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Abstract

Recent neurological studies indicate that the role of
emotion in human cognition is essential; emotions are
not a luxury. Instead, emotions play a critical role
in rational decision-making, in perception, in human
interaction, and in human intelligence. These facts,
combined with abilities computers are acquiring in
expressing and recognizing affect, open new areas for
research. This paper defines key issues in “affective
computing,” computing that relates to, arises from,
or deliberately influences emotions. New models are
suggested for computer recognition of human emo-
tion, and both theoretical and practical applications
are described for learning, human-computer interac-
tion, perceptual information retrieval, creative arts
and entertainment, human health, and machine in-
telligence. Significant potential advances in emotion
and cognition theory hinge on the development of af-
fective computing, especially in the form of wearable
computers. This paper establishes challenges and fu-
ture directions for this emerging field.

1 Fear, Emotion, and Science

Nothing in life is to be feared. It is only to be under-
stood. — Marie Curie

Emotions have a stigma in science; they are believed to be
inherently non-scientific. Scientific principles are derived from
rational thought, logical arguments, testable hypotheses, and
repeatable experiments. There is room alongside science for
“non-interfering” emotions such as those involved in curiosity,
frustration, and the pleasure of discovery. In fact, much sci-
entific research funded by defense budgets has been essentially
prompted by fear. Nonetheless, emotions are generally regarded
as wreaking havoc on reasoning. Although emotions pervade
science, their role has been marginalized.

Why bring emotion or affect into any of the deliberate tools
of science? Moreover, shouldn’t emotion be completely avoided
when considering properties to associate with computers? After
all, computers control significant parts of our lives — the phone
system, the stock market, nuclear power plants, airplane flights,
and more. Who wants a computer to be able to “feel angry” at
them? To feel contempt for any living thing?

In this paper I will set forth key issues in what I call “af-
fective computing,” computing that relates to, arises from, or
deliberately influences emotions. I will elaborate further on this
definition and its implications below.

The topic of emotion is a difficult one to treat scientifically,
but that is precisely what needs to be done. In this paper I
will illustrate ways in which affective computing can break new

ground in the scientific study of emotions. I will suggest com-
putational models for affect recognition, and will describe new
applications of affective computing to areas such as computer-
assisted learning, perceptual information retrieval, creative arts
and entertainment, and human health. Affective computing is
a critical new research area in need of exploration, one which
can significantly contribute to advances in emotion and cog-
nition theory, while greatly improving the interaction between
humans and machines.

I should state some things that I do not intend “affective
computing” to address. [ am not proposing the pursuit of
computerized cingulotomies' or even the business of building
“emotional computers” in the negative sense of the word “emo-
tional” which implies a loss of desirable rationality. However, I
will discuss creative and unpredictable computers.

This paper will also not review the massive literature on emo-
tion and cognition theory; I have only included references where
needed to support claims related to affective computing.

I will also not propose answers to the difficult and intriguing
questions, “what are emotions?” “what causes them?” and
“why do we have them?”? Tt is my hope and expectation that
research in affective computing, by using computers to recog-
nize and synthesize emotions, can assist scientists in getting
closer to the answers of these important questions.

This paper is organized as follows. In the remainder of this
section I briefly describe two recent discoveries to support the
importance of emotion in cognition, first in perception, and
second in rational decision making. I also present a scenario,
based on the role of emotions in learning, as an example of
affective computing. Section 2 outlines the key issues to devel-
oping computers that can recognize human emotion and express
emotion. Section 3 poses human affect recognition as a pattern
recognition problem, and proposes models for its solution; this
section may be skipped by those who are not engaged in the de-
tails of building these systems. Computers that “have” emotion
present new moral and ethical dilemmas which are broached in
Sect. 4. Computers which can recognize and express affect lead
to a myriad of new applications; | have suggested over fifty
in this paper, with most appearing in Sect. 5. This research
agenda and the contributions of this paper are briefly summa-
rized in Sect. 6.

1.1 Songs vs. laws

Let me write the songs of a nation; I don’t care who
writes its laws. — Andrew Fletcher

Emotion pulls the levers of our lives, whether it is love that

!The making of small wounds in the ridge of the limbic sys-
tem known as the cingulate gyrus, a surgical procedure to aid
severely depressed patients.

2For a list of twelve open questions in the theory of emotion,
see Lazarus [1].



leads to forgiveness, or curiosity that drives scientific inquiry.
As humans, our behavior is greatly influenced by the “songs”
in our hearts. Rehabilitation counselors, pastors, parents, and
politicians know that it is not laws that exert the greatest influ-
ence on people but rather the drumbeat to which they march.
For example, the death penalty has not lowered the murder rate
in the states where it has been instituted as law. However, mur-
der rates are significantly influenced by culture, or the cultural
“tune.” Consider the following scenario:

Imagine that your colleague keeps you waiting for a highly
tmportant engagement to which you thought you were both com-
mitted. You wait with reason, and with increasing puzzlement
by his unusual tardiness. You think of promises his delay is
causing you to break, except for the promise you made to wazit
for him. Perhaps you swear off future promises like these. He
18 completely unreachable; you think what you will say to him
about his irresponsibility. But you still wait, because you gave
him your word. You wait with growing impatience and frus-
tration. Maybe you waver between wondering “is he ok?” and
feeling so irritated that you say under your breath, “I’ll kill him
when he gets here.”

When he finally shows, after you have nearly given up your
last promise of waiting, how do you respond? Whether you
greet him with rage or relief, doesn’t his expression affect your
response? Your response changes dramatically if he arrives in-
considerately carefree, or with woeful countenance. A mere
expression of affect can powerfully influence subsequent behav-
ior.

In saying that emotions, or “songs,” pull the levers of our
lives, I am not suggesting that laws are unimportant, or even
that we do away with the law-based artificial intelligence (AI)
systems given to computers, even though the latter are widely
acknowledged to be brittle and unintelligent. Rather, I am say-
ing that laws and rules are not necessarily the most important
part in human behavior and intelligence. In fact, laws and rules
do not even play a solo in such cognitive tasks as perception
or decision-making, according to recent neurological evidence.
Let’s consider briefly these two activities, beginning with some
evidence regarding perception, as illustrated in the next sce-
nario.

1.2 Limbic perception

“Oh, dear,” he said, slurping a spoonful, “there are
not enough points on the chicken.” — Michael Watson
2].

Synesthetes may feel shapes on their palms as they taste,
or see colors as they hear music. Synesthetic experiences be-
have as if the senses are cross-wired, as if there are no walls
between what is seen, felt, touched, smelled, and tasted. How-
ever, the neurological explanation for this heightened percep-
tual phenomenon is not “crossed-wires.”

The neurologist Cytowic has studied the neurophysiology of
synesthetic experience [3]. Because the cortex is typically re-
garded as the home of sensory perception, it is expected to show
increased activity during synesthetic experiences, where a per-
son experiences external and involuntary sensations somewhat
like a cross-wiring of the senses — for example certain sounds
may elicit seeing strong colors. One would expect that during
this heightened sensory experience, there would be an increase
in cortical activity, perhaps in the parietal lobe’s tertiary asso-
ciation area where the three senses of vision, touch, and hearing
converge. However, Cytowic found that scans of cortical blood
flow ® during synesthesia episodes indicate a collapse of cortical

*Measured by the Oberist-Ketty xenon technique.

metabolism. An overall increase of brain metabolism occurred,
but it was not in the “higher” cortex, where it was expected.

Cytowic’s studies point to a corresponding increase in ac-
tivity in the limbic system, a collection of parts of the brain
which lie predominately between the brain stem and the two
hemispheres of the cortex. The limbic system* has tradition-
ally been assumed to play a less influential role in perception
than the cortex, which lies “above” it. The limbic system is
the seat of emotion, memory, and attention. Its activity during
synesthesia indicates that the limbic system plays a significant
role in perception.

In a recent treatise on emotion theory, Izard [4] describes
emotion as both a motivating and guiding force in perception
and attention. One does not need a blood-flow scan or theory
of emotion, however, to recognize that emotion greatly influ-
ences perception. We are all familiar with emotion’s influence
on perception from observing this influence in other people —
influences that have received names such as the fear-induced
“tunnel vision,” or the joy-induced “seeing through rose-colored
glasses.”

1.2.1

Note that my distinction between cortical and limbic func-
tions is for emphasis only; in practice, normal limbic and corti-
cal brain areas do not operate in isolation, but are functionally
intertwined. Not only have the two areas been artificially sepa-
rated in most studies, but there is a tendency among scientists
to attribute higher functionality to the cortex, which is physi-
cally higher and much easier to probe.

However, discoveries such as that of the limbic role in the
higher function of perception imply that a high or dominating
function is not necessarily cortical. Along with the synesthe-
sia findings mentioned above, the research of LeDoux, another
neuroscientist, suggests that the hippocampus, long considered
the key structure of the limbic system, is significantly involved
in registering and making sense of perceptual patterns. LeDoux
has also recently mapped the paths in the brain which demon-
strate how the limbic system responds to certain events before
the cortex is involved, notifying it after other “emergency” mea-
sures have been taken. Cytowic points out in his books that
there are substantially more connections from the limbic system
to the cortex than vice-versa. Some scientists have suggested
that these discoveries indicate that the limbic influence may
be the greater. Note that this suggestion does not imply we
are “run by our passions” as might be spoken of someone who
does not act reasonably; rather, it implies that even reasonable
behavior is neurologically directed by these so-called passions.

As is often the case with scientific claims, philosophers and
artists have anticipated them ahead of scientific researchers.
These neurology findings are no exception; philosophers have
argued the predominance of emotion for centuries, and artists
have incorporated it into their foundational beliefs about aes-
thetic goals.

Although the role of emotions is powerful; we often overlook
their influence. However, consider that we often hear a person
say “Sorry, I wasn’t thinking” but not “Sorry, I wasn’t feeling.”
Whatever our perception of its role, the limbic system is a cru-
cial player in our mental activity. It is hard to say conclusively
which system of the brain is directing the show — but if the
limbic system is not directing, then it is, at least, an actor that

The limbic-cortic tangle

*There is not complete agreement on what parts of the
brain constitute the limbic system, but it includes at least
the hypothalamus, hippocampus in the temporal lobe, and the
amygdala.



has won the heart of the audience.

1.3 Re-evaluating decision making

It is not surprising that emotions play a critical role in per-
ception; but, what about emotion in more “rational” cognitive
functions, such as decision-making? We all know emotions can
influence decisions, often negatively, but do they play a more
significant role? Below I will describe recent neurological evi-
dence that indicates a more surprising, and significant, role for
emotions.

1.3.1 The thinking—feeling axis

“Scientific conclusions must be decided with the head;
whom you choose to marry may be decided with the
heart.” — folk advice

Most people consider that both head and heart are useful
for decision-making, as long as they are kept in their rightful
place, as in the folk advice above. In fact, people often polarize
thoughts and feelings, speaking of them as separate phenomena.

The popular Myers-Briggs personality-type indicator, has
“thinking” and “feeling” as opposite endpoints of one of its
axes for describing personality. In fact, the Myers-Briggs type
indicator reveals a gender bias along this axis, indicating that
two-thirds of men tend to lie closer to the “thinking” side and
two-thirds of women tend to lie closer to the “feeling” side [5].
This bias sometimes appears in male-female stereotypes, and
many books have appeared on its implications for human inter-
action. Although I do not wish to pursue the male-female dis-
tinctions further here, it is worth noting that such differences
might also extend to human-computer interaction. As such,
affective computers might tend to be considered more “fem-
inine.” However, this is not an appropriate conclusion, given
the neurological evidence that both male and female brains rely
on emotion in normal thinking. As such, affective computers
should not be considered more “feminine,” but more “human.”

Neurologically, no polarization, or clean dividing line occurs
between thinking and emotions. In fact, we will find something
completely unexpected. Recall that the brain does not cleanly
separate cortical and limbic activity:

Authorities in neuroanatomy have confirmed that the
hippocampus is a point where everything converges.
All sensory inputs, external and visceral, must pass
through the emotional limbic brain before being redis-
tributed to the cortex for analysis, after which they
return to the limbic system for a determination of
whether the highly-transformed, multi-sensory input
is salient or not. [6].

The limbic brain is the “home base” of emotion, but it is not
the only part of the brain engaged in the experience of emotion.
Extensive research by Damasio and his colleagues has identified
several non-limbic regions which affect emotion. These findings
have been recently summarized in the provocative book [7]. But
there is a much bigger surprise in his findings.

1.3.2 Too little emotion impairs decision-making

We all know that too much emotion can wreak havoc on rea-
soning, but now there is evidence that too little emotion can
also wreak havoc. This evidence requires a shift from the usual
paradigm of how people separate emotions and rationality. I
refer the reader to the careful arguments and references col-
lected by Damasio [7] for the justification such a far-reaching
paradigm-shift demands, and here provide but a brief explana-
tion of the findings to support the need for affective computers.

Damasio’s patients have frontal-lobe disorders, affecting a
part of the cortex that communicates with the limbic system.
Otherwise, the patients appear to be intelligent, and unusually
rational. However, these same patients suffer from an impaired
ability to make decisions. Years of studies with frontal-lobe
patients indicate that they spend inordinate amounts of time
trying to make decisions that those without frontal-lobe damage
can make quite easily [7]. For example, the mere task of choos-
ing a date to schedule an appointment can lead these patients
through abnormally long chains of decisions, perhaps without
ever reaching a decision, until a date is imposed upon them by
someone who is tired of waiting for their response.

The frontal-lobe disorder in these patients interferes with
their ability to combine emotional limbic responses with their
otherwise cortical decision-making. Damasio’s hypothesis is
that emotion plays a biasing role in decision-making — estab-
lishing the values used in evaluating potential outcomes, and
essentially warding off an infinite logical search.

Damasio’s findings support independent scientific arguments
for the essential role of emotion. Johnson-Laird and Shafir have
recently reminded the cognition community of the inability of
logic to determine which of an infinite number of possible con-
clusions are sensible to draw, given a set of premises [8]. Con-
sider: how do you decide which path to take given some ev-
idence? There i1s not time to consider every possible logical
constraint and associated path. Emotion does not merely play
a tie-breaking role in making certain decisions; rather, it ap-
pears to be essential in learning the biases required to construct
rational responses.

Damasio’s findings provide neurological support that there
is no “pure reason” in the healthy human brain — emotions are
vital for healthy rational human thinking and behavior [7]. His
patients are abnormally rational, not too unlike the rule-based
programs that comprise today’s models of decision-making.

It must be emphasized at this point that by no means should
anyone conclude that logic or reason are irrelevant; they are
as essential as the “laws” described earlier. Additionally, the
neurological evidence describes an essential role for emotions,
the “songs.”

Therefore, these findings indicate that scientific study of
emotion should not be merely an interesting side-area of study
in cognitive science, but rather, the study of emotion is essential
if we are to understand human cognition. The implications are
significant also for computer science and industry: computers,
if they are to be truly effective at decision-making, will have
to have emotion-like mechanisms working in concert with their
rule-based systems. “Pure reason” may continue as a Platonic
ideal, but in successful cognitive systems, it is a logical howler.

1.4 Tests of thinking, tests of feeling

In normal human cognition, thinking and feeling are mutually
present. If one wishes to design a device that “thinks” in the
sense of mimicking a human brain, then must it both think and
feel?

