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Abstract

A state-based method for learning visual behavior from
image sequences is presented. The technique is novel
for its incorporation of multiple representations into the
Hidden Markov Model framework. Independentrepre-
sentations of the instantaneous visual input at each state
of the Markov model are estimated concurrently with
the learning of the temporal characteristics. Measures
of the degree to which each representation describes
the input are combined to determine an input’s over-
all membership to a state. We exploit two constraints
allowing application of the technique to view-based
gesture recognition: gestures are modal in the space
of possible human motion, and gestures are viewpoint-
dependent. The recovery of the visual behavior of a
number of simple gestures with a small number of low
resolution image sequences is shown.

1 From human motion to gesture

For all the degrees of freedom available to the human body, we
seem to habitually use a only small class of motions that they per-
mit. Even athletes, which as a group use their bodies in ways that
most people do not, aspire to repeat motions flawlessly, spending
hours upon hours practicing the same motion. In the space of
motions allowed by the body’s degrees of freedom, there is a sub-
space that most of us use. For example, if the body is modeled by
a series of joints and angles between them, there would be many
combinations of joint angles that we would never see.

Gesture is one interesting subspace of human motion. For the
purposes of this paper, we define gesture to be motions of the body
that are intended to communicate to another agent. Therefore, the
gesturer and the recipient of the gesture must share a knowledge
of gesture to communicate effectively. By way of simplification,
this means the gesturer’s movement must be one of a predefined
set. We do not mean that a given gesture has a fixed geometry;
a “wave” might be a single gesture in which the hand can be at
any height between the chest and the top of the head. Rather,
for now we are assuming that there is a set of gestures and each
gesture defines a range of motions that are to be interpreted as
being examples of that gesture. Thus gestures are modal in the
space of possible human motion.

Due to the variability of human movement, the behavior of the
gesture must be described without regards to precise geometry or
precise temporal information. We take visual behavior to mean
the sequence of visual events that makes a complete action or
gesture. We assume that two gestures that have the same visual
behavior are in fact the same gesture, thus ignoring the delicate
problem of relating the form and meaning of natural gesture [6].

1.1 View-based approach
The machine understanding of human movement and gesture
brings new possibilities to computer-human interaction. Such
interest has inspired research into the recovery of the the complete
3-dimensional pose of the body or hand using a 3-dimensional
physical model (e.g. [12, 13]). The presumption behind such work
is that a complete kinematic model of the body will be required
for useful inferences.

We claim that gestures are embedded within communication.
As such, the gesturer typically orients the movements towards the
recipient of the gesture. Visual gestures are therefore viewpoint-
dependent. And the task of gesture understanding is particularly
suited to a view-based, multiple model approach in which only a
small subspace of human motions is represented.

In related work, Darrell and Pentland [3] use dynamic time
warping and normalized correlation to match the interpolated re-
sponses of several learned image templates. Murase and Nayar
[8] parameterize multiple eigenspaces over pose and illumination
angle for object recognition. Polana and Nelson [10] match low
level templates of spatiotemporal motion to recognize periodic hu-
man motions in image sequences. Cui and Weng [2] use learned
decision boundaries to recognize sequences of vector-quantized
images of hands. Starner and Pentland [15] extract the position
and dominant orientation of both hands for the recognition of
simple American Sign Language.

2 Representation of gesture
2.1 Multiple models for gesture
We claim that gestures are modal in the space of human motion.
But how should a system model human motion to capture the
constraints present in the gestures? There may be no single set of
features that makes explicit the relationships that hold for a given
gesture. In the case of hand gestures, for example, the spatial
configuration of the hand may be important (as in a point gesture,
when the observer must notice a particular pose of the hand), or
alternatively, the gross motion of the hand may be important (as
in a friendly wave across the quad). Quek [11] has observed
that it is rare for both the pose and the position of the hand to
simultaneously change in a meaningful way during a gesture.

Rather than use one model that is only partially effective, the
approach here is to allow for multiple models. By model we
mean a systematic way to describe a set of existing sensor data
and a method to measure how well it describes new sensor data.
Different models may interpret the same sensor data in different
ways or they may take data from different sensors, in which case
sensor fusion is the goal. The use of multiple models in a visual
classification task is discussed in [9].

