary Autocorrelation and Periodicity hypothe-
ses, used for programming convenience. It is likely that they will
be eliminated in future revisions of the system. The support rating
of each Peak hypothesis is based on the ratio of its height to its
average neighborhood height.

2.3.4 Periodicities

A Periodicity hypothesis is a collection of Peak hypotheses that
may persist across multiple Correlogram frames. As mentioned
in the section describing the front end, a pitched input signal will
result in a subharmonic series in the Summary Autocorrelation.
A Periodicity hypothesis may then be thought of as a “pitch”
hypothesis, formed by gathering together Peak hypotheses which
form a subharmonic series. Periodicity hypotheses have a pitch

slot, as well as a “strength” score, based on the average ratio of
Peak height to neighborhood average height.

2.3.5 Envelope
Envelope hypotheses are a second part of the “ground truth”

derived from an input signal. For each of the correlogram filter
bank channels, a zero-lag correlation is calculated, corresponding
to a running estimate of the energy in that channel. As with
Correlogram Frames, Envelope hypotheses have maximal support
ratings.

2.3.6 Onsets
Onset hypotheses are derived directly from the Envelope sig-

nals. A first difference approximation of the Envelope slope (mea-
sured in dB) is calculated and local maxima become new Onset
hypotheses. In addition to slots for onset time and envelope slope,
Onset hypotheses have a slot for the energy reached at the next
local maxima in the envelope signal. The Onset hypothesis sup-
port rating is based upon both the slope and the peak energy of the
onset.

2.3.7 Notes
Note hypothesesconsist of one or more Periodicity hypotheses,

combined with one Onset hypothesis. In addition to a frequency
slot filled in by a weighted average of the frequencies of the sup-
porting Periodicity hypotheses, Note hypotheseshave a pitch class
method and a MIDI-note method, used for generating output in
the form of a MIDI file, symbolic score output, or piano roll nota-
tion. The Note hypothesis support score is based upon the slope
and maximal energy of the component Onset, as well as the sup-
port ratings of the component Periodicity hypotheses. In addition,
Note hypotheses have several internal flags, which may be set by
KSs, giving Note hypotheses access to limited information about
their neighbors. These flags can affect ratings, as will be seen in
the section describing the knowledge base.

2.4 Blackboard knowledge base
The current implementation of the transcription system is still in
its infancy. It was only recently that it was thought feasible to
use a correlation-based front-end, and very little of the previous
implementation [Martin 1996] was reusable. At present, only five
knowledge sources are present in the system, and they act almost
entirely in a bottom-up, or data-driven, fashion. Of the five KSs,
the first three may be combinedin the next revision, as they operate
together in a strictly algorithmic manner, and their combination
will make it possible to eliminate the Peak hypotheses from the
system altogether. The KSs are shown in a stylized representation,
overlaid on the data hierarchy, in Figure 7.

As mentioned in the section describing the control system, KSs
are made up of three essential components: their “interests”, a
precondition component, and an action component. The KSs in
the current implementation will be described from this standpoint.

2.4.1 Read Correlogram Frame
The Read Correlogram Frame KS has no declared interests,

but rather acts as a daemon, remaining in the precondition queue
at all times. Its precondition is satisfied whenever the blackboard
FOA is a time step of the input signal for which there is not cur-
rently a Correlogram Frame hypothesis. The KSs action is simply
to read the data from disk (the front end analysis is performed of-
fline and stored in a data file), and to create a Correlogram Frame
hypothesis along with a supported Summary Autocorrelation hy-
pothesis, and to extend the Envelope hypothesis to include the new
frame.
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Figure 7: A graphical representation of the knowledge base as
a whole. It shows the hypothesis abstraction hierarchy used in
the system with the knowledge sources overlaid. Each KS is
represented as a connected graph of nodes, where each node is a
hypothesis on the blackboard, and the arrows represent a support
relationship.

2.4.2 Summary Autocorrelation Peaks

The Summary Autocorrelation Peaks KS is interested in all
new Summary Autocorrelation hypotheses. Its precondition is
automatically satisfied by a new Summary Autocorrelation hy-
pothesis, and its action is simply to propose Peak hypotheses for
each local maximum in the Summary Autocorrelation.