Consider briefly the classic test of a thinking machine: the
Turing test.” The Turing test examines if, in a typical conver-
sation between two participants who have no sensory contact
with each other, the tester cannot tell if the replies are being
generated by a human or a machine. Although the test can-
not prove that a machine does or does not think, it is a terrific
exercise in thinking about thinking.

SWith slight modifications from the original proposed by
Turing [9].



The Turing test is considered a test of whether or not a ma-
chine can think in the truest sense of duplicating mental ac-
tivity. Since mental activity involves a close coupling between
cortical and limbic activity, a test of true thinking must involve
a test of emotion.

Consider that one might converse with the computer pas-
sionately about a song or a poem, or describe to it the most
tragic of accidents. To pass the test, the computer responses
should be indistinguishable from human responses. Because hu-
mans almost always respond with emotion to highly emotional
events, either to empathize or to counter balance, the intelli-
gent computer would need to be capable of recognizing emotion
and providing affective responses.

Although the Turing test is usually performed with text-only
communication, so that sensory expression, viz., voice intona-
tion and facial expression, do not play a role, emotions are
still communicated through the written word. This power and
importance of influencing emotion through language was a pri-
mary tenet of Aristotle’s Rhetoric [10]. A machine, even limited
to text communication, will be a more effective communicator
if given the ability to perceive and express emotions.

Of course the crux of the Turing test is what comprises the
questions. Hofstadter has suggested that “humor, especially
emotion,” would comprise the acid test of intelligence for a
“thinking machine” [11]. But the argument for emotion as nec-
essary for intelligence goes far beyond its interplay with humor.
Goleman has recently argued that emotion is a hallmark of hu-
man intelligence [12], and that “emotional intelligence” can be
more important for predicting success in life than traditional
1Q tests. Emotional intelligence involves factors such as empa-
thy, which, in a machine, would require at least a keen ability
to recognize, understand, and express emotions, if not also the
ability to “have” emotions.

1.5 Affective communication

An increasing number of people spend more time directly com-
municating with their computer than with other people. Daily
interaction between humans and computers has tremendous
psychological impact, not to mention billions of dollars of eco-
nomic impact. It is not my purpose to review the research in
this area, which is covered in numerous conferences; however, |
would like to describe one intriguing set of recent results which
support the importance of affective computers.

This particular set of studies was recently conducted by Nass
and his colleagues at Stanford [13]. They performed a num-
ber of classical studies of human social interaction, substituting
computers into a role usually occupied by humans. Hence, a
test that would ordinarily study a human-human interaction is
used to study a human-computer interaction. For example, one
experiment might study how what is said by human A about
human B’s performance changes when A gives the evaluation
face-to-face with B, vs. when A gives the evaluation about B
to another (presumably neutral) person. In general, humans
are nicer face-to-face. In Nass et al.’s variation, human B is
replaced with computer B, and human A gives an evaluation
both to computer B and to another computer. Despite the
switch, Nass and colleagues found that the human results still
held, e.g. the tendency to be nicer “face to face” still held. Nu-
merous other experiments were done in this vein, revealing that
the classic results of the human-human studies were maintained
in the human-computer studies. After accounting for potential
biasing factors, Nass et al. concluded that individuals’ inter-
actions with computers are inherently natural and social [13],
[14].

Because affective communication occurs naturally between
people, it is expected by people when they interact with com-
puters. In fact, we often see people attribute emotion to things
that clearly do not have emotion — a wind-up dog that wags its
tail, for example. Although people know that wind-up toys and
computers do not have emotions, nonetheless, their discourse
and actions often assume them.

Emotion plays an essential role in communication — even in
its subtlest form, where it merely indicates that communica-
tion has succeeded, that we are understood. If you reprimand
someone and their expression does not change, then the natural
inclination is to continue your communication until you receive
a visible or verbal sign that it has succeeded. This type of hu-
man expectation may perhaps be at the root of the practice of
many computer users, who keep typing the same wrong thing
at the computer, hoping it will eventually respond differently.

Affect recognition and expression is also necessary for sympa-
thy and communication of understanding, the latter of which is
considered one of man’s greatest psychological needs [15]. Ne-
groponte, in Being Digital, reminds us that even a puppy can
tell when you are angry with it [16].

Basic affect recognition and expression is expected by hu-
mans in communication. Computer-based communication to
date has largely removed or ignored affective bits. A quantum
leap in communication will occur when computers become able
to recognize and express affect.

1.6 Example: The effective and affective
piano teacher

Before moving to the key issues and research challenges in af-
fective computing, let’s consider an example of its use. One of
the interests in the Media Lab is the building of better piano-
teaching computer systems; in particular, systems that can
grade some aspects of a student’s expressive timing, dynamics,
phrasing, etc. [17]. This goal contains many challenges, one of
the hardest of which involves expression recognition, distilling
the essential pitches of the music from its expression. Recogniz-
ing and interpreting affect in musical expression is important,
and I’ll return to it again later. But first, let’s consider a sce-
nario, where you are receiving piano lessons from a personal
computer teacher:

Imagine you are seated with your computer piano teacher,
and suppose that it not only reads your gestural input, your
timing and phrasing, but that it can also read your emotional
state. In other words, it not only interprets your musical expres-
sion, but also your facial expression and perhaps other physical
changes corresponding to your emotional feelings. Assume it
has the ability to distinguish the three emotions we all appear
to have at birth — distress, interest, and pleasure [18].°

Given affect recognition, the computer teacher might find you
are doing well with the music and you are pleased with your
progress. “Am I holding your interest?” it would consider.
In the affirmative, it might nudge you with more challenging
exercises. If it detects your frustration and many errors, it
may slow things down and give you encouraging suggestions.
Detecting user distress, without the user making mechanical
playing errors, might signify a moving requiem, a sticky piano
key, or the need to prompt for more information.

The piano-teacher scenario raises the issue of observing not
just someone’s emotional expression, but also their underlying
emotional state. How do we detect a person’s emotions? Is

®This view of [18] is not unchallenged; facial expression
in the womb and on newborns has no broadly accepted
explanation.



it via some metaphysical sixth sense? Whether or not such a
sense might exist or play a role exceeds the scientific scope of
this paper; consequently, this possibility will not be further ad-
dressed. However, there are measurable ways that appear to
significantly influence how we discern emotion — we can mea-
sure digitally the signals of voice, facial expression, and other
aspects of so-called body language. Moreover, there is evidence
that we can build systems that begin to identify both emotional
expression, and its generating state. First, however, it is nec-
essary to understand more about how emotions are generated
and expressed.

2 Physical and Cognitive Aspects of
Emotion

What signals assist you in guessing another person’s emotional
state? Are there universal physiological measurements from
which a computer could discern mood? Are emotions purely
“cognitive”, purely “physical,” or some kind of mix? If an
emotion causes an accompanying physiological state, can that
state be induced to cause that emotion?

The literature on emotion and cognition is still debating most
of these questions; in fact, emotion theorists still do not agree
even on a definition of emotion. The goal of this section is
to provide some background from the literature which I find
important to the development of affective computing.

Particularly relevant are the two (generally opposing) treat-
ments of emotion in the literature — emotion as cognition, and
emotion as physiological response. Below I will emphasize the
role of both physical and cognitive components for affective com-
puting. [ will also clarify some terminology, and highlight ways
in which emotion is both expressed and induced.

It is beyond the scope of this paper to overview the literature
with its many theories of emotion; I will refer the reader instead
to the collections gathered by Plutchik and Kellerman [19] and
to the references at the end of this paper which themselves
contain many excellent surveys. The focus below is on the
background most relevant to giving computers the ability to
recognize, express, and model affect.

2.1 Poker face, poker body?

The level of control involved in perfecting one’s “poker face” to
hide emotions is praised by western culture. But, can we perfect
a “poker body?” Despite her insistence of confidence, you hear
fear in her voice; although he refuses to cry in your office, you
see his eyes twitching to hold back a potential flood. You spot
the lilt in my walk today and therefore expect [ am in a good
mood. Although you might successfully conceal nervousness
in your voice, you may not be able to suppress it throughout
your body; its evidence may sneak into a clammy handshake or
emerge as cold feet.

Although we cannot observe directly what someone feels (or
thinks, for that matter), and they may try to persuade us to
believe they are feeling a certain way, we are not easily de-
ceived. Beethoven, after he became deaf, wrote in his conver-
sation books that he could judge from the performer’s facial
expression whether or not the performer was interpreting his
music in the right spirit [20].

Despite the fact that we are not all experts at reading faces,
and comedians and actors can excel at feigning emotions, it is
claimed that the attentive observer is always able to recognize
a false smile [21]. © This is consistent with the findings of

"This view is debated, e.g., by [1] who claims that all phe-
nomena that change with emotion also change for other reasons,

Duchenne over a century ago:

The muscle that produces this depression on the lower
eyelid does not obey the will; it is only brought into
play by a genuine feeling, by an agreeable emotion.
Its inertia in smiling unmasks a false friend. [21]

Neurological studies also indicate that emotions travel their
own special path to the motor system. If the neurologist asks
a patient who is paralyzed on one side to smile, then only one
side of the patient’s mouth raises. But when the neurologist
cracks a funny joke, then a natural two-sided smile appears [22].
For facial expression, it is widely accepted in the neurological
literature that the will and the emotions control separate paths:

If the lesion is in the pyramidal system, the patients
cannot smile deliberately but will do so when they feel
happy. Lesions in the nonpyramidal areas produce
the reverse pattern; patients can smile on request,
but will not smile when they feel a positive emotion.
— Paul Ekman in [21].

In other words, a faked smile travels a different path than
a genuine one. Not only does this imply that, physiologically,
false and sincere smiles may be discriminated, but it illustrates
the existence of multiple paths for emotional expression. When
I talk later about how computers might be given emotions, it
is important to remember that emotion-generating mechanisms
distinct from ordinary rule-based systems might be required.

To give computers the ability to recognize emotions, we will
need to consider how the internal emotional state is communi-
cated physiologically, i.e.; in ways that are externally observ-
able. Debate persists about the nature of the coupling between
emotion and physiological response, although most scientists
now accept both a physiological and a cognitive component
in their treatment of emotion. In the following sections I will
discuss key issues related to the physiological components; then
the cognitive components,® and finally, inducement between the
physical and cognitive.

2.2 Terminology

Before proceeding, it is helpful to clarify terminology. Sentic®,
emotional, and affective are used interchangeably in this paper,
although I will tend to use “sentic” to refer to the physical man-
ifestations of emotion. An affective state refers to your internal
dynamic state when you have an emotion. This emotional state
cannot be directly observed by another person, but may be in-
ferred.

All you consciously perceive of your own emotional state is
referred to as your emotional experience. Some authors equate
emotional experience with emotional “feelings” but I prefer to
minimize use of the word “feelings” as it can be ambiguous with
sensory feelings, e.g. feeling a pinprick.

What you reveal to others, voluntarily (perhaps even a false
smile) or not (what you do not succeed in suppressing), is
your emotional expression. Expression via the motor system,
or “sentic modulation” is usually involuntary, and is one clue
which others observe to guess your emotional state.

but these claims are unproven.
80f course the cognitive components, i.e., the brain, are also
physical. Treating the body and mind separately can lead to er-
rors, as captured by the title of [7]. The separation will be used
here primarily to distinguish arguments from the literature.
®“Sentic” is from the Latin sentire, the root of the words
“sentiment” and “sensation” [23].



Finally, “mood” tends to refer to a longer-term emotional
state, although duration might be difficult to quantify given
that moods can “swing” abruptly.

2.3 Physiological aspects of emotion: sentic
modulation

There is a class of qualities which is inherently linked
to the motor system ... it is because of this inherent
link to the motor system that this class of qualities
can be communicated. This class of qualities is re-
ferred to commonly as emotions.

In each mode, the emotional character is expressed
by a specific subtle modulation of the motor action
involved which corresponds precisely to the demands
of the sentic state.

— Manfred Clynes [23]

The body usually responds physically to an emotion, al-
though James’s 1890 view of this response being the emotion
is not accepted today. Nonetheless, the motor system acts as
a carrier for communicating emotional state, what I call “sen-
tic modulation” after the foundational principles Clynes estab-
lished in this area [23].

Sentic modulation (e.g. voice inflection, facial expression,
posture) is how an emotional state is typically expressed; it is
the primary means of communicating human emotion. When
computers learn to recognize human emotion, they will rely pri-
marily on sentic modulation. To give computers affect recogni-
tion requires understanding the physical manifestations of emo-
tion.

A number of emotion and cognition theorists have studied
the physiological correlates of emotions. Lazarus et al. [24]
argue that each emotion probably has its own unique somatic
response pattern, and cite other theorists who argue that each
has its own set of unique facial muscle movement patterns.

Facial expressions are one of the two most widely acknowl-
edged forms of sentic modulation. Duchenne, in his 1862 thesis
(republished in [21]) identified independent expressive face mus-
cles, such as the muscle of attention, muscle of lust, muscle of
disdain or doubt, and muscle of joy. Most present attempts
to automate recognition of facial expression are based on the
subsequent Facial Action Coding System of psychologist Paul
Ekman [25], which provides mappings between muscles and an
emotion space.

The second widely acknowledged form of sentic modulation
is via voice intonation: you can hear love in her voice, anxiety in
his. Vocal emotions can be understood by young children before
they can understand what is being said [26] and by dogs, which
we assume can not understand what is being said. Voice, of
course, is why the phone has so much more bandwidth than
email or a written letter. Spoken communication transcends
the message of the words.

Other forms of sentic modulation have been explored by
Clynes in his pioneering book, Sentics [23]. One of his prin-
ciples, that of “sentic equivalence,” allows one to select an ar-
bitrary motor output of sufficient degrees of freedom for the
measurement of “essentic form,” a precise spatiotemporal dy-
namic form produced and sensed by the nervous system, which
carries the emotional message. The form has a clear beginning
and end, that can be expressed by various motor outputs. By
this principle, emotional state could be determined from out-
puts other than facial expression or voice.

The motor output explored most carefully by Clynes is the
transient pressure of a finger during emotional expression. In

these experiments the subject deliberately expresses an emo-
tional state by pressing against a measuring surface while ex-
periencing that state. The finger-pressure response has been
measured for thousands of people, and found to be not only
repeatable for an individual, but to reveal distinct traces for
states such as no emotion, anger, hate, grief, love, joy, sex, and
reverence [23] across groups of individuals, and to some extent,
cultures. Clynes suggests that these traces are indicative of the
underlying essentic form. Other forms of motor output such as
chin pressure (for a patient who was paralyzed from the neck
down) and foot pressure have yielded comparable characteristic
essentic forms.

There are many physiological responses which vary with time
and which might potentially be combined to assist in recogni-
tion of emotional states. These include heart rate, diastolic and
systolic blood pressure, pulse, pupillary dilation, respiration,
skin conductance and color, and temperature. These forms of
sentic modulation will be revisited near the end of this paper
in the discussion on affective wearable computers.

Given the human is experiencing an emotion, e.g. hate, then
certain values of motor system observations such as a tense
voice, glaring expression, or finger pressure strongly away from
the body are most probable. Respiration rate and heart rate
may also increase. In contrast, given feelings of joy, the voice
might go up in pitch, the face reveal a smile, and the finger
pressure have a slight bounce-like character. Even the more
difficult-to-analyze “self-conscious” emotions, such as guilt and
shame, exhibit marked postural differences [18] which might be
observed in how you stand, walk, gesture, or otherwise behave.