One goal is to develop an approach that can exploit multiple
models simultaneously, where the type of models might be quite
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distinct. Model types useful for characterizing images in an image
sequence might include eigenvector decomposition of sets of im-
ages [16], orientation histograms [4], peak temporal frequencies
[10], tracked position of objects in the frame, and optic flow field
summaries.

2.2 State-based descriptions
In previous work [1] we defined gesture to be a sequence of states
in a configuration space. States were defined on some input space
(say the joint angles returned by a DataGlove) and were designed
to capture the constraints present in a series of training examples.
Membership in a state was governed by probabilistic functions
that attempted to capture the natural variability of motion in terms
of the variances of these functions.

The temporal aspect of a gesture was incorporated by requiring
that the states be defined along a prototype derived from training
examples. Once defined, these states would be used to determine
if a particular trajectory through the input space was an example
of the learned gesture: the trajectory had to sequentially pass
through each state attaining sufficient memberships in sequence.
The actual time course was not important as long as the sequence
was appropriate.

In the work presented here, we continue to consider a gesture
as a sequence of states. At each point in time, the observed
visual input reflects the current state and perhaps the transition to
the next state. This state-based description is easily extended to
accommodate multiple models for the representation of different
gestures or even different phases of the same gesture. The basic
idea is that the different models need to approximate the (small)
subspace associated with a particular state. Membership in a state
is determined by how well the state models can represent the
current observation.

2.3 Learning visual behavior
In this paper we develop a technique for learning visual behav-
iors that 1) incorporates the notion of multiple models; 2) makes
explicit the idea that a given phase of a gesture is constrained to
be within some small subspace of possible human motions; and
3) represents time in a more probabilistic manner than defined by
a prototype approach. In the remaining sections we first derive
a state model and membership function based upon residual, or
how well a given model can represent the current sensor input. We
then embed this residual-based technique within a Hidden Markov
Model framework; the HMM’s represent the temporal aspect of
the gestures in a probabilistic manner and provide an implicit form
of dynamic time warping for the recognition of gesture. Finally,
we demonstrate the technique on several examples of gesture and
discuss possible recognition and coding applications.

3 Modeling gestures

3.1 Model instances and memberships
Suppose we have a set of observations O = O 1;O2; : : : ;OT and
a collection of states numbered j = 1 : : :N . Assume that for
each observationOt we are given a degree of belief t(j) that Ot
belongs to a state j; we require that
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j=1 t(j) = 1. We can
interpret t(j) as the membership of Ot to state j. In this section
we use the combination of multiple models to describe the set of
observations belonging to a single state; in the next section we
consider modeling the time course of states.

A number of model types A;B; etc. are selected a priori to
describe the observations. One instance of each model type is

associated with a state. Let us denote the set of model instances at
state j as Mj = fAj;Bj; : : :g. Each model instance is defined
by the set of parameters that limit the model type to match some
set of observations. For example, eigenvector decomposition of
images may be a model type. An instance of the model type
would comprise a particular mean image and set of eigenvectors
(eigenimages) that are computed from a set of examples.

The parameters of Mj are computed from the set of example
observations with the highest membership t(j). This may be ac-
complished by weighting each of the examples in the computation
of the parameters, or simply by selecting some fixed number of
the top observations, ranked by t(j). In the examples presented,
the latter approach is taken.

For each model instancem 2Mj and an observationxwe can
compute a distance dm(x) which measures the degree to which
the model instance m is unable to match x. In this sense, dm(x)

is a reconstruction error or residual. If we think of the parameters
ofMj as limiting the model to a subspace of the samples, then we
may also call dm(x) a distance to model subspace. The distances
to each model instance may be combined to give

dj(x) = hdAj (x); dBj (x); : : :i:

This quantity is similar to the “distance from feature space” derived
in [7].

