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Abstract

Digital library access is driven by features, but
features are often context-dependent and noisy,
and their relevance for a query is not always
obvious. This paper describes an approach for
utilizing many data-dependent, user-dependent,
and task-dependent features in a semi-automated
tool. Instead of requiring universal similarity
measures or manual selection of relevant features,
the approach provides a learning algorithm for
selecting and combining groupings of the data,
where groupings can be induced by highly spe-
cialized and context-dependent features. The se-
lection process is guided by a rich example-based
interaction with the user. The inherent com-
binatorics of using multiple features is reduced
by a multistage grouping generation, weighting,
and collection process. The stages closest to the
user are trained fastest and slowly propagate their
adaptations back to earlier stages. The weighting
stage adapts the collection stage’s search space
across uses, so that, in later interactions, good
groupings are found given few examples from
the user. Described is an interactive-time imple-
mentation of this architecture for semi-automatic
within-image segmentation and across-image la-
beling, driven by concurrently active color mod-
els, texture models, or manually-provided group-
ings.

1 Issues for digital libraries

Digital libraries of images, video, and sound are a rich area
for pattern recognition research. They also introduce a host
of new problems and requirements, since the range of possible
queries is immense and requires the utilization of many spe-
cialized features. Also, systems for retrieval, browsing, and
annotation, i.e. classifying regions, often must perform with
only a small number of examples from a user, i.e. an insuf-
ficient amount of training data by traditional requirements.
Thus the area is doubly exciting since it presents the field of
pattern recognition with new challenges while beckoning in
new applications.

One important issue for digital libraries is finding good
models and similarity measures for comparing database en-
tries. A part of this difficulty is that feature extraction and
comparison methods are highly data-dependent; see Figure 2
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for an example with texture. Similarity measures are also
user and task dependent, as demonstrated by Figure 3. Un-
fortunately, these dependencies are not, at this point, under-
stood well enough, especially by the typical digital library
user, to permit careful selection of the optimal measure be-
forehand. Note that the multi-resolution simultaneous auto-
regressive (MRSAR) model of [1], which fares poorly com-
pared to the shift-invariant eigenvector (EV) model in the
above two examples, scores clearly above the EV model on
the standard Brodatz database [2] [3]. (On the same test
data, but for a perceptually motivated similarity criteria
based on periodicity, directionality, and randomness, both
the EV and MRSAR models are beat by a new Wold-based
model [4].) Attempts to use intuitive texture features, like
coarseness, contrast, and directionality [5] [6], are appropri-
ate in some cases, but do not fully determine all the qualities
people might use in judging similarity. Thus an a priori opti-
mal context-dependent selection among similarity measures,
either by human or computer, seems unlikely.

Next, the scope of queries that databases need to address
is immense. Current computational solutions attempt to of-
fer location of perceptual content (“find round, red objects”)
and objective content (“find pictures of people in Boston”).
Desirable queries also extend to subjective content (“give me
a scene of a romantic forest”), task-specific content (“I need
something with open space, to place text”), collaborative con-
tent (“show me pictures children like”), and more [7]. An-
swering such queries requires a variety of features, or meta-
data, to be attached to the data in a digital library, some of
which may not be computable directly from the data. The
implication for algorithms is that they cannot rely on one
model or one small set of carefully-picked features but will
have to drink from a veritable “feature hydrant” from which
only a few drops may be relevant for the query.

Finally, there is a significant need for semi-automated, ver-
sus fully automated, tools. Human-computer synergy can
make ill-defined tasks manageable and has the power to over-
come many of the problems of current pattern recognition
tools. An important application of semi-automated tools is
to assist the population of a database, viz. the creation of
metadata. A crucial technical issue for such tools is the selec-
tion and combination of existing features: which features are
most useful for a given query or annotation, how should they
be combined, and which combinations are useful for the sys-
tem to remember, so that it gets smarter with increased use?
This last point is important since not only are the queries
immensely variable, but the amount of training data (i.e. ex-
amples provided by a user of what they do and don’t want)
available at any instant is usually limited. Hence, a tool
should strive to improve its generalization ability.
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Figure 1: A basic task for image database retrieval and annotation tools, which is addressed in this paper: recovering useful
within-image or across-image groupings. A grouping is just a set of related regions. Note that useful groupings generally
cannot be captured by a single model, or even a single partition or hierarchy, and the similarity measure required to induce
these groupings may be quite complex.

Figure 2: Data-dependent performance of texture models. The three patterns on the right are ordered by their similarity to
the pattern on the left, given the particular model space EV or MRSAR. The MRSAR model, because it attempts to model
fixed-size neighborhoods, misses the high-level structure that the EV model does not.

Figure 3: Task-dependent performance of texture models. The three patterns on the right are ordered by their similarity to the
pattern on the left, given the particular model space EV or MRSAR. Both results capture the horizontal/vertical structure,
but the EV returns a more semantically pleasing result since all images are bricks. However, these bricks are at different scales,
and have different microtexture. Depending on the user’s task, e.g. “find other images that look like bricks,” the MRSAR
result, or that of another model, may be preferable.



2 Multiple models

Dealing with these issues requires the use of multiple features,
computed from the data or not, as well as ways to make in-
formed, automatic selection of models and the features they
describe. At this point in time, there seems to be no lack of
specialized models, just a lack of knowing the best ways of
utilizing them. Two well-known multiple model approaches
are Bayesian combination and the rule-based blackboard, but
this paper advocates a different approach which is more de-
sirable for the interactive digital library setting.

2.1 Existing approaches

Bayesian combination for scene segmentation aims to rep-
resent images as a partition where the segment boundaries
and interiors are represented by separate probabilistic mod-
els which are all estimated concurrently. Examples include
the doubly-stochastic Markov random field (MRF) segmen-
tations of [8] and [9], the auto-regressive model interiors and
MRF model boundaries of [10], the Gaussian model interiors
and active contour boundaries of [11], and the cooperative
robust estimation of [12]. The basic idea of treating segment
boundaries separately from their interiors is also at the heart
of second-generation image coding techniques [13], where a
variety of multiple-model strategies continue to be under in-
vestigation.

