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Abstract

A method for the recovery of the temporal structure
and phasesin natural gestureis presented. Thework is
motivated by recent developmentsin the theory of nat-
ural gesture which have identified several key aspects
of gesture important to communication. In particular,
gesticulation during conversation can be coarsely char-
acterized as periods of bi-phasic or tri-phasic gesture
separated by arest state. Wefirst present an automatic
procedure for hypothesizing plausible rest state con-
figurations of aspeaker; the method usesthe repetition
of subseguencesto indicate potential rest states. Sec-
ond, we develop a state-based parsing algorithm used
to both select among candidate rest states and to parse
an incoming video stream into bi-phasic and multi-
phasic gestures. We present results from examples of
story-telling speakers.

1 Introduction

The traditional paradigm for hand gesture recognition involves
the construction of a model for each gesture to be recognized.
This usually proceeds by collecting a number of examples of
the gesture, computing the “mean gesture” and quantifying the
variance seen in the examples. The hope is that this description
will generalizeto the actual test data. Examples of this approach
include[9, 1, 13, 4, 10].

Thistypical pattern recognition approach may be well suited to
the recognition of stylized or literal gesture, such as the gestures
made by a user navigating aeronautical data in a virtua reality
system by contorting their hands. These actions are less gestures
than particular literal movements. Others examples are the em-
blematic gestures substituting for simplelinguistic constructs: the
ubiquitous OK sign or “giving someonethe finger.” These situa-
tions lend themselves to the construction of sophisticated models
capableof representing the variations between people; in the case
of the VR-controller, one might even alter the gesture vocabulary
to make the recognition more robust.

However, asan approachto natural gestureunderstanding, this
methodol ogy seemsinappropriate. By “natural gesture” we mean
the types of gestures spontaneously generated by a person telling
astory, speakingin public, or holding a conversation. Thereasons
for this skepticism are clear. First, the particular configurations
and motions observed in natural gesture are inherently speaker
dependent, influenced by cultural, educational, and situational
factors [5]. An approach employing fixed, physical descriptions
of gesture might find no cross-speaker invariances.

Second, and more important, is that the literal representation
of the gesture assumesthat the spatial configurationisin fact the
most significant aspect of the signal to be extracted. Given that
we are observing a sequence, it is plausible that more abstract
temporal properties are the important elements of a gesture.

In this paper we develop a method for the detection of the
important temporal structure — the gestural phases— in natural
gesture. We begin by briefly relating some recent developments
in the theory of natural gesture which have identified several key
temporal aspectsof gestureimportant to communication. We next
present an automatic procedure for hypothesizing plausible rest
state configurationsof a speaker; the method usesthe repetition of
subsequencesto indicate potential rest states. Lastly, wedevelopa
state-based parsing a gorithm used to both select among candidate
rest states and to parse an incoming video stream into bi-phasic
and multi-phasic gestures. We present results from two extended
examplesof story-telling speakers.

2 Gesturein Communication

Recent research in the field of natural gesture generation and
parsing hasidentified four basic types of gesture generated during
discourse[6, 3]. Threeof theseare consideredto have meaningin
adialog: iconic, where the motion or configuration of the hands
physically match the object or situation of narration; deictic, a
pointing gesture; metaphoric, where the motion or shape of the
handsis somehow suggestive of the situation. The fourth gesture
type, beats, is generated to show emphasisor to repair mis-spoken
segments.

Characteristic of these gesture types are particular temporal
signatures. For example, eachistypically bracketed by the hands
being in a“rest state” Beat gestures — the simplest — consist
only of a small baton-like movement away from the rest state
and then back again; these gestures may be termed “bi-phasic.”
The iconic, metaphoric, and deictic gestures are executed by first
“transitioning” from the rest phase into gesture space (the space
in front of the speaker), then executing a smaller movement (the
“stroke”), remaining at that configuration for a short duration,
and then transitioning back to the rest state. Thus, these gestures
may be termed “tri-phasic” What it means for a movement of
the hands to be a “natural gesture” is defined, at least in part,
by these temporal characteristics. The bi-phasic and tri-phasic
distinctionisintroduced in[2]. The distinction between beats and
representational gestures(iconic and metaphoric) isal so discussed
in[11].