Next we consider the observation probability distribution bj(x)
which describes the probability of measuring a particular residual
for an observation when that observation is really generated by
state j. The probability bj(x) may be estimated from the observa-
tions, each weighted by t(j). We estimate bj as a normal1 joint
distribution on dj: bj(x) = N [dj(x); ��j;Σj ], with

��j =

TX

t=1

t(j)

TP
t=1

t(j)

dj(Ot);

and

Σj =

TX

t=1

t(j)

TP
t=1

t(j)

(dj(Ot)� ��j)(dj(Ot)� ��j)
T
:

The probability bj(x) may then be used to compute a new
t(j). In the next section, Hidden Markov Models are presented
as a technique for computing t(j) that treats the observations as
a sequence rather than a set.

Having updated t(j), the estimation of the model instances
Mj described above is iterated. In this way the memberships
t(j) and the model instances are tuned to define the states in a
way that best represents the observations. Summarizing, we list
the following requirements of model instances:

� Model instance parameters are computed using the observa-
tions and their membership to the state, t(j).

� Each model instance delineates some subspace of the space
of observations.

� The distancesdj(x) must be lowest for observations with a
high degree of membership t(j).

1Since there are no negative distances, the gamma distribution
may be more appropriate.
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Figure 1: Each state of the Markov model (gray) is associated
with a unimodal observation pdf. (a) In the conventional HMM
framework all observation distributions reside in the same space
of measurements from model A and B. (b) In the multiple inde-
pendent model subspace HMM, each state is associated with an
independent space of measurements from model A j and Bj .

3.2 HMM’s with multiple independent model
subspaces

Following a trend in speech recognition, vision researchers have
applied the Hidden Markov Model technique to gesture recogni-
tion. Yamato et al. [17] compute a simple region-based statistic
from each frame of image sequences of tennis swings. Sequences
of the vector-quantized features are then identified by a trained
HMM. Schlenzig et al. [14] use a rotation invariant representation
of binary images and a neural net to quantize the image to a hand
pose token before using an HMM. Starner and Pentland [15] ap-
ply continuous HMM’s with the orientation and position of both
hands wearing colored gloves.

HMM’s are attractive because they put dynamic time warping
on a probabilistic foundation and produce a Markov model of
discrete states that codes the temporal structure of the observations
[5]. Training an HMM involves inferring a first-order Markov
model from a set of possibly continuousobservation vectors. Each
state is associated with the observation probability distribution
bj(x). The probability of making a transition from a state i to
a state j in one time step is denoted as Aij . The relationship
between the discrete states and bj(x) is depicted in Figure 1(a).

Treating O as a sequence, we may now interpret t(j) from
Section 3.1 as the probability of being in state j at time t given the
observation sequenceO and the HMM. Computed by the standard
“forward-backward”procedure, t(j) is used by the Baum-Welch
algorithm to iteratively adjust bj(x) andAij until the probability
of the HMM generating the observations is maximized.

Training the HMM with multiple independentmodel subspaces
proceeds by interleaving iterations of the Baum-Welch algorithm
(giving an updated t(j) to reflect the updated transition matrix
A) with reestimating the parameters of the model instances. In
this way the representation encoded at each state is trained concur-
rently with the transition model. The relationship between each
discrete state of the Markov model and the multiple independent
model subspaces is depicted in Figure 1(b).

a

b1 b2

c

Figure 2: A state-based description of gesture must encode the
relevant perceptual states. These images of an upright open hand
share the same conceptual description, but have very different
perceptual descriptions due to a slight change in viewing angle.

An advantage to this approach is that the representation at each
state is designed to match the particular temporal model, while
the temporal model is designed for the particular choice of repre-
sentations as well. Additionally, by having multiple independent
models, we do not rely on any one particular model instance to fit
all observations for all states.

3.3 HMM topology
Before training the HMM, initial transition probabilitiesAij must
be provided. The topology of the resulting Markov model is
constrained by initially setting someAij to zero. To ease training,
the topology is commonly constrained to be simple (e.g. causal).

The topology of the Markov model has the capability of en-
coding the temporal structure of the gesture. We choose not to
restrict the topology of the Markov model initially and instead re-
cover the topology through training (though the number of states is
assumed). The reasons for doing so are twofold. First, by not pro-
viding a strict initial model we may recover interesting temporal
structures that would otherwise escape notice, such as symmetry
in time. In such cases the structure of the recovered transition
matrix contributes to our understanding of the gesture.