This joint optimization approach has an unfavorably large
tradeoff of computation for accuracy. This is because it is
highly susceptible to the combinatorial explosion of possible
segmentations coupled with the possible models and their
parameter assignments for each segment. Thus the research
emphasis has been on sub-optimal iterative optimization al-
gorithms, which often require assumptions on the number
of regions and/or restrictions on the region interiors. The
amount of approximations needed to make these work in-
teractively (quickly and with little training) may defeat the
benefits of using multiple models in the first place.

The rule-based blackboard for model selection has been
advocated for “context-based vision” [14]. The method re-
duces the complexity of model selection via explicit, user-
provided rules that determine when changes may be made
to the blackboard (i.e. which models should be used at a
given time) and what segmentation hypotheses should be re-
moved from further consideration. This makes sure that only
the most promising hypotheses are pursued and can conve-
niently return multiple segmentations of the scene along with
their relative likelihoods.

A disadvantage of a rule-based method, while being com-
putationally efficient, is that user-provided rules are expen-
sive to produce, tend to be fragile, and are difficult to main-
tain when the rule set gets large. Rules are useful in limited
domains, but these are crucial drawbacks for use in digital
libraries supporting arbitrary data, features, and queries.

2.2 Proposed approach

The approach described in this paper allows many different
models to be easily incorporated without the computational
complexity that usually plagues multi-model methods. Like
the rule-based blackboard, it tries to compile its decisions
ahead of time, but instead of being manually given these de-
cisions, it derives them directly from user interaction. The
idea is to precompute many plausible groupings of the data,

where groupings are induced by different models. Then the
system selects and combines the groupings during user in-
teraction. Relevance information, viz. which groupings were
most useful, can then be fed back to modify these group-
ings or influence future grouping generation. In this way, the
system is not only trained during individual example-based
sessions with a user, but also trained across sessions to suit
the tasks which it is asked to perform. This makes sure that
the search space of groupings is always small but still contains
desirable solutions.

An important optimization comes from the observation
that when a reasonably large number of groupings is avail-
able, the correct groupings are usually present but are hard
for the system to identify, given only a few training examples
from the user. Therefore, the system can significantly im-
prove itself just by changing the relative weights of groupings,
not the groupings themselves. This optimization is realized
by placing a separate weighting stage in between the gener-
ation and collection stages. Weighting does not change the
size of the search space, but it does change the shape. The
more detailed relevance information provided by the weight-
ing stage can then serve to eventually modify groupings and
grouping generation.

The three-stage method, illustrated in Figure 4, differs
from conventional feature extraction and classification in
three crucial ways. First, the feedback arc between the clas-
sifier and the features 1s performed by the computer, not
the designer. This avoids the usual human cycle of trying
lots of classification rules with lots of features, and trying
to find the one combination that is best for the problem at
hand. Second, each stage develops at different times and
different rates, with the stages closest to the user changing
fastest. This allows the computations to be distributed in
time and space, facilitating interactive use and the incorpo-
ration of more complex models. This differs from Bayesian
combination which essentially executes and adapts all stages
at once, restricting the Bayesian approach to simple models
for acceptable speed. Third, training is accumulated across
sessions with the user, so that the system improves over time
and can solve similar problems better, i.e. learn faster, the
next time.

Like the other multiple model approaches mentioned
above, this architecture is effective for a variety of classi-
fication tasks including within-image groupings, e.g., scene
segmentation, and across-image groupings, e.g. locating sim-
ilarly textured regions in a set of photos, or carving a path
through an zyt volume of video.

This paper describes an interactive-time learning system,
called “FourEyes,” which assists a user in finding groupings
both within and across images based on features from a soci-
ety of models. The current implementation obtains groupings
for still images from color models, texture models, and the
user. For images from a sequence, optical flow groupings are
also used. The grouping representation used by FourEyes al-
lows for a variety of arbitrary models, and could easily be
extended to include audio, text, or other data. However, the
focus in this paper is on visual data.

3 User interface

The FourEyes interface (figure 12) is intended to allow selec-
tion of image regions without requiring the user to carefully
outline the region of interest. The paradigm is similar to that
of the perceptually organized editing program PerSketch [15].
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Figure 4: Interactive pattern recognition with a “society of models.” The arrow at the bottom describes the rate at which the

three stages learn.

Under this paradigm, the single object hierarchy of conven-
tional paint programs is traded for multiple, possibly con-
flicting organizations. The amount of structure imposed by
the system is mediated by an example-based interaction with
the user. This makes image organization more like a process
of discovery, for both the system and user. In PerSketch,
the user can indicate the region of interest in a line drawing
by making a gesture similar to its shape. In FourEyes, the
user indicates the region of interest in an arbitrary color im-
age by tapping pixels (mouse-clicking on them) or sweeping a
path through the region. The touched pixels become positive
examples which the system immediately attempts to gener-
alize using its society of models (details below). Negative
examples, i.e. pixels which are not in the interest region can
be entered in the same fashion, but with a different mouse
button.

It is important to allow a learning system a large space of
possibilities (lots of models and features), and yet not allow
it so much space that it cannot find a good solution in a rea-
sonable amount of time. The key is the careful formulation of
bias in the space of possibilities so that good solutions can be
found in interactive time. To do this, FourEyes is provided
with a large set of precompiled groupings of features from a
society of models, along with a restricted method for choos-
ing from or combining the groupings. Working in a carefully
biased space, FourEyes can generate good generalizations of
the user’s selected regions in interactive time. The user con-
tinues the cycle of clicking on positive and negative examples
until satisfied with all of the system’s generalizations.

When the user is satisfied with the system’s selection,
FourEyes updates the weights of the groupings of which the
selection is composed, as described in Section 6. This causes
the groupings that were used to form the selection to be fa-
vored the next time a selection is made, so that in many cases
only a single tap is needed to reselect a region or part of a
region which has been operated on before.