Affective computers can begin to recognize these forms of
emotional expression, despite the fact that there is still no solid
definition of emotions, no resolution of “basic” or “discrete”
emotions, and no agreed upon evidence for universal patterning.
I will discuss these issues further below, but first let us consider
some of the other complicating factors which exist.

2.3.1

Studies attempting to associate bodily response with emo-
tional state are complicated by a number of factors. For ex-
ample, claims that people can experience emotions cognitively
(such as love), without a corresponding physiological response
(such as increased heart rate) are complicated by issues such
as the intensity of the emotion, the type of love, how the state
was supposedly induced (watching a film, imagining a situa-
tion) and how the person was or was not encouraged to express
or suppress the emotion. The latter can be particularly sub-
tle, as there are social “display rules” hidden in each culture,
indicating when and where it is appropriate to express certain
emotions.

Another complicating factor is that there may be physio-
logical responses similar to those in an emotional state, but
not corresponding to an emotion, e.g. heart rate also increases
when exercising. However, a wearable computer that is try-
ing to measure emotions might also have a camera and other
sensors attached, e.g., step rate, so that it can recognize you
are exercising. These basic activities can be built into the af-
fective recognition model as conditioning variables. For ex-
ample, in our current research with a wearable wireless affec-
tive head-mounted camera (for augmenting visual memory), we
have found it more relevant to associate frame-rate not with
just heart-rate, but with a function that combines heart-rate
and step-rate.

Leidelmeijer overviews several conflicting studies in [27], re-
minding us that a specific situation is not equally emotional for
all people and an individual will not be equally emotional in
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all situations. Such studies point to hard-to-measure biochem-
ical and cognitive influences in emotion, the latter of which are
addressed more carefully below.

2.3.2 Personal patterning instead of universal
patterning

One of the outstanding problems in trying to associate emo-
tions with physiological responses is that sometimes different
individuals exhibit different physiological responses to the same
emotional state. Leidelmeijer [27] discusses the evidence both
for and against universal autonomic patterning. The difficulties
in finding consistent universal patterning mechanisms appear
to make the outlook grim for constructing computers that can
recognize affect.

However, my experience with signal-processing recognition
systems leads me to suggest that this situation parallels that
of another problem; the problem of constructing “speaker-
independent” speech recognition systems, and therefore has a
creative solution.

The goal of speaker-independent systems is to recognize what
was said regardless of who said it. Even among people who use
the same language, this goal is complicated by the fact that
two people saying the same sentence produce different sound
signals. The computer has difficulty separating the language
part of the signal from the part of the signal that identifies the
speaker and his or her expression. Consequently, the computer
has a hard time recognizing what was said unless it was trained
on the individual speaker, or on someone that sounds like that
speaker.

Although it would be a terrific accomplishment to solve this
universal recognition problem, it is unnecessary in affective
computing. Negroponte pointed out years ago that an alter-
native solution is to solve the problem in a speaker-dependent
way, so that your personal computer can understand you and
your language; thereafter, your computer can translate what
you said to the rest of the world.

Similarly, I believe that experiments in recognizing emotional
state from observations of physical expression only need to
demonstrate consistent patterning for an individual in a given
perceivable context. It is only necessary that your personal
computer be able to recognize your affect; it can then translate
this information if you permit it to be communicated to others.

For example, the affect recognizer for one context may find it
most reliable to use a blend of blood-flow and facial expression
for one person, and a measure of skin-temperature, galvanic
skin response, and respiration for another person. This adapt-
ability greatly simplifies the problem, as a computer learning
algorithm can be used to determine which features are the best
predictors for each individual. Moreover, typically in adap-
tive scenarios a relatively small number of categories emerges,
i.e., certain individuals tend to exhibit similar physiological re-
sponses, simplifying the amount of adapting the system has to
do.

The individual’s personal computer will respond best if it
is also able to perceive context (e.g., sense if you're climbing
stairs, if the room temperature changed, if you just read a news
story about a tragic bombing, etc.) The computer can there-
fore identify autonomic responses conditioned on perceivable
factors. For best performance, perceivable context should ulti-
mately include not only the public milieu such as the comfort
index of the weather, but also the private milieu — for exam-
ple, the information that you have family in the town where
the giant bomb just exploded. The priorities of your personal
affective software agent need to shift with your affective state.
For example, predicting your concern for your family as a top

priority, it might quickly alert you to more news on the bomb-
ing, or fetch phone numbers to help you get through to your
family members wherever they are.

2.3.3 Studies out of the laboratory

The complications noted above have particularly plagued
laboratory studies. For example, certain subjects might feel
inhibited about expressing disgust during a laboratory study.
Other subjects might find the situations in the study contrived,
and exhibit a much smaller repertoire of emotions than they
would experience in their natural world. Moreover, the “natu-
ral world” itself will differ among subjects — actors and musi-
cians tend to exhibit emotions more readily than scientists and
engineers.

As mentioned above, emotion theorists have tended to look
for universal patterns, instead of for consistent patterning
within an individual, conditioned on a context. With affective
personal computers, understanding the individual response is
most important first; after reliable data has been gathered for
individuals, then comparisons can be made across populations.

Because most studies on emotion and cognition have been
confined to artificial lab scenarios, they have been severely
limited. Affective computers, particularly if wearable, would
be able to measure emotional responses via sentic modulation
wherever and whenever they occur, for both individuals and
larger groups. Affective computing allows the laboratory to
visit the subject, instead of the other way around.

2.4 Cognitive aspects of emotion

Humans are frequently conscious of their emotions, and we
know from experience and laboratory study that cognitive as-
sessment can precede the generation of emotions. Consequently,
some prominent scientists have argued that cognitive appraisal
is a necessary precondition for emotion. Although it is hard to
“prove” that any human experience exists independent of cog-
nitive events, there seems to be ample evidence that emotions
can occur without prior cognitive appraisal [4], [7], [28]. In par-
ticular, the recent neurological evidence seems to support that
emotions can “hijack” the cognitive centers of the brain [12].
Additionally, noncognitive biochemical events can strongly in-
fluence mood [4]. Only recently have scientists begun to unlock
the secrets of hormonal chemistry, the role of neurotransmitters
in depression, and other significant noncognitive contributors to
human emotion.

It seems safe to conclude that both cognitive and physio-
logical events can contribute to emotion, and vice-versa. Note
there is no hard distinction between cognitive and noncognitive
just as there is no hard line between the brain and the bodys;
after all, thinking is both a cognitive and a physiological event;
the mind-body separation is one of convenience, not physical
reality.

A helpful distinction for sorting the “noncognitively-
generated” and “cognitively-generated” emotions is made by
Damasio [7] who distinguishes between “primary” and “sec-
ondary” emotions.!® Damasio’s idea, which is also supported in
much of the emotion theory literature, is that there are certain
features of stimuli in the world that we respond to emotionally
first, and which activate a corresponding set of emotions (and
cognitive state) secondarily. Such emotions (such as startle
upon hearing a loud bang, or the fear that causes an infant to
retreat when a large object looms rapidly near) are “primary”
and reside in the limbic system (most likely, the amygdala).

1 Damasio’s distinction compares to that of “preattentive”
and “postattentive” processing in the vision literature.



These are the innate emotions, Jamesian in their accompany-
ing physical response. But these are not all. Damasio defines
“secondary” emotions as those that arise later in an individ-
ual’s development when systematic connections are identified
between primary emotions and categories of objects and situ-
ations. An example is grief, where physical responses occur in
conjunction with cognitive understanding of an event (such as
death of a loved one). For secondary emotions, the limbic struc-
tures are not sufficient; prefrontal and somatosensory cortices
are also involved.

Damasio’s patients were unusual in that they had primary
emotions but not secondary emotions. The “hard-wired” emo-
tions were there, but the ability to generate appropriate cog-
nitive emotions was not, even though the patients “knew” the
appropriate emotional response to be generated.

The cortical involvement in the secondary emotions presum-
ably helps construct important links connecting cognitively-
recognized events to primary emotional responses. These links
allow us to generalize primary events, such as flight from big
looming objects, into cognitive constructs such as “stay out of
the paths of big objects, such as cars, trucks and trains.” The
cortical-limbic links set up during construction of secondary
emotions can also be used to cognitively call forth a correspond-
ing primary emotion at will.

The complex cortical activities available to humans probably
also account for their ability to construct “self-conscious” cog-
nitive emotions such as shame and guilt, which are not present
in infants, but develop later in life [29]. Babies demonstrate a
less complicated repertoire of emotions than cogitating adults,
despite the fact that babies have not learned the social rules of
suppressing emotions.

2.4.1

A number of factors confound “purely cognitive” attempts
to understand emotion. Several of the factors mentioned in the
previous section are relevant to lab studies of cognitive emo-
tions, especially social display rules and biochemical influences.
In cognitive studies of emotion, subjects are usually asked to
verbalize their emotional state, as opposed to (or in addition
to) its being physically measured. However, the problem of
attaching adjectives to emotions is immense [30].

Wierzbicka [31] has made one of the most comprehensive
attempts to define emotion concepts in terms of universal se-
mantic primitives such as “good” “bad” and “want,” resulting
in a distinct script for each emotion concept in terms of a set of
primitives. These scripts involve goals, and their achievement
or lack of achievement.

Affective computers could simulate many of the compet-
ing goal-motivation theories of emotion by encoding them into
scripts. Computers could then be put into social situations,
like was done in the Stanford studies mentioned earlier. Affec-
tive computing could therefore provide a test bed for impor-
tant cognitive-generative theories of emotion. However, affec-
tive computers cannot currently expect to measure cognitive
influences; these depend on self-reports which are likely to be
highly variable, and no one can read your mind (yet).

Under controlled environments, or with the assistance of
some wearable acoustic and visual scene analysis, we may, how-
ever be able to measure the perceivable cognitive milieu, e.g.,
the room is tiny and hot, a stranger enters walking towards
the subject rapidly, etc. We can also measure physiological
responses such as facial expression, breathing, etc., with the
more modes initially, the better. We should at least be able
to measure physiologically those emotions which are already
manifest to others. Both the cognitive milieu (including per-
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ceivable environment) and physiological response are important
in beginning to recognize and understand human emotions in
natural situations.

As data is collected from a variety of situations, patterns may
be found which would improve a computer’s ability to predict
cognitive emotional responses to situations.

The successful predictive mechanisms, as in the physical case,
is likely to depend on an individual. For example, someone who
has never seen a neighborhood cat run over by a car might be
deeply disturbed the first time they are close to such an event;
however, the man who routinely removes animal carcasses from
the roads may have no emotional response. The person’s his-
tory, values, and general emotional maturity combine to influ-
ence their cognitive responses.

Therefore, universal models of emotion-producing mecha-
nisms are likely to be over-simplified and in need of customiza-
tion when it comes to predicting individual responses. An af-
fective computer could collect and analyze events and responses
for an individual, and compare these pairings to a set of predic-
tive models, determining which models give the most accurate
predictions under different circumstances. Such adaptive data-
collection abilities will be necessary to develop comprehensive
theories of the cognitive aspects of emotion.

2.4.2 A challenge in understanding creativity

An area for fruitful investigation is understanding how
cognitive-affective links influence memory retrieval, and in con-
junction, creativity. Improvement in memory retrieval has been
found to occur when a person is in the same emotional state
associated with the memory being retrieved [32].}' Memory
retrieval is a key activity in making free associations, which are
important for analogical thinking and creativity. Hence, it is
natural to expect to find relations between emotional states and
creativity.

Damasio’s findings linked cortical constructs to primary emo-
tions; consequently, we might expect cortical constructs for cre-
ative thinking and memory retrieval to also develop emotion
links. The mechanism Damasio describes may therefore ac-
count for a separate idea, recently proposed by the computer
scientist Gelernter [33]. Gelernter has suggested a phenomenon
he calls “affect linking” which might play an important role in
creativity. However, Gelernter suggested that this phenomenon
arises primarily during what he termed “low focus” thinking,
and not during what he termed “high focus” reasoning. How-
ever, as | have indicated, the neurological evidence indicates
that emotion does play an important role in higher-level deci-
sion making; it is therefore not restricted to “low-focus” think-
ing as Gelernter muses.

2.5 A note on inducement of emotion

Certain physical acts are peculiarly effective, espe-
cially the facial expressions involved in social com-
munication; they affect the sender as much as the
recipient. — Marvin Minsky [34]

There is emotional inducement ever at work around us — a
good marketing professional, playwright, actor, or politician
knows the importance of appealing to your emotions. Aristotle
devoted much of his teachings on rhetoric to instructing speak-
ers how to arouse the right emotions in their audience [10].

Although inducement of emotions may be deliberate, it seems
we, the receiver, often enjoy its effects. Certainly, we enjoy
selecting a stimulus such as music that will affect our mood in

1A discussion of numerous affect-memory experiments, as
well as some controversy surrounding them, appears in [1].



a particular way. We tend to believe that we are also free to
choose our response to the stimulus. An open, and somewhat
ominous question is, are we always free to do so? In other
words, can some part of our nervous system be externally'?
activated to force experience of an emotion?

A number of theorists have postulated that sensory feedback
from muscle movements (such as facial) is sufficient to induce
a corresponding emotion. For example, Laird [32] divides peo-
ple into “cueing” categories based on whether or not posturing
themselves in a particular expression induces the corresponding
emotional experience. Izard overviews some of the evidence for
and against various sensorimotor claims [4].

Whether or not such sensorimotor inputs can induce emo-
tion, they appear to at least be effective in maintaining and
expressing emotion. Posture is correlated with expressions of
self-esteem [4], [18]. A successful school of acting (after Michael
Chekhov, student of Stanislavsky) is based on imagining emo-
tive scenarios, and adjusting ones body position in accord with
that emotion [36], [37].

Actors who excel at this method strengthen their association
with their character’s emotional state. When the body’s emo-
tional expression, e.g. an angry face and posture, agrees with
the cognitive emotion, “my character is now angry,” the com-
bined emotional experience is enhanced, “I feel angry.” Con-
sequently, its communication to the audience is more power-
ful. Of course, these actors adjust their posture in accord with
an initially cognitive goal. Hence, this is an example where
emotions are initially cognitively-generated and the body-mind
reinforcement intensifies and regulates the experience.

The body-mind reinforcement may also provide a subliminal
way to induce emotion, perhaps by inducing involuntary eye
saccades. Although the potential of such methods to induce
emotion is unknown, the answers to questions like this may
hinge on only a slight willingness'® to be open to inducement.

The possibility of subliminal inducement may evoke disturb-
ing thoughts of potentially harmful mind and mood control;
or potentially beneficial mental enhancement and increased af-
fective freedom. It is not an area to be entered into without
considering both negative and positive aspects of how such new
understanding could be used. As computers develop the ability
to recognize affect, they potentially may be used for monitoring
it, for both helpful and harmful purposes.

To what extent do neural, sensorimotor, motivational, and
cognitive systems interact in emotion inducement and suppres-
sion? These are open research areas, and important for under-
standing both how natural helpful emotions are induced, and
how harmful inducement can be minimized.