In this paper we employ the above descriptions to derive a
parsing mechanism sensitive to the temporal structure of natural
gesture. Our initial goal is to find possible instances of bi- and
tri-phasic gesturesin avideo sequenceof someonetelling a story.



Figure 1. Three consecutiveframes of the sequenceusedto illus-
trate this paper are shownin (8). (c) istheresult of computing at
each pixel the absolute value of the difference between the images
in (a) and the mean image (b) computed from all frames of the
sequence. (d) Thefirst 3 eigenvectorsof the image sequence.

Themotivation is that the tri-phasic gestures encode meaning and
need to be segmented from the input gesture stream if they areto
beincorporated into any additional interpretation processes.

3 Detecting candidaterest states

3.1 Gesturedata

The data presented in this paper are extracted from video of naive
subjectsrelating a story. The subject was led into a closed room
and asked to think of atime in which they believed they werein
grave danger. The subject was then asked to tell a story of this
event. The subject wasinstructed to look at the experimenter and
not the camera, and was al so warned that the experimenter would
only provideminimal (nonverbal) feedback. Recording proceeded
for aslong asit took the subject to recount the story.

To reducethe size of recorded imagery, the video was digitized
at low spatial (120x 160 pixels), temporal (10Hz), and photometric
(8-bit gray scale) resolutions. Thetwo sequencesusedto illustrate
the results of this paper are 3min38sec and 4minl0sec long, for a
total of 4700 frames or 90MB of data. A few frames of the first
sequenceare shown in Figure 1.

3.2 Feature extraction

To analyze and compare subsequenceswe require a compact rep-

resentation for the imagery. Because the focus of our analysis
is on the temporal characteristics of the sequences we select the
rather aggressive approach of representing each frame by a small

number of coefficientsderived from an eigenvector decomposition
of theimages[12].

We apply the techniqueto image sequencesby randomly sel ect-
ing afew hundred frames, computing the eigenvector decomposi-
tion of these frames, and then projecting all frames of the image
sequence onto the resulting basis set. Next, the basis set vectors
areordered by how much varianceeach accountsfor in thetraining
frames. Becausethere is not tremendous variation in imagery of
aperson telling a story, and sinceit can be shown that two points
that are nearby in the original image space are also nearby in the
resulting low-dimensional space[7], we only need retain a small
number of coefficientsfor this work. In the experiments reported
here, we use only n = 10 coefficients to represent each frame;
on average the 10 coefficients account for 55% of the variance.
These coefficients are the entire representation used for al further
processing.

3.3 Subsequence distance matrix

Let x; be the n-vector of the eigenvector projection coefficients
representing the ¢th frame of the image sequence. We define
d;,; to be the difference between two frames x; and x; using a
distancemetric such asthe Euclideannorm. Denotingthelength Z
subsequencebeginning at frame: andendingwith frame (i+ L—1)
asx!, wecan definethe difference between two subsequencesx *
andx; asthetotal Euclidean distance:

L-1
L 2
diy = | Ao
k=0

By computing dfd for all pairsof ¢, j we can construct a matrix
for al the subsequences.

Figure 2 presentsthe subsequencedistance matrix for acentral
part of one of thetest sequences. The diagonal isblack, indicating
perfect correlation. Black regions off the diagonal indicate points
in time where a particular length I subsequenceis repeated. For
example, beat gestures, which appear in thevideo as short repeated
motions, show up as dark, short parallel lines. Subsequencesthat
arefairly generic (e.g., handsare near the rest position) are likely
to have several regions of high similarity. Conversely, motions or
configurations that are highly unusual in the sense that they are
unlike any other subsequences manifest themselvesin the matrix
asarow (and corresponding column) in which the mean distance
is much greater than the overall mean.