FourEyes allows the attachment of a label to the se-
lected region. This attachment is part of another example-
based interaction: annotation of image regions throughout
the database. As with segmentation, but this time across

images instead of within them, precompiled groupings are
selected and combined to extrapolate annotations. Attach-
ment of a label currently adds a positive example for that
label and also a negative example for all other labels. This ex-
clusivity assumption, when correct, greatly reduces the total
number of user examples needed to get a satisfactory label-
ing of a database. The attached labels could later be used to
generate context-dependent semantic keys for querying and
retrieving database contents.

There are other conceivable, but not yet implemented, op-
erations on the selected region, besides labeling it. For ex-
ample, paint tools could modify the color, move, or export
a region, and database tools could retrieve similar regions (a
special case of labeling) and paste them into the image.

The pattern recognition task for FourEyes is not to de-
termine the “correct” model, “correct” grouping of database
regions, or the “correct” segmentation of an image but rather

1. (Section 4) to contribute to a rich repertoire of reason-
able groupings

2. (Section 5) to select from and/or combine these group-
ings to match an example set, with groupings from mul-
tiple models if necessary

3. (Section 6) to learn a weighting on groupings so that
useful ones are recovered from few examples.

An appropriate performance metric is the number of examples
required before the user is satisfied with the response. This
assumes, of course, that not all possible generalizations from
the user’s examples are equally likely to be valid; otherwise
no assistance could be provided. The challenge of FourEyes is
to determine what the likelihood function actually is and to
submit responses in accordance with it. An additional con-
straint is that this should all occur in interactive time. Since
saving wall-clock time for database access is the objective, a
system which processes 4 examples per second and requires
100 examples can be an order of magnitude better than a
system which processes 4 examples per minute and requires
17 examples.



4 Generating groupings

A grouping is a set of image regions (“patches”) which are
associated in some way. The elements of a grouping may not
necessarily come from the same image. This representation
is useful since it admits different kinds of associations with-
out adding complexity. For example, one set may represent
“regions containing between 15% and 25% blue pixels” while
another may represent “regions containing waterfalls” while
yet another may represent “regions which were browsed very
often this week.” It also allows specific associations between
patches to be weighted independently, since each set may
have its own weight. This is important because, for example,
lettering may be best grouped by shape whereas sky may be
best grouped by brightness and location in the image.

Multiple hierarchies are used to contain the sets. Hier-
archies allow efficient expression of sets which are the union
of other sets and are the natural output of many cluster-
ing algorithms. The particular clustering algorithm used by
FourEyes is based on shared neighbors [16]; it is a single-
link method that tends to group areas of similar density in
feature space. The method was chosen since it avoids the
seemingly arbitrary cuts through regions of constant density
made by complete-link methods, which try to minimize an
aggregate, rather than local, error. This advantage of single-
link clustering, which seems most appropriate for perceptual
problems; has been demonstrated in the literature; see e.g.
[17], [18]. In the experiments described here, k; (the shared
neighbor threshold) was zero and k (the number of neigh-
bors) was steadily increased from 1 until all points formed a
single cluster.

FourEyes computes within-image groupings from a model
feature, such as color or texture, in three steps as illustrated
in Figure 5. This is the first stage of Figure 4. This algorithm
is used for its simplicity and generality and can easily be
replaced by another grouping algorithm as better ones are
developed.

1. A dense feature image is computed from the source im-
age. Fach point in the feature image is a feature vec-
tor (e.g. a histogram) computed from a neighborhood
around the corresponding point in the source. For im-
ages in a sequence, the source image could be optical
flow; otherwise it is the original color still. The feature
image should ideally be at the same resolution as the
source but may be coarser depending on computational
constraints.

2. A coarse feature image is computed from the first one
by computing a neighborhood average and covariance.
This is the first step of segmentation, which performs
local smoothing and obtains feature covariances for use
of Mahalanobis similarity in the next step.

3. The coarse feature image is hierarchically clustered via
the shared neighbor algorithm to produce within-image
groupings. Note that the resulting groupings differ
from those generated by traditional region-growing in
that they can contain pixel patches that are not spa-
tially adjacent.

The typical image size in our experiments is 512 x 512, with
a coarse feature image of size 16 x 16. This size reduction sig-
nificantly reduces the number of possible groupings, but still
leaves 2°°® to choose from (all subsets of 256 elements; the
patches in a grouping need not be connected in the image).

The result at this stage is a hierarchical set of image regions
for each image, for each model. These may be used directly
for segmentation, as well as for the next step: computation
of across-image groupings.

Across-image groupings are computed from a hierarchi-
cal clustering of a feature measured over the within-image
groupings. The within-image groupings need not have been
generated by the same feature used for across-image group-
ing; they may have come from optical flow or even manual
outlining. Even when using a single feature, the within-image
groupings can use a variety of quantization sizes and arrange-
ments, including individual pixels, not just the 16 x 16 tessel-
lation used in this paper. In this way, many different scales
and region shapes are allowed.

FourEyes is designed to not be contingent on the relevance
of any one particular feature or segmentation algorithm. Tt
can utilize groupings from another segmentation algorithm,
which incorporates spatial relationships, edges, or a differ-
ent sensitivity to scale. The within-image groupings sim-
ply provide information about which image regions should
be usefully taken as a whole. For example, if a within-image
grouping utilizes face detection to produce segments contain-
ing faces, the across-image grouping can use a face classifier.
If the within-image groupings have different scales, it is up
to the across-image features to remove scale dependence, if
desired.

The advantage of incorporating within-image relationships
for across-image annotation is described in [19]. For color-
based annotation of image regions, that work demonstrated a
clear quality improvement when scene-adaptive class thresh-
olds, based on preserving the continuity of the within-image
class-likelihood histogram, were used instead of fixed, uni-
versally optimized thresholds. FourEyes approximates this
behavior by forming its across-image groupings from within-
image groupings. Moreover, the shared neighbor clustering
algorithm used by FourEyes behaves similarly to the his-
togram splitting used in [19], so the within-image groupings
generated by both methods similarly preserve class-likelihood
continuity. This is a major difference with our previous anno-
tation system [20], which did not use within-image groupings.
Another difference is the ability to learn weights on groupings
and to self-improve, as described in Section 6.