2.4.3 Propose Periodicities

The Propose Periodicities KS is interested in all new Peak hy-
potheses. Its precondition is automatically satisfied if it has been
notified of any new Peaks but hasn’t yet acted upon them. Its
action consists of two parts. First, the KS looks for existing Peri-
odicity hypotheses on the blackboard. If any are found, new Peak
hypotheses which fit the subharmonic series of any Periodicity
are added as additional support. After this first round of analysis,
remaining “unexplained” Peak hypotheses are considered for the
formation of new Periodicity hypotheses. Starting with the Peak
of highest frequency (shortest lag), potential subharmonic series
are evaluated. Any series with sufficient support is added to the
blackboard as a new Periodicity hypothesis.

2.4.4 Note Support

The Note Support KS is interested in all New Periodicity hy-
potheses. It maintains an internal list of all currently active Peri-
odicity hypotheses. Its precondition is satisfied when a Periodicity
hypothesis has ended (i.e., there has been no support for several
input frames). The KSs action consists of evaluating the support
of each Periodicity that satisfied the precondition and adding new
Note hypotheses to the blackboard or augmenting existing Note
hypotheses as appropriate. The support evaluation is heuristic;
Periodicities that persist over a large number of input frames are
considered to be strongly supported, as are Periodicities supported
by Peak hypotheses with strong support ratings.

2.4.5 Prune Notes
It turns out that the Note Support KS creates many more Note

hypotheses than there are notes present in a typical musical exam-
ple (sometimes this is due to chance correlations in a noisy signal,
but more often it is due to strong subharmonic series arising from
chords and from harmonics/subharmonics of actual notes). Thus
the Prune Notes KS is used to prune away many of the obviously
incorrect note hypotheses.

The Prune Notes KS is interested in new Note hypotheses.
Like the Note Support KS, its precondition is satisfied when a
hypothesis it is interested in has ended (i.e., when some number of
input frames has elapsed since the last time a given Note hypothesis
was extended by a new Periodicity).

The Prune Notes action is both complex and heuristic. It is
intended to eliminate both harmonics and subharmonics of actual
notes without eliminating octaves, which may at first appear to
be harmonics. First, the KS assembles a list of existing Note
hypotheseswhich overlap (in time support) the Note hypothesis of
interest. Next, the KS finds the maximum onset energy associated
with the collection of Note hypotheses. If the onset energy of
the Note hypothesis of interest is 25 dB below the maximum
(a rather arbitrary threshold – one could certainly look to the
psychoacoustics literature for a more perceptually relevant cutoff),
the Note hypothesis is labeled with a “Too Weak” flag, which
reduces its support rating.

The second portion of the KS action looks for harmonic re-
lations between found Note hypotheses. A frequency ratio is
formed between the Note hypothesis of interest and each of the
overlapping Note hypotheses, and octave relations are noted. If
any are found, Note durations are compared for the relevant hy-
potheses, and if the duration of Note hypothesis is much shorter
than another, the hypothesis of shorter duration is labeled with a
“Harmonic” flag, which reduces its support rating. Additionally,
if the lower note in an octave relation has more component Period-
icities than the upper note, and they have weaker support ratings,
the lower note is labeled with a “Subharmonic” flag, which re-
duces its support rating. Similarly, if the upper note has more
component Periodicities, and its Onset rating is less than that of
the lower note, it is labeled with a “Superharmonic” flag, which
reduces its support rating. These heuristics are based on empiri-
cal observation and will be developed more rigorously before the
model is further extended.

3 Results
3.1 Bottom-up octave detection
The correlogram/periodogram representation may offer an advan-
tage over sinusoidal representations for detecting the presence of
octaves. As a simple example, consider two sounds: the note
corresponding to MIDI note 48 (a C pitch) struck on a piano, and
the same note struck simultaneously with the note corresponding
to MIDI note 60 (a C, one octave higher). The difference be-
tween the two sounds is clearly audible, and a person can easily
tell which one is an octave and which is a single note (it is worth
pointing out that a person who is unfamiliar with the piano tim-
bre might mistake the octave relation for a single note with pitch
corresponding to that of the lower C, particularly if the context
of the single note is not provided). Figures 8 and 9 show the
correlogram/summary autocorrelation representations for the two
cases mentioned above, based on samples from an acoustic piano.

By comparing the values of the summary autocorrelation at the
subharmonics of MIDI note 60 in Figures 8 and 9 it is clear that
while the presence of MIDI note 60 is not obvious at a first glance in
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Figure 8: Correlogram slice and summary autocorrelation of a
single piano note, correspondingto MIDI note 48, with lines over-
laid at the subharmonics for MIDI note 60, which is not present in
the signal. Note the absence of local maxima, particularly at the
fundamental frequency and second subharmonic for MIDI note
60.