Thenature of the distancematrix issensitiveto the subsequence
length L. If Lissmall, wemay seespurioussimilarities. If L istoo
big, then the matching of “atomic” or primitive subsequencesmay
beprevented. For theresultsreported herewehaveset L = 5(one
half second at 10Hz); we have not systematically experimented
with varying L.

3.4 Sdecting candidate rest states

Because rest states start and end each bi-phasic and tri-phasic
gesture, and because rest states involve little or no motion for
a reasonable duration of time, one expects a subsequence cor-
responding to a rest state to be repeated often. Furthermore, if
one were to reconstruct a sequence using only asmall collection
of primitive subsequences, then one would want to use the rest
state subsequence(s) as one of the primitives since it would well
describethe imagery.

Our approach to finding candidate rest states is to use the re-
construction ideaand to select asmall set of subsequenceswhich
when repeated and assembled in the right order would reconstruct
the original sequence as best possible. Of course, finding the op-
timal set of & subsequencesfor reconstruction is an exponential
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Figure 2: Distance matrix of subsegquencesof length 5, for a 300
frame section of the original video sequence. Dark paralel diag-
onal linesindicate repeated motions, possibly by “beat” gestures.
Aninteresting sequencein which the subject repeatedly wavesher
arm at her sidein acircular fashion beginsat : = 130. Thewhite
bar around ¢ = 415 indicates atypica movement; the subject is
waving both arms high above her head.

problem sincethe best k& doesnot necessarily containthebest £ — 1
set. However, we expect the reconstruction to be dominated by a
few rest states plus many unrelated motions. Therefore we use a
“greedy” algorithm to select aset of reconstructing subsequences.

Let M bethe set of all subsequences(call these models). Let
M C M beaset of subsequences, whereeachm € M specifies
thelength L subsequencebeginningat x ,,, (framem intheoriginal
sequence). For eachx; define

y; = arg min d% .
meM ’

That is, the sequencey; isthe best reconstruction of the sequence
x; given the models M. The approximation error at frame ¢ is
€; = minmeM dm,i'

The “greedy” procedure is as follows: given the previously
selected models M, pick the new subsegquence model to add to
M such that the decreasein 3, ¢; is maximized. The algorithm
isinitialized by choosing the best single subsequence, M = {:}
where: = argmin; Y~ d7,.

Thealgorithm canbeiterated asmany timesasthereareframes;
at that point ). e; = 0. However, each additional decreasein
approximation error becomes quite small after asmall number of
modelsareincluded. For the 2200 frame sequenceof Figure 1 we
select only thefirst 40 subsequences; an additional 60 subsequence
would be required to reduce the error only by one half.

Figure 3illustrates the top six ranked (length 5) subsegquences.
Notice the variety of candidate rest states. The last example (6)
is one which will later be rejected by our parsing mechanism:
athough the subsequence can be used to reconstruct a significant
part of the original video, it does not have the right temporal

Figure 3: Thetop six ranked (length 5) subsequencesfor recon-
struction. This selection illustrates the variety of candidate rest
states. The last candidate (6) will be rejected by the temporal
parsing.
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Figure4: Thetop four ranked subsequencesfor reconstruction for
asecond subject.

propertiesto beconsidered arest state. Figure 4 illustrates the top
four candidatesfrom asecond examplesequence. Inthisexample,
noticethe radically different rest states recovered.

We notethat we have begunto developa“ personality sensitive”
video coding system based upon this technique. The resulting
sequenceis areconstruction using the gesture primitives that well
represent aperson’sstyleand thusfeel lesstemporally aliasedthan
that produced by standard systemsthat use afixed low framerate.