The within-image and across-image groupings are com-
puted off-line; before the user begins interaction with the
system. This separation of functionality is important for
practical implementation in a real image database retrieval
system. For example, when clustering happens off-line, it can
perform extensive cross-validation, noise sensitivity, and sta-
bility checks, possibly utilizing several different algorithms.
This level of evaluation is currently infeasible for on-line use,
but the off-line use allows state-of-the art results from pattern
recognition to be incorporated, improving the overall system
performance. Feature extraction routines, since they run off-
line, can likewise use larger neighborhoods, more accurate
estimators, and have more diversity. New feature extrac-
tion or clustering methods can be developed independently
of work on the other components. Such engineering concerns
are important to those who would construct real systems.

A disadvantage of precomputing groupings is that these
must be recomputed when a novel image is added to the
data set. In FourEyes, this means a full reclustering for all of
the features, or some sub-optimal “patching in” of the novel
image. However, since queries occur orders of magnitude
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Figure 5: Computing within-image and across-image groupings. In image 1, grouping a contains b, which contains c; e.g. they
might be house, door of the house, window on the door. When projected into feature space, they are considered individually,
and look different. The resulting clustering says that a looks more like b than c.

more often than additions to the database, the interactive
speedup can offset the recomputation cost. Groupings which
are not computed, i.e, do not come from parametric model
features, but might come from human specification, must be
manually modified when novel images are added.

The version of FourEyes described here does not recom-
pute groupings automatically during interaction; this need is
alleviated by the weighting and selection mechanisms. For
example, if the set of groupings is sensitive to clustering
or model parameters, then multiple sets of groupings can
be used, with different choices of these parameters, just as
though these were different models. Adding extra models
to the society of models paradigm does not cause the same
combinatorial explosion of possibilities that it would ordinar-
ily cause in the Bayesian combination paradigm mentioned
in Section 2. The later stages can automatically determine
which groupings were actually useful and exclude those which
were not. In this sense, FourEyes can also help learn which
models are of greatest use for a given problem and set of
data. In a later version of the program, a background task
continuously eliminates groupings with low weight (a forget-
ting mechanism) and replaces them with new ones. This adds
a link from the second stage to the first and is described in
[21].

Since the later stages of the system only see groupings,
not feature values, it is not necessary for numerical similar-
ity features to be used. For example, this is advantageous
for incorporating subjective associations among content. For
humans, it is often easier to specify groupings of image re-
gions than to attach meaningful and consistent attributes to
them.

5 Collecting groupings

Once a set of groupings has been formed, the next task is to
select or combine these to form compound groupings for the
user. This is the third stage of Figure 4, referred to below as
“the learner.” At every point in the interaction, the learner
must try to generalize from a set of examples provided by the
user. The result is a set of image regions which contains all of
the positive examples, and none of the negative. This set is
formed from multiple groupings and so is called a compound
grouping.

In the terminology of the machine learning literature, the
compound grouping that the learner is searching for is a “con-
cept” which is consistent with the examples, i.e. includes all
positives and no negatives. The performance of any learner
is crucially dependent on its inductive bias: “any basis for
choosing one generalization over another, other than strict
consistency with the observed training examples” [22]. Bias is
determined by both the extent of a learner’s concept space as
well as the relative weights assigned a priori to different con-
cepts. The latter has a close correspondence with the prior
in Bayesian learning [23]. These two components of bias may
be expressed procedurally (by an algorithm) or declaratively
(say, by weights). Either may change during the problem or
across different problems.

The approach taken in FourEyes is to use a simple concept
language (pure disjunctions, i.e. set union) with an adaptive
weighting mechanism. This makes a great deal of the induc-
tive bias declarative and hence easy to change dynamically
(i.e. the learner is “malleable”). This is in contrast to a
learner with a powerful concept language but limited weight-
ing mechanism, such as ID3 [24] or CART [25], which can
simulate arbitrary set operations but can only change their
bias via splitting or pruning parameters, and so are difficult
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to steer in desired directions.

The learning algorithm used in FourEyes descends from
AQ [26]. AQ is a greedy method that collects groupings one
at a time, such that each one includes no negative examples
but their union includes all positive examples. Starting from
an empty union, the grouping which adds the most positive
examples but no negative ones is iteratively added. Since the
hierarchies generated in the first stage include the smallest-
scale patches at the leaves, this algorithm can always satisfy
any set of examples, no matter how arbitrary.

The algorithm used in FourEyes differs from AQ in its
evaluation of the next grouping to add. Instead of choosing
the grouping which simply maximizes the number of positive
examples (as in our previous work [20]), it maximizes the
product of this number and the prior weight of the grouping.
This means that, e.g., a grouping with twice the prior weight
can cover half as many positive examples before it is chosen.
Thus the prior weights directly influence the learner’s induc-
tive bias. The prior weights are determined from statistics
collected over multiple learning sessions, which will be de-
scribed in Section 6.

Figure 7 graphs the performance of the learning algorithm
for learning texture classes in the Brodatz [2] album. Each
of the 112 textures in the album was equally divided into
9 128x128 non-overlapping images; the desired classification
corresponds to the 112 original texture classes. The learner
begins with all images unclassified. The learner was trained
by repeatedly querying it for the classes of all images, tallying
the errors, choosing an erroneously labeled image at random,
and then informing the learner of the proper class of that im-
age. The learner only gets examples which will be relevant,
because it has erred on them, instead of getting an arbitrary
off-line selection of examples. This incremental presentation
of examples is similar to the way training would occur with
a user (who sequentially selects one or more of the 128 x 128
images as positive or negative examples) but is different from
conventional pattern recognition, where classification is done
by comparing to heavily pretrained prototypes or feature dis-
tributions, without on-line feedback.

At each step, an image which was unclassified by the
learner was scored as one error; an image which was misclas-
sified by the learner was scored as two errors, to make blind
guessing disadvantageous. Since the learner never forgets the
examples it is given and it assumes that classes are disjoint,

it always converges to zero error in at most 1008 steps; the
objective is to get it to converge considerably faster. The
minimum number of examples required is 112, correspond-
ing to exactly one image from each class, since the learner
does not know how many classes there are and cannot guess
the names of unseen classes. Even though there is a ran-
dom element in the training algorithm, the error traces vary
little over repeated executions (no more than 2%). Getting
the traces to improve over time will be handled in the next
section.