Second, by providing a strict initial model we make implicit
assumptions about the distribution of the sensor outputs (e.g.,
unimodal along the gesture in the case of a strictly linear Markov
model). These assumptions may be unwarranted: while a simple
gesture may seem to us a simple sequence of conceptual states,
the sensors may see the movement as a complicated tangle of
perceptual states. This may occur, for example, when the sensors
used do not embody the same invariances as our own visual system.
Figure 2 illustrates a single conceptual state (the upright hand)
generating grossly different observations. If a single bj(x) cannot
encode both observations equally well, then additional Markov
states are required to span the single conceptualstate. The addition
of these states require the flexibility of the Markov model to deviate
from strictly causal topologies.

3.4 Algorithm
To recover the temporal structure of the gesture and to train the
representations at each state to suit the temporal model, we initial-
ize the iterative algorithm sketchedabove with a uniform transition
matrix and a random membership for each observation (Figure 3).

In the conventional HMM framework, the Baum-Welch algo-
rithm is guaranteedto converge [5]. By interleaving the estimation
of model parameters with the Baum-Welch algorithm, the proof of
convergence may be invalidated. However, convergence has not
been a problem with the examples tried thus far.
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Initialization:
setAij =

1
N

for all i, j
initialize t(j) randomly,

PN

j=1 t(j) = 1

Algorithm:
repeat until parameters of Mj do not change:

for each state j (parallelizable):
estimate parameters to models m 2Mj

computedj(x) for all x 2 O
estimate bj(x) = N [dj(x); ��j;Σj]

end
update A, t(j) by Baum-Welch algorithm

end
Figure 3: Training algorithm

4 Examples
4.1 Single model
For our first example, we use the eigenvector decomposition of
the image as the single model type. In this case, the parameters
associated with a model instance are simply a number of the top
eigenimages that account for most of the variance of the training
images (as indicated by the eigenvalues) and the mean training
image. The training images for a model instance at state j are
selected by ranking all samples by t(j) and selecting some num-
ber of the top samples. Given a model instance Ej and a sample
image x,dj(x) = hdEj (x)i is simply the reconstruction residual
of the image using the precomputed eigenvectors at state j.

The input consists of 32 image sequences of a waving hand,
each about 25 frames (60 by 80 pixels, grayscale) in length. The
top 50 t(j)-ranked sample images were used, and the number
of eigenvectors was chosen to account for 70% of the variance of
the selected sample images. Given the limited data, the Markov
model was allowed 4 states.

The recovered Markov model, the mean image at each state,
and a plot of t(j) and dEj for one training sequence are shown
in Figure 4. The recovered Markov model permits the symmetry
shown by the plot of t(j) over an observation sequence. Some
other observation sequences differ in the extent of the wave mo-
tion; in these cases the state representing the hand at its lowest or
highest position in the frame is not used.

The plot of t(j) reveals the time warping of the observation
sequence to the Markov model. For example, the hand must
decelerate to stop at the top of the wave, and then accelerate to
continue. This is shown by the longer duration of membership to
the first (top) state shown in the figure.

4.2 Position and configuration
The second example describes the position and configuration of a
waving, pointing hand. In each frame of the training sequences,
a 50 by 50 pixel image of the hand was tracked and clipped
from a larger image with a cluttered background. Foreground
segmentation was accomplished using the known background.
The configuration C of the hand is modeled by the eigenvector
decomposition of the 50 by 50 images. The positionP of the hand
is modeled by the location of the tracked hand within the larger
image; at each state, P is estimated as the t(j)-weighted mean
location.

The recovered Markov model is similar to that of the wav-
ing hand in the previous example. The mean images and
dj = hdCj ; dPj i for each state are shown in Figure 5.
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Figure 4: The recovered Markov model for all training sequences
at left shows the symmetry of the gesture. The t(j)-weighted
mean image for each state is shown in the middle. On the right
is a plot of t(j) (solid line) and dEj (dotted line) for each state
for one training sequence. dEj was scaled to fit. The exact shape
of the plots varies in response to the variance and length of the
sequence.