3 Affective Pattern Recognition

Although with the aid of new measuring devices we can dis-
tinguish many new activity levels and regions in the brain,
we cannot, at present, directly access another’s thoughts or
emotions. Instead, thoughts and emotions are communicated
through words, gesture, music, and other forms of expression.
The couplings between emotions and these forms are not well
understood. What signals to measure, how to process these
signals, and how to interpret them are open questions. These
and many other hurdles must be overcome to give computers
the ability to recognize affective states.

12Fxternal, in contrast with direct stimulation of the brain
which is known to elicit various emotions [35].
13 Perhaps this willingness may also be induced, ad infinitum.

However, computer recognition of affective states appears
doable in many cases, via the measurement of sentic modula-
tion. Note that I am not proposing one could measure affective
state directly, but rather measure observable functions of such
states. These measurements are most likely to lead to success-
ful recognition when subjects do not deliberately suppress emo-
tional expression. If one can observe reliable functions of hidden
states, then these observations may be used to infer the states
themselves. Thus, I may speak of “recognizing emotions” but
this should be interpreted as “measuring observations of motor
system behavior that correspond with high probability to one
or more underlying emotions.”

Despite its immense difficulty, recognition of expressed emo-
tional states appears to be much easier than recognition of
thoughts. In pattern recognition, the difficulty of the problem
usually increases with the number of possibilities. The number
of possible thoughts you could have right now is limitless, nor
are thoughts easily categorized into a smaller set of possibili-
ties. Thought recognition, even with increasingly sophisticated
brain imaging techniques, might well be the largest “inverse
problem” in our world. In contrast, for emotion recognition, a
relatively small number of simplifying categories for emotions
have been commonly proposed.

3.1 Basic or prototype emotions: key issues
3.1.1

Diverse writers have proposed that there are from two to
twenty basic or prototype emotions. (See for example, [38], p. 8,
[27], p. 10). The most common four appearing on these lists
are: fear, anger, sadness, and joy. Plutchik [38] distinguished
among eight basic emotions: fear, anger, sorrow, joy, disgust,
acceptance, anticipation, and surprise. Ortony et al. provide a
helpful summary of lists of basic emotions in their book [39].
Sometimes these “basic” emotions are defined to be essentially
innate like Damasio’s primary emotions, but there is no con-
sensus on their definition.

The actual existence of basic emotional states is disputed by
some authors. Leidelmeijer [27] and Stein and Oatley [40] bring
together evidence for and against the existence of basic emo-
tions, especially universally, although I distinguish universality
as a separate issue, addressed below.

Some authors have been less concerned with eight or so proto-
type emotions and instead refer primarily to continuous dimen-
sions of emotion, such as negative or positive emotions. Three
dimensions show up most commonly. Although the precise
names vary, the two most common dimensions are “arousal”
(calm/excited), and “valence” (negative/positive). The third
dimension tends to be called “control” or “attention” address-
ing the internal or external source of the emotion, e.g., contempt
or surprise.

The problem of not being able to precisely define categories
is not restricted to emotions. It occurs all the time in cogni-
tion, pattern recognition, and so-called “fuzzy classification.”
Nonetheless, I think the use of categories greatly simplifies
recognition and communication of emotional state for both peo-
ple and computers. A simplifying set of categories, chosen for
their relevance to a particular practical domain, assists com-
puters in beginning the difficult task of affect recognition. It is
fitting that babies appear to have a smaller repertoire of emo-
tions than adults.

The development of affective computing does not require res-
olution of these theoretical issues, although it should aid in their
investigation. In a typical application or context, such as the
piano tutor above, recognition of only a small set of emotions
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can be of great benefit. Recognition of elements in the set does
not imply that they are discrete or basic. The lack of consensus
about the existence of precise categories of basic emotions does
not interfere with the ideas I present below.

For affective computing, the recognition and modeling prob-
lems are simplified by either the assumption of a small set of
discrete emotions, or the assumption of a small number of di-
mensions. Those who prefer to think of emotions as continuous
can consider the discrete categories to be regions in a contin-
uous space, or can adopt one of the dimensional frameworks.
In a sense the choice of discrete or continuous states is like the
choice of particles or waves in describing light. Ultimately, the
one which is best depends on what you are trying to explain.
Either representation, continuous or discrete, is commonly used
in pattern recognition and is accompanied by helpful analysis
tools.

3.1.2 Universality?

Much of emotion theory has been stymied on the issue of
universality regarding the existence of emotion categories. In
other words, if a set of emotions is truly “basic,” then shouldn’t
they exist in all humans?

Like many questions in emotion theory, the study of this
question is complicated by factors such as how the emotion
was provoked, expressed, communicated, and labeled — after
all, different languages may or may not use the same words
for describing emotive phenomena. One of the potential bene-
fits of affective computing lies in its ability to make measure-
ments, conditioned on individuals, and on circumstances affect-
ing them. Analytic tools can subsequently be used to search for
universal patterns in the data.

3.1.3 Pure or mixed?

The debate in the literature about the purity of emotional
states 1s another debate where experiments could be conducted
with affective computers.

For example, Clynes’s exclusivity principle of emotional
states [23] suggests that we cannot ezpress one emotion when
we are feeling another, e.g., we cannot express anger when we
are feeling hope. Clynes emphasized the “purity” of the basic
emotional states, and suggested that all other emotional states
are derived from this small set of pure states, e.g., melancholy
is a mixture of love and sadness.

Plutchik said that one can account for any emotion by a
mixture of the principal emotions [38], and that emotions are
rarely perceived in a pure state. This idea was captured by
cartoonist Johnny Hart (and reprinted in [39]) in his “B.C.”
cartoon illustrating an example of a mixed emotion: “seeing
your long-lost dog come bounding up your freshly poured front
sidewalk.”

The distinctions between the views of Plutchik and Clynes
appear to be a matter of intensity and deliberate expression. If
you are deeply involved in playing a mournful piece of music,
you may be in a pure state of sadness. However, if you are
thinking about lunch while playing the same piece of music,
the measured state will likely not be as pure.

How does sentic modulation change as a person suppresses
one strongly-felt state and tries to feel another? Could sentic
measurements help people in identifying an emotion they are
masking, such as in the expression of anger to hide fear? These
are questions that affective computing could address, by con-
structing models of affective states and giving the computer the
ability to recognize and record observations that correlate with
these states.
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An interesting set of tests could involve actors. Imagine a
highly-skilled actor trying to play the role of a hopeful character
when he is feeling anger right before the show. In order to
deliberately express hope, he suppresses his anger, or overrides
it with hope. If he is successful onstage in communicating hope,
has he merely “forgotten” his anger, so that it will return after
hope has finished its reign on stage, or is there a therapeutic
effect that takes place during this performance? Measurements
of his emotion before, during, and after the performance could
be studied both for understanding the purity of emotions as
well as for understanding their therapeutic effects.

Although “forgetting” sounds like a cognitive act, it has to
occur bodily for emotions or the audience will sense conflict in
the actor, instead of hope, and think him to be a bad actor.
The intensity of the affective communication is a function of
the actor’s sentic modulation — voice, face, posture, and more.
As the actor deliberately brings all these modes into a consis-
tent expression, not only is his communication more effective,
but the theory is that he moves himself closer to a pure state of
emotion. If Clynes’s theory holds, then the purer the emotional
state, the more effective and affective the actor’s communica-
tion will be.

Theories such as this, examining the purity of emotions and
of their influences, could be tested empirically with an affective
computer that recognizes emotional states, as described next.

3.2 Modeling affect

How does the computer represent emotions? Obviously, current
computers do not have the equivalent of a limbic brain and a
cortical brain, or the biochemical washes that connect these
regions, or the pyramidal and non-pyramidal systems, and so
forth. Computers have “bodies” but they are currently not
affective.

In this section I will suggest both computational and rule-
based models for representation of emotions. This section con-
tains technicalities which can be skipped by those who are not
engaged in designing systems that perform emotion analysis
(recognition) or emotion synthesis (prediction, and generation).

The models will roughly be divided into three types: com-
putational models for discrete states, computational models for
emotion spaces, and rule-based models.

3.2.1 Discrete affective state models

This section considers possible models for the discrete, hid-
den paradigm of emotional states. Figure 1 shows an example
of one possible model, the Hidden Markov Model (HMM). This
example shows only three states for ease of illustration, but
it 1s straightforward to include more states, such as a state of
“no emotion.” The basic idea i1s that you will be in one state
at any instant, and can transition between states with certain
probabilities. For example, one might expect the probability
of moving from an interest state to a joy state to be higher
than the probability of moving from a distress state to a joy
state. The actor described in the previous section might circu-
late among a hope state, an angry state, and a “mixed” state.

The HMM is trained on observations, which could be any
measurements of sentic modulation varying with the underly-
ing states, such as changes in voice inflection or heart-rate. The
input at any time is these observations; the output can be either
the state that the person is most likely in, or it can be identi-
fication of an entire HMM configuration, thereby recognizing a
pattern of emotional behavior.

In the latter case, there would be a family of configurations,
one corresponding to each useful emotional behavior, or each
individual’s characteristics for a given behavior. In either case,
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Figure 1: The state (e.g. Interest, Distress, or Joy) of a person
cannot be observed directly, but observations which depend on
a state can be made. The Hidden Markov Model shown here
characterizes probabilities of transitions among three “hidden”
states, (I,D,J), as well as probabilities of observations (measur-
able essentic forms, such as features of voice inflection, V) given
a state. GGiven a series of observations over time, an algorithm
such as Viterbi’s [41] can be used to decide which sequence of
states best explains the observations.

the HMM states do not have to correspond to pure emotional
states as illustrated in Fig. 1, but may correspond to even more
fundamental building blocks, perhaps identified by the com-
puter as it works to fit the data.

In either case, different HMM’s can be trained as a function
of environmental or social context, e.g., driving a car in the
country vs. in the city at rush hour, going out with an old
friend vs. on a blind date. There could also be different HMM’s
based on timing relative to a hormone cycle or to exam season.
Hence, the probabilities, states, and their connections may vary
depending on a variety of factors, ultimately determined by the
intended use of the affective state recognizer. The model is
flexible, and can accommodate many variables of interest in
emotion theory.

HMM’s can also be adapted to represent complex mixture
emotions. Omne could design experiments to see which mix-
ture combinations made the best predictors of individual emo-
tional responses. For example, an HMM of interest in stress-
ful learning situations might represent a causal sequence of
attention/high-arousal, followed by distress and then by relief
states. The choice of states could be made by clustering physi-
ological variables; and assigning each cluster its own state.

Static mixtures may also be modeled (and tailored to an indi-
vidual, and to their context) by explicit “mixture models” such
as the cluster-based probability model of Popat and Picard [42].
In such a case, high-dimensional probability distributions are
learned for emotional states or their mixtures based on the val-
ues of or functions of the values of the physiological variables.
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The input would be a set of observations, the output a set of
probabilities for each possible emotional state. Such a proba-
bilistic formulation can also provide “fuzzy” classifications of
emotional state, where someone’s state might be described as
75% joy and 25% distress, as perhaps in the B.C. cartoon men-
tioned above.

The models I’ve described for affect recognition can be used
not only to represent emotional states and behaviors, but also
to predict and “synthesize” them. The prediction process is
one of partial recognition: first, determine which model (and
parameters) best fits your current observations, and then see
what state that system would most likely synthesize next. Such
a model-based prediction would give a “likely” outcome, but
could not predict with 100 % certainty what would actually
happen.

Notice that emotional state synthesis by the computer in-
volves no sentic modulation, but only the generation, in name,
of a state or behavior. We can synthesize samples from a prob-
abilistic mixture model to obtain “typical” behaviors according
to that model, e.g., when these nine variables lie in this range
then the prediction is that grief will arise, but we cannot make
a computer cry or laugh yet (although they are getting better
at voice inflection, and it is a small step to use a synthesized
model state to drive a vocal output.) Synthesis of emotion is a
topic I will revisit in Sect. 3.2.4.

Numerous other tools from pattern recognition are also likely
to be useful in affect recognition. Artificial neural nets can
perform a variety of recognition tasks and can function like
mixture models; hence, they should be useful for emotional
state modeling. Neural nets and related models such as the
M-Lattice [43] can also model certain nonlinear dynamical sys-
tems. Camras [44] has proposed that dynamical systems the-
ory be considered for explaining some of the variable physio-
logical responses observed during basic emotions, but has not
suggested any models. Freeman has modeled olfaction with dy-
namical systems and proposes the importance of this approach
for modeling limbic influences on intention and motivation in
his book Societies of Brains [45], but he has not proposed any
computational models for the latter.

3.2.2 Continuous affect models and “eigenmoods”

Instead of assuming discrete states, sometimes it is more ap-
propriate to start with the data and perform factor analysis
or an eigenvector decomposition to discover its underlying di-
mensions. In this case, one tries not to uncover discrete states,
but rather continuous axes which describe the most important
variations in the data.

For example, in the case of an eigenvector decomposition,
we would start with a variety of observations of sentic modula-
tion measurements, use these to form a covariance matrix, and
then find the eigenvectors which diagonalize this covariance.
The eigenvectors corresponding to the top eigenvalues could be
kept, resulting in a space of an arbitrarily small number of di-
mensions. Discriminants could be computed to determine how
well distances in the resulting eigenspace corresponded to per-
ceived differences in the corresponding emotional states.

The most useful dimensions in a person’s emotion eigenspace
might correspond to “eigenmoods,” providing building blocks
for emotional expressions. As new expressions are observed and
projected into this space they are described in terms of these
underlying eigenmoods. The eigenmoods might correspond to
either either pure or mixture emotions; the eigenspace model
works with either interpretation.

Note that in modeling, any signal can be decomposed into ba-
sis components; therefore, one can always find sub-components



Arousal

high
|
Mutilated face .
Ski jump
Valence
neg pos
Cute baby
[
Cemetary
|
Flowers
low

Figure 2: Two dominant dimensions of emotion, here used to
locate the affective response of certain photo contents, as per
the studies of Lang [46].

— a so-called mixture, even if the signal is “purely” of one kind.
Consequently, from a modeling perspective, the theoretical is-
sue of “pure” vs. “impure” emotional states is not problematic.

Eigenspaces constructed from measurements of sentic modu-
lation over the course of a person’s day-to-day activities should
be compared to the spaces found by factor analysis in emotion
theory. The spaces could be estimated under a variety of condi-
tions, to better characterize features of emotion expression and
their dependencies on external (e.g., environmental) and cogni-
tive (e.g., personal significance) factors. Trajectories can also
be characterized in these spaces, to study the dynamic aspects
of emotion.

An example of the most common dimensioned space for emo-
tions is shown in Fig. 2. Such a space might be more useful than
an HMM if the affective computer is trying to gauge how pos-
itive or negative users feel about a new software product, for
example.

Given one of these dimension-space models trained on motor
outputs corresponding to known emotional states, then features
of unknown motor outputs can be collected and used with signal
processing tools such as maximum a posterior decision-making
to recognize or classify a new emotion. Because the recognition
of emotional state can be set up as a pattern recognition prob-
lem, a variety of techniques are available for its solution [47],
[48].

3.2.3 Cathexis in computing

Although most computer models for imitating mental activ-
ity do not explicitly consider the limbic response, a surprisingly
large number implicitly consider it. Werbos [49] writes that his
original inspiration for the backpropagation algorithm, exten-
sively used in training artificial neural networks, came from
trying to mathematically translate an idea of Freud.