Four experiments are shown in Figure 7, each with an
equal prior weight for all groupings. The first experiment
provides a baseline; the learner only had available a sin-
gle randomly-generated hierarchy. This hierarchy had 632
groupings containing more than one element. Given this fee-
ble bias, it required all 1008 examples to reach zero error. The
second experiment had available the same hierarchy plus a
hierarchy generated by clustering the images by EV features
[27] (the hierarchy contained 427 groupings). This extra bias
let the learner reach 100% accuracy after 699 examples. (The
random hierarchy served as “grouping noise,” meaning irrele-
vant groupings, which are to be expected in digital libraries.)
The third experiment added another hierarchy, this time gen-
erated by clustering the images by MRSAR (the hierarchy
contained 255 groupings). The MRSAR has demonstrated
excellent matching performance on this database in earlier
experiments [3], so we would expect learning to proceed even
faster. This was indeed the case; the learner reached 100%
accuracy after 487 examples. The MRSAR is so clearly supe-
rior that the behavior was identical when both the randomly-
generated and the EV-generated hierarchies are left out, i.e.
these two now play the role of “grouping noise.” This case
also illustrates the use of FourEyes to identify a model which
is best suited to a problem. The fourth experiment added
an “Ideal” hierarchy which explicitly contained the desired
112 classes as groupings (148 groupings total), bringing the
total number of hierarchies to four and the total number of
groupings to 1462. The learner quickly exploited this extra
knowledge, reaching 100% accuracy after 303 examples. To
actually get zero error with the minimum number of exam-
ples (112), the learner would have to either have been given
the correct 112 groupings and no others, or been given a prior
weighting which favors these groupings over the others. The
latter case is examined in Section 6; the former case could
arise through adaptation of the grouping generation stage,
as explored in [21].

The dominance of some models over others is obvious in
these four experiments, but it need not be so in general. For
example, if two roughly equally performing models, say a Eu-
clidean gray-level histogram distance and the tree-structured
wavelet (TSW) transform [28] are used, the result is better
than either one alone (from 916 and 858, respectively, to 785
examples to reach zero error).

These experiments demonstrate the ability of the learner
to tolerate grouping noise and quickly locate the most useful
groupings for generalization. Adding more random or inferior
groupings does not substantially affect the results described
here, until a significant fraction of all possible groupings are
accounted for. At that point, the learner has too many op-
tions (i.e. too little bias) and so, with equal weights on group-
ings, can do no better than random guessing.

When using all 1462 groupings, the learner processed over
20 examples per CPU second; it has been benchmarked with
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Figure 7: Learning performance for different sets of groupings. The faster the curve drops, the better the performance.

up to 120,000 groupings on 6400 patches, where it could still
process up to 5 examples per CPU second on an HP 735/99
workstation. The time complexity for constructing a com-
pound grouping from an example set is linear in the num-
ber of examples, the number of trees, and the height of each
tree; it is not dependent on the total number of groupings
or the total number or size of patches, when suitable hashing
schemes are employed. The time complexity for retrieving all
the patches in a compound grouping is linear in the size of
that grouping.

6 Weighting groupings

As described in Section 5, the learner tries to find the best
compound grouping according to consistency with the user’s
examples and an inductive bias. When the number of ex-
amples is large, consistency alone can serve to isolate good
groupings. In such a case; the need for bias is low; many
so-called nonparametric learning algorithms exploit this phe-
nomenon by requiring little knowledge of the problem but
many training examples. However, the low-bias approach is
not suitable for user interaction since each example 1s ex-
pensive in terms of the user’s time. When the number of
examples is small, many groupings will be consistent; conse-
quently, the bias is crucial in determining which groupings
are chosen.

FourEyes solves the biasing problem by giving the learner
adaptive prior weights which change between interactions
with the user, so that the groupings which were satisfactory
this time will be selected earlier (i.e. with fewer examples)
next time. Ifinstead of this solution, just one vector of group-
ing weights is used and updated, over time the components
will average. This is because each task has its own “best”
weight-vector; each of these will pull in a different direction
and they will cancel each other out. The multiple weight-
vectors we use avoid this problem; each one can specialize
on and be trained on tasks in a particular region of weight-

space, as shown in Figure 8. As the system interacts with
the user, it can determine which weight-vector is most rel-
evant and then use it for learning. When the interaction is
complete, the chosen weight-vector is updated. This way the
learner can adapt to many different tasks without blurring
its experience.

Selecting prior weights after seeing some training data
corresponds to learning by analogy with previous problems.
Since it allows faster convergence to plausible groupings,
making an analogy gives the learner more training examples
for the current problem. It does this not by carrying over the
literal training examples from a single previous problem, but
rather carrying over the agglomerative characteristics of the
training examples from a set of previous problems. An im-
portant issue here is the comparison between weight-vectors
in order to determine when two learning tasks are similar;
this is s(b) given below.

6.1 Modeling weight-space

FourEyes classifies learning problems by clustering weight-
space. Currently this is done via a self-organizing map (SOM)
[29]. During user interaction, each SOM unit (stored vector of
weights) competes for consistency with the user’s examples;
the winning unit propagates its weights over the groupings.
When the user is satisfied with the output of the learner,
the winning unit is updated to more closely match the ex-
amples. In this way, the SOM defines a clustering of the
weight-vectors for the problems it has seen, where each SOM
unit is a cluster center. Note that a self-organizing map is
typically used for the classification of feature vectors in a
learning problem; here it is being used for classifying learn-
ing problems themselves, in terms of the grouping weights
they favor. Each SOM unit then represents a prototypical
learning problem.

Each SOM unit stores statistics about how often certain
patches appear as positive or negative examples. Specifically,
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each unit b stores:

o «(b) = the number of positive examples contributed to
b (“contribute” defined below)

o «(Gb) = the number of positive examples from «(b)
contained in grouping G

e 3(b) = the number of negative examples contributed to

e 3(G|b) = the number of negative examples from §(b)
contained in grouping G

When a unit is updated, the total set of examples received
from the user contributes, i.e. adds, to these values. Note
that >, a(Glb) is not necessanly equal to a(b), since group-
ings may overlap. These values are used for both selecting
the appropriate unit and determining the prior weights for
groupings, once a unit has been chosen. Since the number
of groupings can be quite large, the number of values each
unit must store can get prohibitive. In such cases; a sparse
vector representation can be used, since many of the example
counts will be close to zero.