4 Detecting gesture phases

Given candidate rest states, we can now simultaneously evaluate
them and parse the gesture stream into bi-phasic and tri-phasic
gestures. The approach is to use a Markovian state description,
but with thetraditional use of transition probabilitiesreplaced with
an explicit model of duration.
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Figure5: Thethreestatemachinedescribingthe possiblegestures.
Below each stateis a description of the gamma-density pdf for the
given variables. The transitions are unlabeled because we do
not use transition probabilities in generating a parse; rather, the
duration models drive the temporal relationships.

4.1 Markovian stateswith duration modeling

Although Hidden Markov Models have been a popul ar technique
for the recognition of gesture (see[14, 9, 10, 13]) we notethat in
our system the states are not hidden. In particular, our analysis of
natural gesturetypesin section 2 identifiesrest (R), transition (T),
and stroke (S) states. The properties of these statesare known and
can be characterized by similarity in appearance to a rest state,
amount of motion exhibited, and the duration during which the
state is maintained. Probabilistic densities for these descriptions
can be derived directly from training data.

Furthermore, thetemporal structure of gesture can bedescribed
a priori using these states. Beat gestures correspond to moving
from R to T and back to R: <R-T-R>>; tri-phasic gesturestraverse
from Rto T to Sto T and back to R: <R-T-ST-R> The
a priori knowledge of the structure and properties of the states
distinguishes our work from the typical HMM techniques.

Figure5 graphically depictsagesture phasefinite state machine
(FSM) and the associated properties of each state. While the exact
form and values of the probability densities are not critical (each
are modeled by gamma densities) it is important to understand
their qualitative nature. The rest state R is modeled as tending
to be “near” the rest state’s position in eigen-space (using, say,
the Euclidean norm), to have “low” motion as measured by the
averagetraversal in elgen-spaceof the coefficientsusedto describe
each frame, and of “long” duration. Likewisethe T stateis“far”,
“high”, and “short” while the S stateis “far”, “low”, and “short.”

Given these descriptions, one might be tempted to just cluster
and classify the image frames using appearance and velocity as
features, and ignore any notion of transition. The difficulty with
thisistheideaof duration, whichiswell modeled using aMarko-
vian system ([8]) where a modified Viterbi algorithm exists for
parsinginput streamswith respect to duration models. Durationis
fundamental to theidea of being arest, transition, or stroke phase.
The property of duration is much more critical to the gesture-
parsing than is the probability of atransition occurring between
any two states.

1We can also define multi-phasic gestures to be tri-phasic ges-
ture which cycles through the T-S-T sequence more than once:
<R-T-[S-T]"-R>; this is sometimes seen when tri-phasic ges-
tures are tightly repested or overlap.

In traditional Markov systems, loopback transitions and their
associated probabilities are manipulated in an attempt to alter the
duration that atraversal remainsin agiven state. Formally, afixed
loopback transition probability is equivalent to an exponential
density on duration, favoring shorter stays within a state. With
such systems it is difficult if not impossible to disallow short
durations.

To incorporate duration modelsand to usethe Viterbi algorithm
to generate the best possible parse, we adopt the framework of a
Markov system, but with no cost for a transition. The result is
aFSM where only the state-output probabilities and the duration
the system remains in each state affect the parse. The effect is
that instead of using transition probabilities to drive the temporal
structure, we use the duration model. Proposing atraversal from
state; to state j at time ¢ requires accepting the cost of ending the
duration in the first state and starting that of the next.

4.2 ldentifying rest states

Theverification of rest statesisaccomplished by selecting acandi-
date subsequence, defining a gesture-phase-FSM using that can-
didate to define the rest state location in eigenspace, and then
parsing the input data. If the tested subsequenceis indeed a rest
state, then the parsed input should spend a significant amount of
time in the rest state R. If it is not, then most of the parse will
oscillate between states T and S.

This verification process was applied to each of 40 candidate
subsequences, ordered by the reconstruction method of section 3.
Two points are of interest. First, many of the initial candidates
(e.g. those ranked 6, 7, and 9) do not satisfy the rest state criteria
when consideredin atemporal context; their elimination validates
the need for the temporal analysis beyond clustering.