Freud’s model began with the idea that human behavior is

12

governed by emotions, and people attach cathexis (emotional
energy) to things Freud called “objects.” Quoting from Werbos
[49]:

According to his [Freud’s] theory, people first of all
learn cause-and-effect associations; for example, they
may learn that “object” A is associated with “object”
B at a later time. And his theory was that there is
a backwards flow of emotional energy. If A causes
B, and B has emotional energy, then some of this
energy flows back to A. If A causes B to an extent
W, then the backwards flow of emotional energy from
B back to A will be proportional to the forwards rate.
That really 1s backpropagation....If A causes B, then
you have to find a way to credit A for B, directly.
...If you want to build a powerful system, you need a
backwards flow.

The use of some form of feedback is a significant part of most
computer learning methods today. Usually, the feedback is via
a set of positive or negative examples provided by a user. A
more powerful learning system might augment the positive and
negative examples with affective responses from the user.

In other words, now the computer is trying to learn from the
user. Suppose it tries to learn your preferences for art to hang
in your livingroom. As you browse a database of images looking
for suitable pictures, it detects your response to different im-
ages. After you have indicated your favorites to it, it could try
to infer which art features (e.g., artist, color, texture, content)
and which sentic features (e.g. facial expression, heartrate, skin
response) were the best predictors of what you liked. It might
even be able to associate certain categories of images with cer-
tain categories of your affective responses. In the future, it
might watch for occurrences of those same features, to help
you save time locating things you like, or locating things that
suit your present mood.

Such an affective learning agent might be a valuable assistant
to your interior decorator, or to the personalized environments
of the future, that might favorably customize your hotel, con-
ference, or retreat surroundings to win your business.

A variation on the HMM above could also be used to in-
corporate affective feedback. The recent Partially Observable
Markov Decision Processes are set up to give a “reward” associ-
ated with executing a particular action in a given state [50], [51],
[52]. These models permit observations at each state which are
actions [53]; hence, they could incorporate not only autonomic
measures, but also observations of your behavior.

3.2.4 Rule-based emotion models and their
limitations

The focus in the previous section was affect recognition us-
ing mathematical models, which, in some cases, can also be
used for emotion synthesis and prediction. Alternatively, non-
mathematical rule-based models may be used.

Some work on rule-based models of emotion has been done
in the AT community, where the emphasis has been on writing
scripts to produce states that are labeled with various emotions
(See Pfeifer [54] for a nice overview.) The AI emphasis has
been on rule-based synthesis of cognitive states in the computer,
which receive emotional names — for example, if the computer
has the goal of getting you to fill out a form, and you do not fill
it out after it repeatedly asks you to do so, then it might enter
a state called “frustrated.”

Although T have not yet seen work with rule-based models
for emotion recognition and prediction, this would be possible
given a good synthesis model coupled with signal processing



and pattern recognition to convert the human signal into the
language of the script (or vice versa.) The sentic modulation
measurements would first undergo translation from the numer-
ical to symbolic form, or better, the Al models would adapt to
learn the sentic modulation language. In either case, it will still
be important to use some of the techniques described above.

Therefore, the models of Pfeifer and other cognitive-
motivational generators of emotion (such as the proposed
scripts of Wierzbicka in [31] which could be programmed) po-
tentially not only could run a script to generate a cognitive-
emotional state, but also could identify which components of
the script are satisfied by a set of observations of a human. In
this way, the script could recognize someone else’s emotional
state or predict a forthcoming emotion.

Recognition (analysis) models in general do not have to be
capable of synthesis. This holds true for modeling emotion,
allowing emotion to be recognized by a computer without being
synthesized. However, it is interesting to point out that even
with emotion analysis and synthesis, a rule-based system is still
likely to be defective.

Consider again the frontal-lobe patients of Damasio. These
patients can recognize emotions, and can predict (synthesize)
that they should feel certain emotions (such as horror) given
certain events (such as seeing a picture of a head being chopped
off). They have cognitive analysis and synthesis capabilities,
but still cannot behave normally. What they are missing is the
physiological response that must work in concert with cognitive
evaluation.

Based on the findings of Damasio, it seems to be true that
not only are emotion analysis and synthesis an essential part
of a future intelligent computer, but two kinds of synthesis are
needed — the counterparts of both the cognitive and the physio-
logical systems. The cognitive component might be fit well by a
set of laws or rule-based models. However, these laws would not
be enough; relying only on them to simulate emotion would be
a modern form of Descartes’ error in separating body and mind.
Rather, the computer must also have a second component — a
“bodily component.” This component would not follow the log-
ically neuronal-inspired mechanisms of present computers, but
would aim to function as the biochemical flow that floods the
brain, activating and focusing attention, determining salience,
biasing decisions, and driving thoughts. This bodily component
in the computer could both interact with, and if needed, over-
ride the laws and rules of the reasoning component — march to
its own tune, so to speak, acting as the equivalent of our human
“songs.”

If these two components are not present, then not only can
we not expect to see creative computers, but we can expect
them to remain decision-impaired. The analogy I have made is
of rule-based machines to patients like those of Damasio, who
are highly rational but unable to function normally in society.
However, Damasio’s patients at least have primary emotions; it
is the secondary ones they are missing. Therefore, this “bod-
ily” component [ am proposing must do more than synthesize
a (primary) emotional state for the computer, it must interact,
as do secondary emotions in a human, with the rule-based rea-
soning of the machine. The rule-based decisions and emotional
biases must operate in concert.

To summarize, the emotion component in the computer
should not be a mere script for generating states, or mere ran-
dom perturbations to bias an otherwise rule-based system. In-
stead, the emotion component must be closely coupled into the
machine’s intelligence, able to learn, and able to “run the show”
from time to time.
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3.3 “What do I appear to be feeling? What

am I feeling? Where am I?”

Let’s pause and consider another scenario, involving human af-
fect analysis and synthesis.

Suppose you hear the winning lottery number, and recall that
it is your friend’s favorite number and she has played it every
week for the last ten years. You cognitively predict (rule-based
synthesis) that when she walks in, she will be elated. Your
own physiological system, in anticipation, might synthesize a
correspondingly excited emotional state.

If she walks in looking terribly distraught, and saying she
heard the winning number, then you feel surprise, recognizing
that your prediction is wrong. Then you (cognitively) learn
that she cannot find her ticket. After you talk to her and learn
that her ticket blew away in the wind, then you may synthesize
a new emotion, such as compassion.

The conflict which occurred between the synthesis model’s
prediction and the analysis model’s recognition is not only ac-
ceptable, but also flags an interesting event, one which is likely
to generate a state of higher arousal, perhaps priming the phys-
iological system for a faster response in case of a life-threatening
emergency or life-enhancing opportunity.

A computer could also potentially flag these events, although
a computer has apparently never been given a fast-responding
physiological system for the purpose of avoiding life-threatening
emergencies or to pursue life-enhancing opportunities. The
physical correlates in a computer would likely take the form
of a separate, parallel emotion synthesis model, capable of gen-
erating interrupts of priority sufficient to override or “hijack”
the cognitive system if needed.

Coupling between synthesis and analysis models has some
imminent practical applications. For example, in an existing
environment such as ALIVE [55], a synthesis model could adjust
each software agent’s posture, facial expression, and gestures
to reflect its (synthesized) emotional state. The state itself
could also be re-synthesized (via the cognitive scripts mentioned
earlier) as the agent recognizes the states of humans interacting
with it in this virtual world.

In such an interactive system, a human might “role-play”
different methods of emotional interaction. Hence the system
becomes a test-bed for new strategies or games involving affec-
tive communication. More importantly, perhaps, such a test-
bed provides a safe and controllable environment for exploring
the nature and development of emotional intelligence, which,
according to Goleman, can be learned [12].

Another important example of coupling synthesis and anal-
ysis is in the case of a speaking-impaired human relying on
a speech synthesizer. Such people are usually limited to one
inflection-less digital voice. Control over affect in synthetic
speech is particularly important for these people [56]. With
an affective wearable computer that senses sentic modulation,
and couples it to a synthesis model, parameters for voice in-
flection could be synthesized and fed directly into their speech
synthesizer. The result would allow a speaking-impaired indi-
vidual to, for example, express anger with her voice by merely
feeling angry. The coupling could allow non-verbal expression
to drive the synthetic verbal expression.

If sentic modulation synthesis is coupled to the “inverse prob-
lem” of sentic modulation analysis (recognition), then in the
ultimate modeling scenario, the emotion synthesis model could
synthesize the affective responses of a body separated from its
brain, as in Dennett’s fantastic story “Where am 1”7 [57]. Like-
wise, to the extent that sensorimotor stimuli affect and reinforce
the cognitive state of emotion, a body’s sentic modulation could



(after analysis) drive the brain into a corresponding cognitive
state. Although this scenario is unthinkable with real humans
and impossible with foreseeable technology, it could potentially
be simulated with the aid of affective computers. Such admit-
tedly far-out scenarios are nonetheless intriguing for the inves-
tigation of better theories about cognition, consciousness, and
mind-body interactions.

4 Things Better Left Unexplored?

I’m wondering if you might be having some second
thoughts about the mission — Hal, in the movie 2001:
A Space Odyssey, by Stanley Kubrick and Arthur C.
Clarke

A curious student posed to me the important, infrequently-
asked question, if affective computing is not a topic “better left
unexplored by humankind.” At the time, the worst potential
danger in my mind was that computers might be used to mali-
ciously induce emotions. My inclination was to respond, “Emo-
tion manipulation for both good and bad purposes is already
commonplace, look at music, cinema, marketing, and politics.
Wouldn’t affective computers at least help educate people so
that they can be more in control?”

However, questions like this do not have such easy answers; it
is over-simplifying to say that improving people’s understand-
ing is the best solution. Although the Marie Curie quote which
leads off this paper most succinctly summarizes where I lean,
it would be irresponsible to not consider the potential harm as
well as good that can come from this new area of research. Af-
fective computing has potential for both good use and for mis-
use. Affective computers convert personal emotional expression
into bits, making this information subject to all the problems
associated with digital media, including issues of broadcast,
privacy, and even copyright.

4.1

There are many beneficial reasons to pursue the development
of affective computers. Nonetheless, their development raises
the following dilemma:

Can we create computers that will recognize and express af-
fect, exhibit creativity, intelligent problem solving, and empathy,
and never bring about harm by emotional actions?

To elaborate, I will briefly present two scenarios from artists,
viz. fiction writers and movie producers, who have presaged sci-
entists in considering what may happen when computers receive
emotions. Subsequently, I will discuss more imminent concerns.

The first scenario comes from Asimov’s “The Bicentennial
Man” [58]. Asimov subjects his affective robots to three laws
of behavior to prevent them from bringing harm to people. His
laws put human life above the self-preservation of the robot.
However, his laws are not infallible — one can propose logical
conflicts where the robot will not be able to reach a rational
decision based on the laws. Indeed, his robots could be ren-
dered completely ineffectual by getting into states where they
could not reach a decision due to rule-based conflicts. With-
out a separate emotion system that can determine saliency, and
ultimately override rules, a law-based robot is severely handi-
capped in its decision-making ability, not too unlike Damasio’s
frontal-lobe patients.

A somewhat more sinister scenario of an emotional machine
occurs in the science fiction classic “2001: A Space Odyssey.”*
A HAL 9000 computer, “born” January 12, 1997 (in the novel)

A dilemma

M The film was based on the 1965 screenplay by Kubrick and
Clarke; Clarke’s novel came out afterward in 1968 [59].
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is the brain and central nervous system of the spaceship Dis-
covery. The computer, who prefers to be called “Hal,” has
perceptual abilities which emulate those of a human. Hal is a
true “thinking machine,” in the sense of mimicking both cog-
nitive and emotional functions. Humans who interact with Hal
recognize his emotional abilities, as evinced in this exchange
between a reporter and crewman of the Discovery:

Reporter: “One gets the sense that he [Hal] is capable
of emotional responses. When I asked him about his
abilities I sensed a sort of pride...”

Crewman: “Well he acts like he has genuine emotions.
Of course he’s programmed that way to make it easier
for us to talk with him. But whether or not he has
real feelings is something I do not think anyone can
truly answer.”

As the movie unfolds, it becomes clear that the articulate
Hal is capable of both expressing and perceiving emotion:

“I feel much better now.”
“Look, Dave, I can see you’re really upset about this.”

But Hal goes beyond expressing and perceiving emotion. In
the movie, Hal appears to have fear of being disconnected, as
indicated not just by his spoken expression, but also by his
reactive behavior. The novel indicates that Hal experiences
internal conflict between truth and concealment of truth. This
conflict results in Hal killing all but one of the crewmen.

Hal is more than a thinking and feeling machine; not only
can he pass the Turing test, but also he can kill the person
administering it.

The fictional message has been repeated in many forms and
is serious: a computer that can express itself emotionally will
some day act emotionally, and the consequences may be tragic.

Objection to development of “emotional computers,” based
on fear of the consequences, parallels the “Heads in the Sand”
objection, one of nine objections playfully proposed and refuted
by Turing in [9] to the question “Can machines think?” But
fear of the consequences is to be balanced against the practical
benefits that should appear, given the importance of the lim-
bic (emotional brain) role in thinking. Cytowic, talking about
how the limbic system efficiently shares components such as
attention, memory, and emotion, notes:

Its ability to determine valence and salience yields
a more flexible and intelligent creature, one whose
behavior is unpredictable and even creative. [6]

Today, with the ever-increasing information available to ma-
chines (and computer software agents), it is more important
than ever for a computer to be given the ability to determine
valence and salience. It is also commonly agreed that creativ-
ity and flexibility are necessary components of intelligence [60].
However, how to construct such qualities based on Al-style rules
or without gratuitous randomness has so far eluded scientists. |
think that the construction of such qualities will require mecha-
nisms that duplicate both limbic abilities and cortical abilities.

I have argued a variety of reasons why intelligent machines
will need emotions. The issue is no longer “is emotion neces-
sary for intelligence,” nor even “how might machines analyze
and synthesize emotions.” The evidence supports an answer of
“yes” to the first question, and I have explained mechanisms for
proceeding with the second. Instead, the issue at hand is do we
want to give computers the ability to have emotions, the kind
that can hijack their reasoning systems, and ultimately produce
the unpredictable behavior that is the hallmark of creativity?



Can we build a machine and give up control over it? In other
words, are we willing to give it free will to make value-based,
emotional decisions? Such a machine would be guided by, but
ultimately not constrained by, the ethics or mores which we
give it. This machine would be free, for example, to deny our
role in its creation.

4.2 TUnemotional, but affective computers

Man’s greatest perfection is to act reasonably no less
than to act freely; or rather, the two are one and the
same, since he 1s the more free the less the use of
his reason is troubled by the influence of passion. —

Gottfried Wilhelm Von Leibniz [61]

Although expressing and recognizing affect are important for
computer-human interaction, building emotion into the motiva-
tional behavior of the computer is a different issue. In fact the
word “emotional” when it refers to people or to computers, usu-
ally connotes an undesirable reduction in rationality. Do you
want to wait for your computer to feel interested before it will
listen to you? Or, perhaps it would be beneficial if people who
bombard you with email had to make the content sufficiently
interesting before your computer would accept it?