First will be described the formula for prior weight, once
a unit has been chosen. The prior weight on a grouping, as
used by the learner, is intended to be a heuristic measure of
its expected contribution toward the learning goal. Let P
be the hypothetical set of patches (or one such set) which
if returned to the user would be satisfactory; let N be its
complement. Then the learning goal is to cover all of P
but none of N, given only a few examples from each. The
heuristic used in FourEyes for the prior weight w € [0,1] of a
grouping G given weighting unit b is

WG +1, G 1
ORI )

The first term of w(G|b) is an estimate of the expected frac-
tion of P contained in G and the second term is an estimate
of the expected fraction of N not contained in G. The offsets
provide non-singular initial conditions; since exactly one unit
is in effect at any time, only the relative weights of groupings
are significant. This heuristic formula for w is not proposed
to be optimal in all cases, but has proven better in our ex-
periments than several alternative formulations.

Units in the SOM are chosen by maximizing the match
value s(b) between a unit b and the current set of examples.
Thus s(b) corresponds to the notion of problem similarity in
making analogies. Define:

w(G|b) =

e o* = the number of positive examples provided by the
user

¢ (@) = the number of positive examples from a* con-
tained in G

e 3% = the number of negative examples provided by the
user

e 3*(G) = the number of negative examples from 3* con-
tained in G

Finding the best unit corresponds to finding the best match
between a*(G) and a(G|b) (or B*(G) and B(G[b)) over all
groupings G and all units b. A normalized correlation, i.e.
weight-vector angle cosine, is a logical choice for similarity
but only after some modification. This is because not all
groupings G should be considered equally for matching; e.g.
a grouping which has equal counts for a* and #* is not char-
acteristic of the user’s examples and so should be ignored.



Therefore the normalized correlation is done between 71 (G)
and r2(G|b), two measures of the relevance of a grouping
(clipped to zero if negative):

I @)
_a(Glh)+1 , B(Glb) +1
RO = =0T T B 12 (3)

S(b) — ZG Tl(G)T2(G|b) (4)
ZG T1(G) ZG T2(G|b)

Here is some intuition why r2 should differ from w. When
the SOM is searching for the weights to use (using r2), it
should be picky about details, and pay close attention to
negative examples. After the learner has decided on weights
and is utilizing them (with w), it should have faith in its
choice, and pay more attention to positive examples. This
is why 72 divides by the negative example ratio, making it
more sensitive to negative examples than w is. Alternative
arrangements, e.g. swapping r2 and w or making them the
same, degrade performance in our experiments.

New units are added via the following method. Initially,
only one unit is present: a special immutable unit containing
a flat weighting. If this unit is the winner then this means
none of the available weightings are appropriate. In this case,
a new unit is created and initialized with the current exam-
ple counts (a gets a*, 3 gets ). A method for adding new
units which avoids monopoly, e.g. “wincount” [30], could
also be used. Another possible extension is the relaxation of
the winner-take-all constraint, to allow multiple units to con-
tribute and/or be updated, e.g. via a neighborhood around
each unit [29], which would provide output interpolation. A
mechanism for the elimination of unnecessary units (forget-
ting) may also be useful. These are the incremental analogs
of merge/split rules in batch clustering algorithms.

6.2 Learning speedup

The learning speedup provided by using a SOM of grouping
weights is demonstrated in the following three experiments.
The learner described in Section 5 was modified in two ways:

1. After every e examples received, the SOM was con-
sulted for each class to provide a prior weight to be used
when selecting groupings for that class. The choice of
e is a time/accuracy tradeoff, since SOM lookups are
expensive; the experiments used e = 10.

2. When the learner was signaled that the learning task
was completed, for each class it updated the SOM unit
whose prior weight was selected for that class.

In the first test of learning speed-up, the Brodatz classifi-
cation task was repeated. The learning curves on the second
run for the same classification problem are shown in Fig-
ure 10. Except for the random hierarchy alone, all curves
reduced their learning time by about 160 examples. On the
first run, the SOM was empty (except for the special flat
weighting). After the first run, the number of units created
in the SOM was 112; each class obtained its own section of
weight-space. On the next and later runs, the SOM even-
tually matched up each class with the proper unit, without
creating new ones. Even though estimates of class statistics
continued to improve in the SOM, the learning performance
did not improve significantly after the second run; the learner
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reached its peak early, since there was only one problem to
learn about. Since exactly the same classification was desired
both times, this test should be viewed as the best learning
improvement that can be expected by only changing weights
on groupings. Equipped with the ideal hierarchy and a SOM
with the appropriate weights, the learner almost reached the
theoretical optimum of 112.

Notice that the curve for the appropriately biased “Ran-
dom, EV” learner is better than that of the weakly biased
“Random, EV, MRSAR” learner, shown in Figure 7. This il-
lustrates that weighting existing groupings effectively can be
better than having more groupings available, even groupings
from a “better” model such as the MRSAR. Good models
are just one component of a good classifier.

Next, the learner’s performance was measured when ap-
plied to similar classification problems instead of the same
problem. Three categories of similar problems can be distin-
guished:

1. Problem A’s classes are unions of Problem B’s classes.
(For example, B discriminates between red blocks,
green blocks, red balls, and green balls; A discriminates
between red and green only.)

2. Problem A’s classes are partitions of Problem B’s
classes. (The reverse scenario.)

3. Problem A’s classes are unions of partitions of Problem
B’s classes. (An all-encompassing transformation.)

Tests were made for the first two cases, starting with the
112-class problem, by randomly pairing up all classes and
then uniting pairs. Successive application of this rule pro-
duced a 56-class, 28-class, and 14-class problem, so that, e.g.
the 14 classes are unions of pairs of the 28 classes. Then
each problem was run with a SOM trained on a single run
on another problem. The number of examples until zero er-
ror, for each of these combinations, using the MRSAR hi-
erarchy is shown in Table 1. The behavior is similar for
other hierarchies, though the numbers are larger. The impor-
tant characteristics of this table, revealed along the diagonal
and off-diagonals, indicate (1) some training is always better
than none, (2) the more similar the problems, the better the
speedup, and (3) speedup is better when trained on a prob-
lem with fewer classes than the current problem (lower left
diagonal of the table).