Figure 9, it is visible under closer scrutiny. This result is due to the
effect of multiple partials contributing to the autocorrelation within
a single frequency band. In the single note case, several channels
exhibit beating between two adjacent partials, resulting in strong
peaks at their common subharmonics, but weak and/or displaced
peaksat the pitches correspondingto the partial frequencies. In the
octave example, the partials belonging to the upper note reinforce
the even partials of the lower note, causing them to dominate
the odd partials somewhat, resulting in more clear peaks at the
subharmonics corresponding to the higher C pitch.

This reasoning corresponds to an implicit instrument model,
making the tacit assumption that harmonic energy varies smoothly
with frequency (a reasonable assumption for many sounds). The
implicit assumption is a part of the pitch perception model rather
than of the system’s knowledge base, however. The model makes
the prediction that as the strength of a note’s even partials is
increased relative to the strength of the odd partials, the note will
sound more and more like an octave, and will eventually (when
the even partials are much stronger than the odd partials) have a
perceived pitch one octave higher. This behaviour corresponds
with our intuitions about pitch perception.

3.2 A monophonic transcription example
To show that the correlogram processing is extracting sufficient
information for transcription, it is worth looking at its output
for a monophonic signal. In this section we consider an short
excerpt from a recorded performance of Bach’s Well-Tempered
Clavier (the introduction of the G-minor fugue from Book I).
Music notation for the excerpt is shown in Figure 10.

As can be seen from the piano-roll output shown in Figure 12,
the first eight notes have been correctly extracted by the system,
along with four “extra” note hypotheses which have not been
pruned. The additional hypotheses are all close harmonic rela-
tions (octaves, fourths and fifths below) of the actual notes in the
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Figure 9: Correlogram slice and summary autocorrelation of two
piano notes, one octave apart, corresponding to MIDI notes 48
and 60, with lines overlaid at the subharmonics for MIDI note
60, which is present in the signal. Note the presence of local
maxima in the summary correlation at all pitches (inverse lags)
corresponding to the subharmonics for MIDI note 60.

recording. As the pruning algorithm was hand-tuned for the poly-
phonic example which follows, this encouraging but not perfect
performance is to be expected. is not surprising.

3.3 A polyphonic transcription example
One of the test signals we have been working with is a short seg-
ment from the introduction of a Bach chorale (Erschienen ist der
herrlich’ Tag). Traditional music notation for the first phrase of
the piece is shown in Figure 13. The sample was generated from a
flat MIDI score, using samples from a Bosendorfer acoustic piano.
This piece is an example of the type of simple polyphonic music
that it is our ultimate goal to transcribe. Figures 14 and 15 show
the correlogram/periodogram analysis at two time slices, corre-
sponding respectively to portions of the first and second chords of
the piece.

As can be seen in the piano-roll output shown in Figure 16, all
of the notes in the first five beats of the piece have been correctly
identified, and all extraneous note hypotheses have been pruned
successfully. The successfulpruning result is due to careful setting
of thresholds in the Prune Notes KS. In the rest of the example,
pruning is less successful. This result seems to be due in large part
to a change from closed-form chords to open-form chords around
the fifth beat. Encouragingly, nearly all of the notes in the piece
appear as Note hypotheses (with the conspicuous exception of the
high E [MIDI note 76], whose absence seems to be due to implicit
assumptions made in the Propose Periodicity KS).

4 Conclusions
While the few results mentioned in the last section are hardly com-
pelling, we are encouraged by them. The knowledge integration
approach so far has ignored much of the information contained in
the summary autocorrelation representation. One obvious exam-
ple of this is the extremely sharp peaks exhibited at subharmonics
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Figure 10: Music notation for an excerpt from Bach’s Well-Tempered Clavier (the introduction of the G-minor fugue from Book I).
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Figure 13: Music notation for the first phrase of a Bach chorale written in the style of 18th century counterpoint. The piece is titled
Erschienen ist der herrlich’ Tag.
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Figure 11: Correlogram/periodogram analysis during the first
note of the monophonic excerpt. It clearly represents a single
pitch at MIDI note 62 (D).
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(b) Extracted score output