Interestingly, in the popular series Star Trek, The Next Gen-
eration, the affable android “Data” was not originally given
emotions, although he was given the ability to recognize them
in others. Data’s evil android brother, “Lore,” had an emotion
chip, and his daughter developed emotions, but was too imma-
ture to handle them. Although both Data and his brother had
the ability to kill, Data evidently could not kill out of malice. A
later episode focused on the maturity process needed for Data
to deal with the replaced emotion chip. The process parallels
what we expect with the development of emotional intelligence
in humans [12].

One might argue that computers should not be given the abil-
ity to kill. But it is too late for this, as anyone who has flown
in a commercial airplane acknowledges. Alternatively, perhaps
computers with the power to kill should not have emotions,'®
or they should at least be subject to the equivalent of the psy-
chological and physical tests which pilots and others in life-
threatening jobs are subject to.

The fact remains, giving computers the ability to recognize,
express, and “have” emotions is only the beginning of greater
issues of how should they use these emotions. I will touch on
this again below in Sect. 4.5.

A number of social and philosophical questions are raised
by affective computers that have emotions: Should we follow
the human paradigm and allow machines to express an emo-
tion that is different from what they are experiencing inter-
nally? Should the affective computer have separate channels of
expression, like we have in our pyramidal and non-pyramidal
systems? Alternatively, should we give computers abilities hu-
mans do not have, such as the ability to have multiple pure
emotions — or is this impossible without it having parallel self-
awareness systems, multiple consciousnesses, multiple possible
parallel personalities? What should the nature of the com-
puter’s self-awareness be? Should we, the maker of the emo-
tional machine, be the only one allowed to peer inside and see
its true internal state? These are but a few of the issues raised

15 Although I refer to a computer as “having emotions” I in-
tend this only in a descriptive sense, e.g., labeling its state
of having received too much conflicting information as “frus-
tration.” I doubt electronic computers will have feelings as
humans do, but I recognize the parallels in this statement to
debates about machines having consciousness.

Computer Cannot Can

express affect express affect
Cannot perceive affect I. II.
Can perceive affect II1. V.

Table 1: Four categories of affective computing, focusing on
expression and recognition.

in affective computing; further discussion of these is outside the
scope of this paper.

Clearly, computers could benefit from development of ethics,
morals, and perhaps also of religion.’® These developments are
important even without the amplifier of affect. But computer
scientists are not equipped to deal with these issues on their
own, much less to create machines with these abilities. Sci-
entists’ understanding of these great human issues has barely
moved past that of Mary Shelley’s Frankenstein. Affective com-
puting needs input from outside the cognitive and computer
sciences.

4.3 Four cases for the present

The imaginary scenarios above take us far from present reality;
as provocative as they may be, they remain science fiction. For
the rest of this paper I would like to focus on more immediately
available cases of affective computing.

Four such cases are summarized in Table 1. Of course these
are not all possible cases; for example, I omitted the rows “Com-
puter can/can not induce the user’s emotions” as it is clear
that computers (and all media) already influence our emotions,
the open questions are how deliberately, directly, and for what
purpose? I also omitted the columns “Computer can/can not
act based on emotions” for the reasons described above. The
ethical and philosophical problems to be addressed before the
development of such “emotionally-based computers” go beyond
the scope of this paper; these possibilities are not included in
Table 1 or addressed in the applications below.

This leaves the four cases described below:

I. Most computers fall in this category, having less affect
recognition and expression than a dog. Such computers
are neither personal nor friendly.

II. This category aims to develop computer voices with nat-
ural intonation, and computer faces (perhaps on agent in-
terfaces) with natural expressions. When a disk is put in
the Macintosh and its disk-face smiles, users may share
its momentary pleasure. Of the three categories employ-
ing affect, this one is the most advanced technologically,
although it is still in its infancy.

ITI. This category enables a computer to perceive your affective
state, which | have argued is important if it is to adjust
its response in ways that might, for example, make it a
better teacher and more useful assistant. This category
allays the fears of those who are uneasy with the thought
of emotional computers, in particular, if they do not see
the difference between a computer expressing affect, and
being driven by emotion.

$The latter raises particularly intriguing questions — e.g.,
Should they fear only their maker’s maker?



IV. This category maximizes the sentic communication be-
tween human and computer, potentially providing truly
“personal” and “user-friendly” computing. It does notim-
ply that the computer would be driven by its emotions.

4.4 Affective symmetry

In crude videophone experiments we wired up at Bell Labs over
a decade ago, my colleagues and I learned that people preferred
seeing not just the person we were talking to, but also the image
they were seeing of us. Indeed, this “symmetry” in being able
to see at least a small image of what the other side is seeing is
now standard in video teleconferencing.

It is my opinion that a similar form of symmetry should be
considered for computers in categories III and IV (i.e., infer
hidden emotional state based on physiological and behavioral
observations). Your computer should let you see what it is
reading as your state.

More precisely, affective interaction with a computer can give
a person direct feedback that is usually absent in human inter-
action. The “hidden state” models proposed above can reveal
their state to us, indicating what emotional state the computer
has recognized. Of course this information can be ignored or
turned off, but my guess is people will leave it on.

This feedback not only helps debug the development of these
systems, but is also useful for someone who finds that people
misunderstand his expression. Such an individual may never
get enough precise feedback from people to know how to im-
prove his communication skills; in contrast, his computer can
provide ongoing personal feedback.

However, as computers receive the ability to synthesize inter-
nal emotional states, should these be observable by other com-
puters? Or possibly observable only through some imperfect
expressions, as is the case for humans? What are the implica-
tions for communication if emotion is unambiguous? It seems
that imitating the human paradigm, where computers could
mask their emotions from each other, would lead to interesting
developments, for example, a software agent that was especially
talented at negotiation.

Consider the issue of whether there should be an asymmetry,
giving humans unequivocal access to read internal synthesized
computer states. (Asymmetry, since I don’t think computers
will achieve 100% recognition of human emotional states.) In
2001, if Hal’s emotional state were observable at all times by
his crewmates, then they would have seen that he was afraid
as soon as he learned of their plot to turn him off. If they had
observed this fear and used their heads, then the tragic 2001
storyline would not work.

Instead, Hal illustrates the case of a computer that could
hide its emotional state better than most people. Speaking in
the spirit of its fictional character, it could “have its feelings
hurt” and not let the humans know. I expect computers will
indeed someday have the ability to feign emotions better than
people. If so, a possible preventive step for disasters and mis-
communication would be to prohibit the machine from hiding
its emotions. Such a constraint, however, conflicts with the goal
of giving it the full freedom required in true creativity.

4.5 A distinction: affect recognition vs.
intelligent response

Before proceeding with applications in the next section, there
is an important distinction to be made regarding the scope of
affective computing. Just about any application involving an
affective computer will require attention to the following three
issues:
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1. What is the relevant set of emotions for this application?
2. How can these best be recognized /expressed /modeled?

3. What is an intelligent strategy for responding to or using
them?

Affective computing primarily equips the computer to handle
the first two issues. The third issue requires domain-specific
knowledge, beyond affect analysis and synthesis, and into issues
not just of emotional intelligence, but of combining emotional
intelligence with the general goals of the application.

As one example, consider again the affective piano tutor sce-
nario. An appropriate set of states for the computer tutor to
recognize might include distress, interest, and pleasure. The
computer might recognize these states from watching your face,
gestures, posture, or measuring other responses of your auto-
nomic nervous system. Affective computing in this application
primarily enables pattern recognition of human emotional ex-
pression.

However, how should the computer respond when you make
an error the first time? The Nth time? When you do something
well? How should it adapt its responses to optimize your learn-
ing experience? Merely adapting to “always please” the user is
naive, and conjures up the soma-dependent society of Huxley’s
Brave New World [62]. Indeed, the answers to these questions
go beyond affective computing, into questions of learning, epis-
temology, and more.

In some cases, this third issue opens up social and ethical
questions. For example, suppose that an automobile’s affective
steering wheel senses that you are unusually stressed or angry.
(Many automobile accidents are caused by people who are an-
gry or upset.) Recognition of your dangerous state is the job of
affective computing; how the intelligent vehicle should respond
is potentially a legal issue.

I will offer ideas below as to how affective computing might
be used to help develop new theories to deal with this third
issue. However, success with the third issue will require more
than emotional intelligence.

5 Applications of Affective Computing

Let’s move past the philosophical issues above, and into exam-
ples of imminent practical applications. The rest of this paper
considers potentially beneficial scenarios for applying affective
computing. All of them assume the involvement of one or more
human participants, who willingly participate in affective com-
munication.

The examples below come mainly from cases II, III, and IV
in Table 1 where computers can perceive and/or express affect.
The scenarios assume modest success in relating observations
of an individual’s sentic modulation with at least a few appro-
priate affective states, which is the most difficult new hurdle for
affective computing research. However, the hurdle has already
been leaped in some of the cases described below.

5.1 Entertainment

— Sean D.

Why I do so well is I induce emotion.
Tucker, American aviation artist [63]

One of the world’s most popular forms of entertainment is
large sporting events — whether it is an outdoor air show, the
Olympics, the World Series, Super Bowl, or any number of
other large gatherings, there is an excitement in the air when
fans come together to watch athletes perform.

One of the pleasures that people receive from these events
(whether or not their side wins) is the opportunity to freely ex-



press intense emotions. I would not be surprised if the stereo-
typed “unemotional American male” might “need” these events
psychologically; a stadium is one of the few places where such
a person can yell and jump up and down, releasing emotion,
without appearing childish. Emotional expression is acceptable
for sports athletes and spectators. Indoors in front of a TV
sports game, a mature adult can yell and jump with emotional
expression that otherwise would be disdained. Emotions, and
their expression, are a healthy aspect of entertainment.

Do you feel like I do?

Peter Frampton

Do you feel like T do? -

Although ’'m not a fan of Peter Frampton’s music, [ am
still moved by the tremendous response of the crowd in his live
recorded performance where he asks them this question repeat-
edly, with increasingly modified voice. Each time he poses the
question, the crowd’s excitement grows. What causes such a
tremendous emotional response from a crowd? Are they mind-
less fans who would respond the same to a mechanical repeating
of the question, or to a rewording: “do you think like 1T do?”
Or, is there something more fundamental in this crowd-arousal
process?

I recently participated in a sequence of interactive games
with a large audience (SIGGRAPH 94, Orlando), where we,
without any centralized coordination, started playing Pong on
a big screen by flipping (in front of a camera, pointed at us
from behind) a popsicle stick that had a little green reflector
on one side and a red reflector on the other. One color moved
the Pong paddle “up,” the other “down,” and soon the audience
was gleefully waggling their sticks to keep the ball going from
side to side. Strangers grinned at each other and people had
fun.

Pong is perhaps the simplest video game there is, and yet
it was significantly more pleasurable than the more challenging
“submarine steering adventure” that followed on the interac-
tive agenda. Was it the rhythmic pace of Pong vs. the tedious
driving of the sub that affected our engagement? After all,
rhythmic iambs lift the hearts of Shakespeare readers. Was it
the fast-paced unpredictability of the Pong ball (or Pong cat, or
other character it changed into) vs. the predictable errors the
submarine would make when we did not steer correctly? What
makes one experience pleasurably more engaging than another?

Clynes’s “self-generating principle” indicates that the inten-
sity of an emotional state is increased, within limits, by the
repeated, arrhythmic generation of essentic form [23]. Clynes
has carried this principle forward and developed a process of
“sentic cycles” whereby people (in a controlled and voluntary
manner) may experience a spectrum of emotions arising from
within. The essence of the cycles is supposedly the same as
that which allows music to affect our emotions, except that in
music, the composer dictates the emotions to you. Clynes cites
evidence with extensive numbers of subjects indicating that the
experience of “sentic cycles” produces a variety of therapeutic
effects.

Good entertainment may or may not be therapeutic, but
it holds your attention. Attention may have a strong cog-
nitive component, but it finds its home in the limbic system
as mentioned earlier. Full attention that immerses and “pulls
you in” becomes apparent in your face and posture. Affective
computers might measure these responses to different forms of
entertainment, providing researchers with signals that can be
correlated with other measures of mental and physical health
benefits. Just as studies involving test groups on meditation (a
form of focused attention) have shown certain improved health
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benefits, studies on other forms of attention-getting entertain-
ment might reveal other benefits.

I have observed that similar beneficial effects occur for peo-
ple also in role-playing scenarios, whether during group ther-
apy where a person acts out an emotional situation, or during
role-playing games such as the popular computer MUD’s and
interactive communities where one is free to try out new person-
alities. A friend who is a Catholic priest once acknowledged how
much he enjoyed getting to play an evil character in one of these
role-playing games. Such entertainment provides a healthy and
safe way to expand one’s emotional dynamic range.

Successful entertainment need not draw forth a roar of emo-
tional response, a lot of waggling of reflectors, or a lot of pushing
of buttons as in the interactive theaters coming soon from Sony.
Nonetheless, even in the quietest symphony hall, a successful
performer can sense how the audience is responding, and is, in
turn, affected by their response.

Audience response could be captured by a variety of affec-
tive things — by cameras that looked at the audience, by active
programs they hold in their hands, by chair arms and by floors
that sense. Such affective sensors would add a new flavor of in-
put to entertainment, providing dynamic forms that composers
might weave into operas that interact with their audience.

For example, the floors in the intermission gathering spaces
might be live compositions, waiting to sense the mood of the
audience and amplify it with music. The environment itself
might become a new musical instrument, perhaps like one of
Machover’s hyperinstruments [64], but equipped to sense affect
directly, augmenting the modes of expression available to the
performer.

In general, audience appraisal would look not only at the
people, but also at the media content, to distinguish, for exam-
ple, the viewer’s sadness due to story content, e.g., the death of
Bambi’s mom, and the viewer’s unhappiness due to other fac-
tors — possibly a degraded color channel, or garbled soundtrack.
If the affective sensors were wearable, and perhaps seeing every-
thing you see (See [65] for examples of these sensors), then they
might correlate visual experiences with heart rate, respiration,
and other forms of sentic modulation.

Affective computers provide a new set of tools, both for con-
structing new forms of entertainment, and for constructing new
theories of what makes it succeed.

5.2 Expressive communication

The power of essentic form in communicating and
generating a sentic state is greater the more closely
the form approaches the pure or ideal essentic form
for that state. — Seventh Principle of Sentic Commu-
nication [23]

Clynes [23] argues that music can be used to express emotion
more finely than any language. But how can one master this
finest form of expression? The master cellist Pablo Casals, ad-
vised his pupils repeatedly to “play naturally.” Clynes says he
came to understand that this meant (1) to listen inwardly with
utmost precision to the inner form of every musical sound, and
then (2) to produce that form precisely. Clynes illustrates with
the story of a young master cellist, at Casals’s house, playing
the third movement of the Haydn cello concerto. All the atten-
dees admired the grace with which he played — except Casals:

Casals listened intently. “No,” he said, and waved his
hand with his familiar, definite gesture, “That must
be graceful!” And then he played the same few bars
— and it was graceful as though one had never heard
grace before — a hundred times more graceful — so



that the cynicism melted in the hearts of the people
who sat there and listened. [23]

Clynes attributes the power of Casals’s performance to the
purity and preciseness of the essentic form. The purer the emo-
tional state, the purer its expression and communication. In
expression, teaches Clynes, faithfulness to the purest inner form
produces the best results.