The latter observation means that when training on “A”
and testing on “B,” the SOM is better at case 1 above than
cases 2 or 3. This is probably because of the winner-take-
all rule; exactly one stored weight-vector can be used per
class. The learner generally gets more information when
these weights were trained on a class which is a superset
of the desired class than a class which is a subset of the de-
sired class. This means it is better at learning “apple” given
weights for “fruit” than vice versa. This imbalance might
be avoided by, for example, generating the weights from a
combination of the k& best matching SOM units where k& > 1.
Then SOM units trained on “apple,” “orange,” and “banana”
could all contribute to learning “fruit.”

Finally, the SOM’s ability to retain simultaneous knowl-
edge of different problems was tested. Ten classification prob-
lems were created, each one constructed from 14 randomly
chosen unions of 8 of the 112 Brodatz classes. Thus each
problem had 14 disjoint classes over the 1008 images. Fach
of the problems; while having subsets in common, differed
greatly in how these are arranged and so fell under similarity
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Figure 10: Learning performance for the task in Figure 7, on the second run.
Trained on shapes and sizes, and contain many different scales and in-
Run on | 14 28 56 112 nonme homogeneous textures. Three human subjects were asked
14 357 463 469 477 483 to freehand outline regions in 25 of the natural scenes and
28 362 360 457 472 483 assign the seven labels “building,” “car,” “grass,” “leaves,”
56 377 376 376 457 439 “person,” “sky,” and “water” to them. They were not asked
112 402 403 383 369 493 to make precise boundaries or make decisions on a strictly

Table 1: Learning performance for similar problems; note the
behavior along the diagonal and off-diagonals.

case 3 above. In general, training the SOM on one of the ten
problems offered no assistance for another problem, i.e. the
number of examples to reach zero error was effectively un-
changed. Instead, the SOM was trained on each problem in
turn and then re-run on each problem again, consecutively.
Since the problems were reasonably independent, different
sets of weightings would likely be needed for each one; hence,
this tests the memory’s ability to model weight-space.

Figure 11 shows the number of examples until zero error
for two passes made consecutively through the ten problems,
compared to the “optimum” result when the SOM is trained
specifically for each problem. After one pass from left to
right, the SOM automatically grew to 27 units by the end
(this number is order-dependent, as in most self-organizing
clustering algorithms). As can be seen in the graph, memory
from the first pass was good enough to get most of the way
to the optimum on the second pass. Successive iterations did
not add any more units to the SOM or alter performance
beyond 5%.

7 Performance on natural scenes

The performance of FourEyes in a realistic situation was mea-
sured by its labeling performance on the natural scenes in the
“BT images.” In these images, the regions are of irregular
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perceptual basis (both of which would have aided FourEyes).
Then a majority vote among the subjects was used to derive
a single, approved ground-truth segmentation and labeling
of those images. Since within-image groupings were com-
puted using a 16 x 16 tessellation, the ground-truth segmen-
tations were quantized to that resolution. Note that finer
tessellation-sizes could be used, or overlapping tessellations,
or even single pixels, but that this level of detail is usually
not necessary for tasks such as retrieval. Finer resolutions, or
even different resolutions for each model, can be used with-
out change to the framework here if the application requires
them. The resulting ground-truth is shown in Figures 13 and
14.

Given this ground-truth, we could present it all at once
to the computer, as is done in traditional pattern recognition
in a training phase. However, the goal is to benchmark the
learner as if it were being used by a person, incrementally
picking 32 x 32-pixel patches of regions of interest. This is a
more realistic scenario for database retrieval and annotation,
where the user gradually decides what he or she wants while
browsing the data. However, it tends to make the problem
harder in that there is very little training data in the begin-
ning, and yet the system has to use what’s available and learn
continuously.

Four experiments were conducted with different sets of
groupings available to the learner. Patch size varied in the
groupings computed by stage 1, but the results in Table 2
are given in terms of 32 x 32-pixel patches only. There were
4546 labeled 32 x 32-pixel patches and 7 classes so these are
the theoretical maximum and minimum numbers of examples
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Figure 11: Simultaneous learning performance for ten different problems

Groupings Zero error | 25% error
8 x 8 1.6 1.8
plus MRSAR 2.0 3.3
plus Ohta 2.4 5.7
second run 2.9 8.8
plus human 2.6 20
second run 2.9 28
plus ideal 38 47
second run 69 107

Table 2: Annotation savings for natural scenes. Numbers
are the ratio between the total number of correctly labeled
32 x 32-pixel patches (4546 for zero error, 3410 for 25% error)
and the number of examples. The higher the ratio, the more
help the system is to the user.

required to reach zero error. The baseline experiment (row 1
in Table 2) used a set of 1600 groupings corresponding to an
8x 8 tessellation of each image, i.e. into groups of four 32x 32-
pixel patches. This corresponds to a simple bias toward giv-
ing nearby patches the same label. It required 2924 examples
to reach zero error, for an annotation savings of 1.6:1. Next,
within-image groupings computed from the MRSAR texture
feature over 64 x 64-pixel patches were added (1740 groupings,
or about 70 per image), which allowed the system to achieve a
savings of 2:1. Third, within-image groupings computed from
the Fuclidean distance between unnormalized histograms of
32 x 32-pixel patches in the Ohta color space [31] were added
(1663 groupings), which raised the savings to 2.4:1. When
run again on the same problem, the weights stored in the
SOM raised the savings to 2.9:1, which is therefore the most
that can be expected with these two models. The learning
curves exhibited diminishing returns after reaching 25% er-
ror; the last experiment spent 75% of its examples after this
point. This indicates that the system is most effective at get-
ting a quick first-cut labeling rather than a perfect labeling.
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Interestingly, adding across-image groupings computed
from the MRSAR or Ohta histogram features did not improve
performance. This indicates that the across-image perceptual
variations in this data’s semantic classes were high enough to
confuse these image models. Another cause might be the
scale-sensitivity of these particular across-image features.