The variance of each feature indicates the importance of the
feature in describing the gesture. In this example both the posi-
tion and configuration of the hand was relevant in describing the
gesture. Had the location of the hand varied greatly in the training
set, the high variance of the position representation would have
indicated that position was not important in describing the gesture.

4.3 Two camera views
The final example shows how models for two camera views may
be combined. Two views may be useful in describing the simulta-
neous movement of multiple objects (e.g. two hands, or a face and
hands), or in describing gestures that exhibit movement in depth.
Fifteen examples of a “pushing” gesture (see Figure 6(a)) were
taken from both a side and front view. Eigenvector decomposition
was used to model each view; dj = hdEfront

j
; dEside

j
i. The mean

image for each view and plots of dj are shown in Figure 6(b).
Note that in both views foreground segmentation is unnecessary

since the camera is stationary. The mean image corresponds to the
static parts of the image; the eigenvector decomposition subtracts
the mean image at each state.

5 Conclusion and future work
The examples in Section 4 demonstrate that with a practical num-
ber of low resolution image sequencesand weak initial conditions,
the algorithm is able to recover the visual behavior of the gesture,
including interesting temporal structure. Future implementations
may be useful in novel wireless computer-human interfaces, real
time “object-based” coding from video, and studying the relevant
features of human gesture.

5.1 Real time coding
In HMM applications, recognition may be performed by the
“forward-backward” algorithm, which returns the probability of
an observation sequence given a particular HMM. The algorithm
requires computing the observation probability at each state, at
each time step. When there is a large number of states to consider
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Figure 5: (a) Four representative frames (ordered left to right) are
shown from one training sequence. (b) The t(j)-weighted mean
location of the tracked hand in the larger image is shown on the
left. The mean image for each state is shown in the middle. On
the right is a plot of t(j) (solid line), dCj (dotted line), and dPj
(dash-dotted line) for each state for one training sequence. (dCj

and dPj were scaled to fit.)

or the cost of computing bj(x) is high, the forward-backward al-
gorithm may not scale to a reasonable number of states, especially
in a real time recognition or coding application.

In our framework the cost of computing the probability of a
new observation is quite high, since dm must be computed for
all model instances m 2 Mj . If we were to use the eigenvector
decomposition of the image as our model with 4 HMM’s with 25
states each, keeping the top 10 eigenvectors at each state, then
1,000 image correlations would be required at every time step.

The development of a robust coding method of low complexity
is an important step in a real time implementation of the frame-
work. One possibility is to use a beam search in which b j(x)
is computed for a small subset of the available states, chosen to
maximize the probability of being in the states given the past ob-
servations. This strategy is suboptimal in the sense that it will
miss paths through the model that are locally of low probability
but globally of high probability. It remains to be seen whether this
limitation has practical merit.

5.2 Model type selection
Because the observation distribution is a joint distribution on the
distances to multiple independent model subspaces, the set of
model types at each state does not have to be the same across all
states. One topic of future work involves the automatic selection
of model types at each state. For example, one state may be
characterized by motion sufficiently, while in another both motion
and shape are required to characterize the observations.

Automatic selection of models is desirable for a number of rea-
sons. First, a particular model type may be unable to characterize
the training examples at a state, in which case erroneous model
instances should be removed from the set of models at the state.
Secondly, if the appropriate set of features is not known before-
hand, a good approach is to use all available models and let the
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Figure 6: (a) Four representative frames (ordered left to right) are
shown from each view of one training “push” gesture. (b) The
mean images for both the side view and front view at each state
are shown on the left. Plots of t(j), dEfront

j
(dotted line) and dEside

j

(dash-dotted line) are from one training sequence.

system select the useful ones, possibly subject to a cost constraint.
Lastly, the selection of different subsets of model types at each
state allows the characterization of behaviors in which the set of
relevant features changes over time. Automatic selection of mod-
els may provide insight into the degree to which this happens in
the case of human gesture.
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