Second, many candidate subsequences exhibit good rest state
behavior, confirming the idea that there may be several rest states
for a given speaker in a given situation. To select a set of rest
states adequate to parse the gesture, we again construct a greedy
algorithm; here we accumulate rest states according to how many
new time-steps are now parsed asrest statesif a new candidateis
included. For the exampleof Figure3weuse20rest states.> Man-
ual thresholding selected this number. However, for the method
of detecting the gesture states detailed in the next section, overes-
timating the number of rest statesis much less of a problem than
underestimating.

4.3 Results. detecting bi-phasic and
multi-phasic gestures

To detect gesture phases, we need to construct agesture phase FSM
with the necessary rest states, and then parse the input segquence.
To incorporate multiple rest states, we redefine distance to the
rest state feature as the minimum distance to all of the chosen
subsequences. To then detect therel evant gestureswesimply parse
theincoming video stream with respect to the gesture-phase-FSM;
the parsing algorithm is a duration-modified Viterbi optimization
[8].

Figure 6 illustrates the results for a 100 second long subse-
guenceof one of the two video sequencestested; the other sections

2/ few of theimagesof thedifferent rest statesare very similar
in appearance. Under the eigenspace distance metric, however,
they are quite disparate. This is because eigenspace coefficients
are sensitive to global changes (e.g. a shift of the body) which

should be abstracted for this domain. A more " hand-centered” or
“body-centered” image description could substantially reducethe

empirically determined number of rest states.



(a) Manual annotation of tri-phasic gestures
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Figure 6: Example results of parsing the gesture video. (&) and (b) Visual encoding of a manual annotation of the presence of gesture.
The annotation was produced by an expert in gesture communication who had not seen any of the results before viewing the video. (c)
The state parse of our gesture-state-FSM and (d) the automatically derived labelling from the state parse (dark grey indicates bi-phasic

beats, light grey tri-phasic gestures).

have similar results. Thetop two tracesindicate the manually an-
notated |abeling of tri-phasic and beat gestures. Theselabelswere
generated by the third author before seeing any of the results.
The bottom trace depicts the state-based parse of the incoming
video. Notice the overall similarity in the detection. The extent
of agreement is difficult to measure quantitatively, and perhaps a
bit premature asthe gesture community still hasdifficulties agree-
ing as to what movements are gestures. Our contribution is the
demonstration that thetemporal structure coupled with anapriori
state-based description is adequateto recover most of the gestures
present.

We aso note that we have tested this procedure on the
4minl10sec sequenceof adifferent speaker illustrated in Figure 4.
Only oneparameter of the model neededto be adjusted to generate
similar results, and the parsing agrees with the authors' observa-
tionsof thegesture. Asmentioned, this sequenceisinteresting be-
causeof theradically different rest statesrecovered; asystem must
be sensitive to multiple rest states if it is to segment the gestures
properly. However, we do not yet have independently generated
manual annotationswith which to compare descriptions.

5 Conclusion: Gesture and meaning

The gesture research community hasidentified fundamental types
of natural gesture. In particular the tri-phasic gestures assist in
conveying meaning in dialog. We have shown how the temporal
structure of a video sequence of someonerelating a story can be
parsed into states that segment many of the tri-phasic gestures.
We view thiswork asan initial step toward incorporating gesture
sengitivity into dialog understanding.

We note that there is an immediate application of this technol-
ogy to the summarization of video. Consider distilling a3 minute
sequence of someone telling a story to just a few frames or a
few subsequencesaccompanying the text. Thetri-phasic gestures
contain meaning in the mind of the speaker, and are often used
to disambiguate sections of narration where words aone do not
easily expresstheidea (in general, gesture is thought to comple-
ment speech). The automatic extraction of these gestures should

enhancethe intelligibility of the summary.
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