The human-provided labelings were quite semantic and
seem difficult to capture only with local feature measure-
ments and no common-sense knowledge. Therefore, the fi-
nal test added human-provided within-image groupings to
the first stage of FourEyes. This test would correspond to
the system forming new groupings to better match that per-
son’s preferences. The new groupings were provided by one
of the sets from which the ground-truth was derived, but
deliberately did not match exactly the ground-truth used
in our tests. This raised the zero-error annotation savings
slightly and allowed the learner to reach 25% error much
faster. The factor of 20 savings while descending to 25% er-
ror but relatively low savings for zero error indicates that
the human-provided groupings were almost right but had to
eventually be rejected as they could not perfectly match the
ground-truth regions. An alternative grouping combination
rule, which allowed more than just disjunctions, or was softer,
could alleviate the need for each grouping to be a subset of
a desired grouping, and improve performance in this case. If
the correct within-image groupings were added (an ideal sit-
uation, the last two rows) the learner improved itself by an
order of magnitude. The learner could approach the theoret-
ical limit of 7 examples or 650:1 savings if ideal across-image
groupings also became available, or were learned.

8 Related work

Some recent systems which perform retrieval on image data
are QBIC [6], SWIM [32], Photobook [33], and CORE [34].
A notable quality of these systems is that they present many
different ways of organizing the data but offer little assistance
in actually choosing one of these organizations or making a



new one. Users are often forced to determine what features
will be relevant to their intent, if any, instead of address-
ing their intent directly. Since intentions can vary greatly
and features can be very opaque, another solution is needed.
The example-based interaction in FourEyes, coupled with a
learning element that selects and constructs organizations,
provides such an alternative.

The need for a learning component between the user and
image features is described in [35]. In that work, positive and
negative pixels were used to define a classification rule for new
pixels. The classification rule was a conjunction of thresholds
on one-dimensional feature values, where the thresholds and
features are chosen to maximize the separation between pos-
itive and negative. FourEyes differs from that work in three
important ways. First, FourEyes does not perform its anal-
ysis strictly on lone pixels. By using within-image groupings
as the analysis elements, it addresses the need for spatial con-
text as outlined in [19]. Second, FourEyes can incorporate in-
formation from multi-dimensional or non-numerical features
such as subjective clusterings provided by the user. Third,
and most important as the number of features gets large,
FourEyes can learn a strong bias on groupings. FourEyes’
groupings implicitly quantize and the weightings prioritize
the thresholds used in [35]. This allows FourEyes to improve
its performance over time and over new problems, despite
growth in the number of features.

FourEyes employs hierarchically-organized sets, produced
by off-line clustering, for efficient retrieval of plausible group-
ings. A possible alternative is the hierarchical self-organizing
map discussed in [36], which can reduce high-dimensional
vector spaces into arbitrary hierarchical topologies (a hierar-
chy of two dimensional topologies was used in that paper).
The principal advantage of the algorithm is that it is trained
on-line and might be modified to optimize a classification
criterion, as in LVQ [37]. This admits the possibility of mod-
ifying the groupings based on information obtained by the
learner and the memory of weights, without a full recluster-
ing step. Using a SOM to represent groupings could unify
the implementation of the first two stages of the system and
perhaps even the third.

9 Summary

The “FourEyes” learning system for assisting users in digi-
tal library segmentation, retrieval, and annotation, has been
described. Digital library access requires the use of many
context-dependent or noisy features, whose relevance is not
always obvious. FourEyes addresses this problem on multiple
fronts:

1. Tt first makes tentative organizations of the data, in
the form of groupings. The grouping representation
provides a common language for different measures
of similarity. Groupings can be manually provided,
induced by color/texture models, derived from opti-
cal flow information, etc. FourEyes uses both within-
image groupings and across-image groupings composed
of these.

2. The user no longer has to choose features or set fea-
ture control knobs. Instead, the user provides positive
and negative examples which allow FourEyes to choose
groupings (hence, similarity measures) automatically.
The interaction is more like a conversation where both
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parties give each other prompt and relevant feedback
in order to resolve ambiguities.

3. With many groupings to choose from, the number
of examples required to isolate good groupings can
get large. FourEyes circumvents this by having prior
weights on the groupings and preferring groupings with
more weight. These weights are learned across inter-
actions with users, so that the system gets better, i.e.
learns faster, from repeated use.

4. Since the optimal weights on groupings changes with
context, FourEyes employs a self-organizing map to re-
member useful weight settings. As the user interacts
with it, FourEyes chooses the most appropriate weights
in the map. This way, FourEyes can improve its joint
performance on a wide range of tasks.

5. FourEyes offers a practical way to get interactive per-
formance, by explicitly separating these grouping gen-
eration, weighting, and collection stages. It does this
without sacrificing adaptability or the use of multiple
models, because feedback between the stages allows the
whole system to learn, though each stage at a different
rate.

10 Software

All three stages of FourEyes, plus the image database man-
agement, were written in C and Tcl and run on Unix ma-
chines. The first stage is a collection of off-line feature com-
putation and clustering programs to which new programs can
be easily added. A copy of FourEyes for educational or re-
search purposes can be obtained by contacting the authors.
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Figure 12: The FourEyes computer-assisted annotation tool. The user has mouse-clicked some patches of sky in the two right
images, and assigned them the label “sky.” Within-image groupings allowed FourEyes to grow those labeled patches into
larger “sky” regions (indicated by cross-hatching). Across-image groupings allowed FourEyes to also place tentative labels on
the two left images. The menu buttons allow the user to control which sets of groupings are available to the learner.
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Figure 13: The first twelve natural scenes and their ground-truth labelings. Regions labeled “building” are colored black;
“car” is yellow, “grass” is green, “leaves” is cyan, “person” is red, “sky” is blue, and “water” is purple. Unlabeled regions are
white.
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Figure 14: The remaining thirteen natural scenes and their ground-truth labelings.
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