With affective recognition, the computer music teacher might
not only try to hold your interest longer to help you learn more,
but it might also give feedback as you develop preciseness of ex-
pression. This “emotional biofeedback,” through measuring es-
sentic form, perhaps via finger pressure, foot pressure, or func-
tions of inspiration and expiration as you breathe, could help
you compare aspects of your performance that have never been
measured or understood before.

Recently, Clynes [20] has made significant progress in this
area, giving a user control over such expressive aspects as pulse,
note shaping, vibrato, and timbre. Clynes recently conducted
a “Musical Turing test”” to demonstrate the ability of his new
“superconductor” tools. In this test, hundreds of people lis-
tened to seven performances of Mozart’s sonata K330. Six of
the performances were by famous pianists and one was by a
computer. Most people could not discern which of the seven was
the computer, and people who ranked the performances ranked
the computer’s as second or third on average. Clynes’s com-
puter’s performances, which have played to the ears and hearts
of many master musicians, demonstrate that we can identify
and control meaningful expressive aspects of music, often called
“the finest language of emotion.”

5.2.1

Although emotional states may be subtle in their modulation
of expression, they are not subtle in their power to communi-
cate, and correspondingly, to persuade. When sentic modula-
tion 1s missing, misunderstandings occur. Consider the tremen-
dous reliance of many people on email that is currently limited
to text. Most people who use email have found themselves mis-
understood at some point — their comments received with the
wrong tone.

By necessity, email has had to develop its own set of sym-
bols for encoding tone, “emoticons” such as :-) and ;-( (turn
your head to the left to recognize the smileys). However, these
icons are limited; consequently, much affect-less email has re-
sulted in a loss of productivity as people expend energy trying
to undo misunderstandings, or as people expend time trying to
word their email more carefully. When affect communication is
most important, then person-to-person contact carries the most
information; email presently carries the least.

Although it is often desirable to deliberately limit emotional
expression, say, during card games or business negotiations, it
is almost never desirable to be forced to do so by the available
medium. To free email from this restriction, tools that recog-
nize and express affect could augment text with other modes of
expression such as voice, face, or potentially touch. In addition
to intonation and facial expression recognition, current low-tech
contact with keyboards could be augmented with simple atten-
tion to typing rhythm and pressure, as another key to affect.
The new “ring mouse” could potentially pick up other features

Expressive mail and small talk

17 Although Turing eliminated sensory (auditory, visual, tac-
tile, olfactory, taste) expressions from his test, one can imag-
ine variations where each of these factors is included, e.g.,
music, faces, force feedback, electronic noses, and comestible
compositions.
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such as skin conductivity, temperature, and pulse, all observa-
tions which may be combined to identify emotional state. An
“affective mouse” could collect finger pressure information to
determine the values of your responses while you cruise the
world wide web, picture libraries, or virtual museums. Al-
though none of this information should be a forced broadcast;
it could be an option available for the user, like the ability to
use a videophone with or without the camera capped.

Encoding affective information along with a text message
could tell an audio receiver what affect to use in reading the
message to its recipient. Affective bits could also be used to
set the expression on a “talking head” that delivers news to
your low-bit-rate video receiver. Moreover, affective state in-
formation can be transmitted to the widest variety of media —
visual, auditory, text — and decoded according to the abilities
of that receiver. As technologists try to enable the fullest band-
width human communication in limited bandwidth systems, it
is essential to extract the key bits of information. In human
communication, the affective bits are often key.

A helpful analogy is to consider the proficiency with which
someone who knows you well can read your emotions. We are
often wrong about first impressions, but as you get to know
somebody you become increasingly adept at guessing what lies
beneath their expression. A person you know well may walk in
and say “good morning” with a particular tone that tells you
they are in a hurry but happy to see you. Someone you don’t
know well may say “good morning” with the exact same tone,
and you may interpret it quite differently.

What is really communicated when you say “good morning”
or share other so-called “small talk” with someone you see reg-
ularly? The words have virtually no information content given
their repeated occurrences. Might it be that the primary role
of small talk is that of communicating affect?

Intelligent co-workers adapt their responses to you depending
on the affect you express via small talk or other communication.
Intelligent computers should be given the same opportunity,
perhaps via an affectively spoken “good morning” exchanged
during a login session.

5.2.2 Vocal/Facial Communication

Voice inflection is a subtle but powerful tool for communicat-
ing not only the morning’s mood, but also important emotions
such as anger, grace, and empathy. Inflection can also signal
interest or disinterest. Without doubt, inflection adds flavor to
our speech and content to its message. Even in telling a joke,
everyone knows it’s how you tell it that determines its success.

A variety of features of speech are modulated by emotion;
these may be divided into the three categories of voice quality,
utterance timing, and utterance pitch contour. (Murray and
Arnott [26] provide a recent review of these features.) Although
virtually no work seems to have been done on computer analysis
of affect in voices, several features have been demonstrated for
synthesizing intonation in computer-generated speech [66], [26].

With a suitable affective voice, computers can communicate
in a more natural and social way with humans. Monotonous
voice mail recordings and voice-reminder systems could vary
their voices from day-to-day, like a human voice varies. Such
variation would render them more pleasant, and could be used
to more quickly flag important and urgent information.

Another form of affective computing that has already met
with some success involves facial expression recognition. Faces
appear to be the most important means for visual communi-
cation of emotion. Emotion-modeled faces can be used to give
computers graphical faces which mimic the emotive expressions
identified by Ekman [67], making the computer faces seem more



human. Several categories of human facial expression can be
recognized by computers, both from still images [68] and from
motion images [69], [67], the latter which is more reliable.

The encoding of facial expression parameters [67], [T0] may
also provide a simultaneously efficient and meaningful descrip-
tion for video compression, two attributes that satisfy impor-
tant criteria for future coding systems [71]. Instead of sending
over a new picture each time the person’s face changes, you
need only send their “basic emotion” faces once, and update
with descriptions of their emotional state, and any slight vari-
ations.

5.3 Film/video

A film is simply a series of emotions strung together
with a plot... though flippant, this thought is not far
from the truth. It is the filmmaker’s job to create
moods in such a realistic manner that the audience
will experience those same emotions enacted on the
screen, and thus feel part of the experience. — Ian
Maitland, Emmy Award winning director and editor

It is the job of the director to create onstage or onscreen, a
mood that provokes a desired affect in the audience. A director
or writer adjusts the characters in the movie or script until they
“feel” 1ight — until they communicate the intended message
(and its emotions) to the user. An affective computer assistant
might help the novice director discern what is not right when
it doesn’t feel right — for example, is the configuration of the
set or the lighting in conflict with what typically evokes the
intended mood?

Sometimes expressions of mood in film can be easily quali-
fied — lighting from below to create an eerie effect, for example.
However, determination of precisely what constitutes an essen-
tic form in different media is poorly understood in general. The
forms by which emotions are communicated are an open area
for research.

Despite a lack of understanding of how emotion is commu-
nicated, there is undoubtably a power humans have to transfer
genuine emotion — we sometimes say emotions are contagious.
Clynes suggests that the purer the underlying essentic form,
the more powerful its communication. This power to purely
transfer emotion exists not just from person to person, but also
through external forms such as film.

5.3.1

My primary research for the last decade has focused on
helping computers “see” as people see, with all the unknown

“Skip ahead to the interesting part”

see
and complicated aspects human perception entails. One of the
newest applications of this research is the construction of tools
that aid consumers and filmmakers in retrieving and editing
video. Example goals are asking the computer to “find more
shots like this” or to “fast forward to the dinosaur scene.”

A much harder but related goal, is to teach a computer to
“make a long story short.” How does one summarize hours of
video into a form pleasurable to browse? How do we teach the
computer which parts look “best” to extract? Finding a set of
rules that describe content for retrieving “more shots like this”
is one difficulty, but finding the content that is “the most in-
teresting” i.e., involving affect and attention, is a much greater
challenge. These new challenges are ones which computer sci-
entists are not equipped to address, but where cross-discipline
efforts between cognitive science, emotion theory, and computer
science are sorely needed.

The problem of locating a remembered scene, or an image
with particularly interesting content, is also the problem of un-
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derstanding causes of arousal, one of the key dimensions of af-
fect. Arousal (excited/calm) has been found to be a better pre-
dictor of memory retention than valence (pleasure/displeasure)
[72]. Tmage descriptions given in Fig. 2 indicate associations of
arousal with image content.

In fact, finding digital photographs having a particular
“mood” was the most frequent request of advertising customers
in a study of image retrieval made with the Kodak Picture Ex-
change [73]. Subject and action content, which were most fre-
quently requested for editorial purposes, can also be a powerful
contributor to mood in a photo [46].

We have recently built some of the first computer vision tools
that enable computers to assist humans in annotating video, at-
taching descriptions to images that the person and computer
both “see” [74]. Instead of the user tediously entering all the de-
scriptions by hand, our algorithms learn which user-generated
descriptions correspond to which image features, and then try
to identify and label other “similar” content.'®

Affective computing can be coupled with learning systems
such as that of Minka and Picard [75], to begin to identify not
only which content is most salient or interesting, but also which
emotions tend to be evoked by the content. Successful learning
algorithms for content-based similarity may also be able to learn
examples of affect or mood similarity.

In fact, unlike trying to search for a shot that has a par-
ticular subject-action content, affective annotations, especially
in terms of a few basic emotions or a few dimensions of emo-
tion, could provide a relatively compact and salient index for
retrieval of data. For example, people may tend to gasp at the
same shots — “that guy is going to fall off the cliff!” Shots
could be labeled (initially by a human) with descriptions such
as “thrilling.” The computer can later learn from the human
which visual features best predict the most useful annotations.

For example, instead of annotating, “this is a sunny daytime
shot of a student getting his diploma and jumping off the stage”
the human might annotate “this shot of a student getting his
diploma and jumping makes people grin.” The latter is an
affective annotation. Of course, although the latter example
indicates a joyful shot for most viewers, it will not provoke a
grin for everyone; an example is the mother whose son would
have been at that graduation if he were not killed the week
before. In other words, the cognitive and emotional state of
the viewer interacts with what is perceived to produce the final
affect.

These sorts of complicating factors will not be easy to ad-
dress. Although affective annotations, like subject-action an-
notations, will not be universal, digitizing them will still help
reduce time humans have to spend searching for the right scene.
Both kinds of annotation are potentially powerful; we should be
learning how both are perceived, and including them in digital
audio and visual libraries.

5.4 Emotions in learning

Fascinating! — Spock, Star Trek

A learning episode might begin with curiosity and fascina-
tion. As the learning task increases in difficulty, one may expe-
rience confusion, frustration or anxiety. Learning may be aban-
doned because of these negative feelings. If the learner man-
ages to avoid or proceed beyond these emotions then progress

8 Computers have a hard time learning similarity, so this
system tries to adapt to a user’s ideas of similarity - whether
perceptual, semantic, subjective, or otherwise.



may be rewarded with an “Aha!” and accompanying neuropep-
tide rush. Even the “unemotional Spock” frequently exclaimed
upon learning something new, that it was “fascinating!”

Dr. Barry Kort, a mentor of children exploring and construct-
ing scientific worlds on the MUSE'® and a volunteer for nearly
a decade in the Discovery Room of the Boston Museum of Sci-
ence, says that learning is the quintessential emotional expe-
rience [76]. Kort says his goal is to maximize intrigue — the
fascination stage and to minimize anxiety.

Whatever her strategy, the good teacher detects important
affective cues from the student and responds differently be-
cause of them. For example, the teacher might leave subtle
hints or clues for the student to discover, thereby preserving
the learner’s sense of self-propelled learning.

Whether the subject matter involves deliberate emotional ex-
pression such as music, or a “non-emotional” topic such as sci-
ence, the teacher that attends to a student’s interest, pleasure,
and distress, is perceived as more effective than the teacher
that proceeds callously. The best human teachers know that
frustration usually precedes quitting, and know how to skill-
fully redirect or motivate the pupil at such times. They get to
know their student, and how much distress that student can
withstand before learning breaks down.

Computers that cannot recognize human affect are severely
handicapped. In contrast, with observations of your emotions,
the computer could learn to respond to you more like the best
human teachers, giving you one-on-one personalized guidance
as you explore. Educational toys could have numerous learning
strategies built in, changing their response as the child shows
different levels of interest.

Affect has been largely ignored in theories of learning, per-
haps because it is hard to measure. Like in all activities that
demand mental performance, we know emotion is a determin-
ing factor. Hebb showed the classic inverted—U curve in [77]
relating performance to arousal. Performance is lowest when
the subject is awaking or when the subject is aroused to the
point of emotional disturbance; performance is optimized at an
intermediate state of arousal.

Now, suppose we could assess emotional communication dur-
ing a learning episode — as a set of parameters, much like health
researchers measure parameters such as heart-rate to develop
better theories of athletic training. Perhaps there is some ana-
log to be found in learning theory which corresponds to the
rule-of-thumb in physical conditioning theory, “sustain 80% of
maximum heart-rate for twenty minutes for optimal condition-
ing.” Although certainly a successful learning theory (for mind
or for sports) would be more complicated than this, my point is
that emotion variables could play a key role in developing new
theories of learning. Such theories might begin to address issues
such as not merely trying to optimize the student’s happiness,
but orchestrating a balance between difficulty (frustration) and
accomplishment (satisfaction).

Analyzing emotion both in the sender and receiver might
also lead to progress in understanding the beneficial contagious
effects of emotion — such as the life-changing impact of those
special teachers who stir our interest in a topic.

When using a computer, people often find themselves try-
ing to learn. Whether it is learning a new piece of software
or directly using an educational program, the experiences are
not generally considered pleasant. What if computer programs
could, like the piano tutor above, pay attention to the user’s

¥EFmail oc@musenet.org or point your Gopher or Web
browser at cyberion.musenet.org for information how to
connect.
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affective expression. The online collection of this information
could not only lead to more relevant feedback to the user, but
could also be of great use in consumer satisfaction studies, not
to mention in the development of more pleasurable and effective
learning experiences.

Learning is almost always bi-directional; for example, the
teacher usually learns things about the student’s attention and
preferences during their interaction. Affective computer pro-
grams, particularly software agents which watch their users
carefully, could begin to learn the human’s preferences, much
like a trusted assistant. However, in the short term, like the
dog walking the person and the new boots breaking in your
feet, we will likely find ourselves doing as much adapting to the
agents as they do to us. During this mutual learning process, it
might be favorable if the agent at least paid attention to your
frustration or satisfaction.

For example — the agent might notice our response
to too much information as a function of valence (plea-
sure/displeasure) with the content. Too many news stories tai-
lored to our interests might be annoying, and an occasional
insertion of humor stories might lead to greater tolerance for
the necessary but less pleasurable reading. Our tolerance may
be described not only as a function of the day of week or time
of day, but also as a function of baseline mood measured that
morning. The agent, learning to distinguish which features of
information best please the user while meeting his or her needs,
could adjust itself appropriately. “User friendly” and “personal
computing” might move closer to their stated meanings.

5.5 Affective environments

Sometimes people like a change of environment; sometimes it
drives them crazy. These responses apply to all environments
— not just your building, home, or office, but also your com-
puter software environment with its “look and feel,” the inte-
rior of your automobile, and all the appliances with which you
surround and augment yourself. What makes you prefer one
environment to another?