Figure 12: MIDI score representation and partial analysis of an
excerpt from a recording of Bach’s Well Tempered Clavier. All
of the notes in this portion of the recording have been identified,
along with a few spuriousnote hypotheses, which would be pruned
by applying musical knowledge in a more complete system. The
time scales of the input MIDI file and extracted output have been
hand-aligned for ease of comparison(the MIDI file correspondsto
a flat interpretation of the score, whereas the output was extracted
from a human performance, so the MIDI-file timescale is only
approximate.
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Figure 14: Correlogram/periodogram analysis of a portion of the
first chord of the Bach chorale example. There are notes in the
signal correspondingto MIDI notes 54, 58, 61, and 66. The rather
large peak at MIDI note 30 corresponds to a subharmonic of the
chord root.
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Figure 15: Correlogram/periodogram analysis of a portion of the
second chord of the Bach chorale example. There are notes in the
signal corresponding to MIDI notes 59, 63, and 66. The rather
large peak at MIDI note 35 corresponds to a subharmonic of the
chord root.
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(a) The input MIDI file

Figure 16: MIDI score representation and partial analysis of an
excerpt from a synthesized recording of Bach’s Erschienen ist der
herrlich’ Tag. All of the notes in this portion of the recording have
been identified, and all extraneous note hypotheses have been
pruned by careful setting of thresholds in the Prune Notes KS.
Analysis breaks down for the rest of the first phrase of the piece,
due to the particular thresholds set in the pruning heuristics, as
well as the lack of musical knowledge in the system.
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of the chord root (which are predicted by early pitch and chord
perception models and clearly show up in the examples). In poly-
phonic transcription, it certainly makes sense to take advantage of
this strong indicator of chord root in order to constrain the search
for the chord’s component notes.

Without doubt, many improvements could be made in the cur-
rent bottom-up methods for forming Note hypotheses. We are
currently investigating more robust and principled methods for
performing this analysis (the present system is essentially an ad
hoc first attempt), and we expect that performance will improve
greatly.

4.1 Are we just trading harmonics for
subharmonics?

A question that might be asked in reference to this work is whether
the correlation-based front end merely exchanges the problem of
dealing with harmonic series in the frequency domain for one of
dealing with subharmonic series in “lag” — what is to be gained?

Our answer is twofold. First, even on this surface level, some
ground has been gained. In sinusoidal analysis, a principal prob-
lem is that of resolving the overtones of a pitch. Often, this
problem is “solved” by using extremely narrow filters (with cor-
respondingly sluggish time-responses). The correlogram analysis
does not require such narrow filters, and the pitch resolution for
the musical examples we have examined (as evidenced by the fig-
ures in this report) is on the order of one semitone2. The “lag
peaks” are quite robust, making subharmonic series detection a
fairly simple task.

Second, the discussion of bottom-up octave detection reveals
a distinct advantage of the correlation-based approach over sinu-
soidal approaches for the detection of octaves without introducing
an instrument model beyond what is implied by human pitch per-
ception.

4.2 Where do we go from here?
There are many directions in which this research can be extended.
Work is planned on proving the mathematical validity of bottom-
up octave detection, psychophysical validation of the implied
model of human octave perception, as well as the extension of
the current system’s knowledge base, introducing the capacity for
automatic acquisition of instrument models.

4.2.1 Integration of musical knowledge
In order to build a useful transcription system, it is necessary to

incorporate a great deal of musical knowledge. Even if the goal
is to generate a MIDI representation of the musical information,
musical knowledge is necessary to eliminate all spurious “pitch
percepts” from the correlogram analysis. This knowledge may
take the form of hypotheses regarding the number and type of
instruments in a performance as well as melodic/harmonic motion
of the piece. Some of these ideas have been implemented in
[Kashino et al.1995], and it will be fruitful to apply the same
approach to this system.

4.2.2 Automatic acquisition of instrument models
[Ellis and Rosenthal 1995] and [Ellis 1996] describe a novel

representational element for pitched signals, called the weft, which

2It should be noted that the “width” of peaks in the sum-
mary autocorrelation can be reduced by introducing additional
smoothing to the correlogram calculation after the multiplication,
and by reducing smoothing before multiplication (in the envelope
follower).

is based on correlogram analysis. The weft is, in essence, a
source/filter model, and Ellis’s extraction techniques might be
used to extract excitation signals and time-varying filters (charac-
terizing the formant structure) from simultaneous pitched sounds.
It is our goal to incorporate weft analysis into a blackboard tran-
scription system for the twofold purpose of recognizing previously
heard instrument sounds and for acquiring new instrument models
based on their time-varying formant structure.
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