Hooper [78] identified three kinds of responses to architec-
ture, which I think hold true for all environments: (1) cogni-
tive and perceptual — “hear/see,” (2) symbolic and inferential
— “think/know,” and (3) affective and evaluative — “feel/like.”
Perceptual computing (primarily computer vision and audition)
and artificial intelligence have been largely concerned with mea-
suring information in the first and second categories. Affective
computing addresses the third.

In trying to understand what designs bring long-term sat-
isfaction in his recent book Buildings that Learn [79], Stewart
Brand emphasizes not the role of buildings as space, but their
role in time. Brand applauds the architect who listens to and
learns from post-occupancy surveys. But, he further cautions
that because these are written or verbal reports, and the lan-
guage of emotions is so inexact, these surveys are limited in
their ability to capture what is really felt. Brand notes that
surveys occur at a much later time than the actual experience,
and hence may not recall what the visitors or inhabitants liked
most.

In contrast, measuring sentic responses of people in the build-
ing could tell you how the customers feel when they walk in your
bank vs. into the competitor’s bank, capturing those important
“first impressions.” Surveys of willing newcomers who express
their feelings when they enter your building for the first time
might be recorded by an affective computer.

After being in a building awhile, your emotions in that space
are no longer likely to be influenced by its structure, as that




has become predictable. Environmental factors such as tem-
perature, lighting, sound, and decor — to the extent that they
change — are more likely to affect you. “Alive rooms” or “alive
furniture and appliances” that sense affective states could ad-
just factors such as lighting (natural or a variety of artificial
choices) sound (background music selection, active noise can-
cellation) and temperature to either match or stimulate an ap-
propriate mood. Your digital disc jockey might help suggest
music of a particular mood. “Computer, please adjust the en-
vironment for a peaceful ambience at our party tonight.”

5.6 Aesthetic pleasure

Art does not think logically, or formulate a logic of
behavior; it expresses its own postulate of faith. If in
science it is possible to substantiate the truth of one’s
case and prove it logically to one’s opponents, in art
it is impossible to convince anyone that you are right
if the created images have left him cold, if they have
failed to win him with a newly discovered truth about
the world and about man, if in fact, face to face with
the work, he was simply bored. — Andrey Tarkovsky
[50]

As creation is related to the creator, so is the work of
art related to the law inherent in it. The work grows
in its own way, on the basis of common, universal
rules, but it is not the rule, not universal a priori.
The work is not law, it is above the law. — Paul Klee
[81]

Psychology, sociology, ethnology, history, and other sciences
have attempted to describe and explain artistic phenomena.
Many have attempted to understand what constitutes beauty,
and what leads to an aesthetic judgement. The elusiveness and
complexity of aesthetics is due, in part, to the fact that affect
plays a primary role.

Computers have been not only affect-blind, but aesthetically
blind. Consider a scenario where a computer is assembling a
presentation for you. In the not too distant future, the com-
puter will be able to search digital libraries all over the world,
looking for images and video clips with the content you request,
e.g. “colorful scenes of Bill Gates with a cereal bowl.” Suppose
it finds hundreds of shots that meet the requirements you gave
it for content. What you would really like at that point is for
it to narrow down the set to just the “good” ones to show you.
How do you teach it what is “good?” Can something be mea-
sured in a picture, sculpture, building, piece of music, or flower
arrangement that will indicate its beauty and appeal?

5.6.1 Hidden forms?

Clynes has suggested that essentic forms capture emotion
in art. He has identified visual essentic forms in a number of
great works of art — for example, the collapsed form of grief
in the Pietd of Michelangelo (1499) and the curved essentic
form of reverence in Giotto’s The Epiphany (1320). Clynes
suggests that these visual forms, which match his measured
finger-pressure forms, are indicative of a true internal essentic
form. Moreover, shape is not the only parameter that could
communicate this essentic form — color, texture, and other fea-
tures may work collectively.

The viewpoint that we could find some combination of prim-
itive elements in a picture that corresponds to an emotion is
debated. On one hand, it seems that if you could find a basic
essentic form in one image, that you could yank it out of that
image, into some image-manipulation software, and construct a
new image around it, one that does not communicate the same
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emotion. What is the space of transformations that an essentic
form could be put through, without it losing its identity and
purity?

If such forms could be identified and measured, we could
search the visual databases of the world-wide web for instances
of them, and then test people’s responses to the images to see if
the images communicate the same emotion. It seems it might
be easy to find conflicting examples, especially across cultural,
educational, and social strata. However, to my knowledge, no
such investigation has been attempted yet.

Despite the lack of certainty about a visual form for emotion
in pictures, there is somethingin a picture or piece of music that
affects people emotionally; the question is what is the nature of
this something? Note that even if such an investigation results
in an ambiguous response, it would still not imply that Clynes’s
hypothesized internal essentic forms do not exist, as seen in the
following scenario:

One of Cytowic’s synesthetic patients saw lines projected in
front of her when she heard music. Her favorite music makes
the lines travel upward. If a computer could make the synes-
thetic associations she makes, then presumably it could help her
find new music she would like, by looking for pieces where the
lines went upward. However, although synesthetes have been
found to make the same cross-modal associations throughout
life, different synesthetes may have different associations. For
an individual synesthete, rules might be discovered to predict
these aesthetic feelings. Across synesthetes, the rules for the
shape of the essentic form may be different. Nonetheless, there
are consistent internal forms that an individual synesthete can
use. What about internal forms for the rest of us?

Cytowic’s idea 1s that perception, in all of us, passes through
the limbic system. Unlike most people, synesthetes can perceive
the form while it is passing through this intermediate stage.
Perhaps the limbic system is where Clynes’s hypothesized “es-
sentic form” resides. Measurements of internal essentic forms
may someday contribute to “objective” recognition of the aes-
thete. Just as lines going up and at an angle co-occurred with
music the synesthetic woman liked, so certain essentic forms,
and their purity, may be associated with preferences of other
art forms.

With the rapid development of image and database query
tools, we are entering a time where one could browse for exam-
ples of such forms; hence, this area is now more testable than
ever before. But let’s again set aside the notion of trying to
find a universal form, to consider a more personal scenario.

5.6.2 Personal taste

You are strolling past a store window and a garment catches
your eye — “My friend would love that pattern!” you think.
Later you look at a bunch of ties and mock — “How could any-
body like these?”

People’s preferences differ wildly in clothing. They may rea-
son about their taste along different levels — quality of the gar-
ment, its stitching and materials, its practicality or feel, its
position in the fashion spectrum (style and price), and possibly
even the reputation and expressive statement of its designer. A
buyer knows, however, that these features cannot simply be op-
timized into a garment that all will find maximally appealing;
it 1s absurd to assume the existence of a universal predictor of
what is best.

Although you may or may not equate garments with art,
an analogy exists between ones aesthetic judgment in the two
cases. Artwork 1s evaluated for its quality and materials, how
well it will fit where you want to display it, its feel, its position
in the world of art (style and price), its artist, and her or his



expressive intent. Just as for clothing, the finding of a universal
aesthetic predictor may not be possible.

However, selecting something for someone you know well,
something you think they would like, is commonly done. We
not only recognize our own preferences, but we are often able
to learn another’s.

Moreover, clearly there is something in the appearance of the
garment or artwork that influences our judgement. But what
functions of appearance might enable the computer to reach
the same judgement? Perhaps if the lines in that print were
straighter, it would be too boring for you. On the other hand,
you might treasure the bold lines on that table.

There are many problems with trying to find something to
measure, be it in a sculpted style, painting, print, fabric, or
room decor. Ordinary pixels and lines do not induce aesthetic
feelings on their own, unless, perhaps it is a line of Klee, used
to create an entire figure. Philosophers such as Langer have
taken a hard stance in seeking to understand projective feeling
in art:

There is, however, no basic vocabulary of lines and
colors, or elementary tonal structures, or poetic
phrases, with conventional emotive meanings, from
which complex expressive forms, i.e., works of art,
can be composed by rules of manipulation. [82]

Despite Langer’s claim, neither do we experience aesthetic
pleasure without the pixels, lines, notes and rhythms. Moreover,
Clynes does seem to have found a set of mechanisms from which
complex expressive forms can be produced, as evidenced in his
musical Turing test; this is further collaborated with his recent
studies indicating the significant role of composer’s pulses in
appreciation of music [83].

Just thinking of a magnificent painting or piece of music does
not usually arouse the same emotions as when one is actually
experiencing the work, but it may arouse similar, fainter emo-
tions. Beethoven still composed some of the greatest music in
the world after he could no longer hear. Aesthetic feelings ap-
pear to emerge from some combination of physical, perceptual,
and cognitive forms.

Efforts to give computers recognition of what we think is
beautiful should aid our understanding of this perplexing and
universally important problem. Like all computer recognition
problems; this one will probably require huge sets of examples
of things that we do and do not like. Additionally, 1 expect
it will be improved as the computer learns to directly incor-
porate affective feedback from us. The computer will need to
infer which features are common to those examples that we like
and distinguish these from features common to the negative
examples.

With knowledge of affective preferences, the computer can
cruise the networks at night, helping shop for clothes, furni-
ture, wallpaper, music, gifts, artwork, and more. Online mu-
seum tours, that are becoming available on the world-wide web,
could suggest to you additional collections, by guessing what
you might like after observing your reaction to what you have
already seen. Affective computers potentially provide more per-
sonal service, tailored to your ever-changing interests.

5.6.3 Design

You can not invent a design. You recognise it, in the
fourth dimension. That is, with your blood and your
bones, as well as with your eyes. — David Herbert
Lawrence

Have you asked a designer how she arrived at the final de-
sign? Of course, there are design principles and constraints on
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function that influenced her one way or the other. Such “laws”
play an important role. However, none of them are inviolable.
What seems to occur is a nearly ineffable recognition — a per-
ceptual “aha!” when all is right.

Although we can measure qualities of objects, of the space
between them, and of many components of design, we cannot
predict how these alone will influence the experience of the ob-
server. Design is not solely a rule-based process, and computer
tools to assist with design only help explore a space of pos-
sibilities. Today’s tools, e.g., in graphic design, incorporate
principles of physics and computer vision to both judge and
modify qualities such as balance, symmetry and disorder [84].
But the key missing objective of these systems is the goal of
arousing an experience in the user — arousing to provoke at-
tention, interest, memory, and new experiences. For this, the
system must be able to recognize the user’s affect dynamically,
as the design is changed. (This assumes the user is a willing
participant, not suppressing their feelings about the computer’s
design suggestions.)

Aesthetic success may be said to be communicated via emo-
tion — you like something because it makes you feel good, or
because you like to look at it, or it inspires you, or makes you
think of something new; this brings you joy. A design solves a
problem you have and you feel relief. Eventually, it brings you
to a new state that is more satisfying than the one you were in.

Although the computer does not presently know how to lead
a designer to this satisfied state, there is no reason it could
not begin to store sentic responses, and gradually try to learn
associations between these responses and the underlying design
components. Sentic responses have the advantage of not having
to be translated to language, which is an imperfect medium for
reliably communicating feedback concerning design. In fact,
frequently, i1t i1s precisely the sentic response that is targeted
during design.

Affective computing will play a key role in gathering infor-
mation for improving our aesthetic understanding, especially in
areas such as entertainment and design.

5.7 Affective wearable computers

The most difficult thing is that affective states are
not only the function of incoming sensory signals (i.e.,
visual, auditory etc.), but they are also the function of
the knowledge/experiences of individuals, as well as
of time. What you eat in the morning can influence
the way you see a poster in the afternoon. What
you read in tomorrow’s newspaper may change the
way you will feel about a magazine page you’re just
looking at now... — Suguru Ishizaki

The above peek into the unpredictable world of aesthetics
emphasizes the need for computers which perceive what you
perceive, and which recognize personal responses as you change
them. In the most personal form, these are computers that
could accompany you at all times.

The idea of wearing something that measures and commu-
nicates our mood is not new; the “mood rings” of the 70’s
are probably due for a fad re-run and mood shirts are suppos-
edly available now locally. Of course these armpit heat-to-color
transformers do not really measure mood. Nor do they compare
to the clothing, jewelry, and accessories we could be wearing —
lapel communicators, a watch that talks to a global network, a
network interface that is woven comfortably into your jacket or
vest, local memory and a microprocessor in your belt, a minia-
ture videocamera and holographic display on your eyeglasses,
and more.



Wearables may fulfill some of the dreams espoused by Clynes
when he coined the word “cyborg”[85]. Wearable computers
can augment your memory (any computer accessible informa-
tion available as you need it) [86] or your reality (zooms in when
you need to see from the back of the room). Your wearable cam-
era could recognize the face of the person walking up to you,
and remind you of his or her name and where you last met.
Signals can be passed from one wearable to the other through
your conductive “BodyNet” [87]. A handshake could instantly
pass to my online memory the information on your business
card.?® Note that these examples are not science fiction; all of
these functions or their basic technologies have been realized in
present research in the MIT Media Laboratory.

An Orson Scott Card science fiction novel [88] features a sen-
tient being named Jane that speaks from a jewel in the ear of
Ender, the hero of the story. To Jane, Ender is her brother, as
well as dearest friend, lover, husband, father, and child. They
keep no secrets from each other; she is fully aware of his mental
world, and consequently, of his emotional world. Jane cruises
the universe’s networks, scouting out information of importance
for Ender. She reasons with him, plays with him, handles all
his business, and ultimately persuades him to tackle a tremen-
dous challenge. Jane is the ultimate affective and effective com-
puter agent, living on the networks, and interacting with Ender
through his wearable interface.

Although Jane is science fiction, agents that roam the net-
works and wireless wearables that communicate with the net-
works are current technology. Computers come standard with
cameras and microphones, ready to see our facial expression
and listen to our intonation. People who work with computers
generally have more physical contact with computers than they
have with people; computers are in a unique position to sense
our affective state.

The bandwidth humans have for communicating thoughts
and emotions to each other can also be available for communi-
cating with computer agents. My wearable agent might be able
to see your facial expression, hear your intonation, and recog-
nize your speech and gestures. Your wearable might feel the
changes in your skin conductivity and temperature, sense the
pattern of your breathing, measure the change in your pulse,
feel the lilt in your step, and more, all in an effort to better un-
derstand you. You could choose to whom your wearable would
communicate these personal clues of your emotional state.

I want a mood ring that tells me my wife’s mood
before I get home — Walter Bender

If we were willing to wear a pulse, respiration, or moisture
monitor, the computer would have more access to our motor ex-
pression than most humans. This opens numerous new commu-
nication possibilities, such as the message (perhaps encrypted)
to your spouse of how you are feeling as you head home from
the office. The mood recognition might trigger an offer of infor-
mation, such as the news (via the network) that the local florist
just received a delivery of your spouse’s favorite protea. A mood
detector might make suggestions about what foods to eat, so
called “mood foods” [89], and collect information continuously
through the diet, contributing to our ongoing understanding of
biochemical influences on mood.

Affective wearables offer possibilities of new health and med-
ical research opportunities and applications. Medical studies
could move from measuring controlled situations in labs, to
measuring more realistic situations in life. A jacket you choose
to wear that senses your posture might gently remind you to

20Tt could also pass along a virus.

23

correct a bad habit after back surgery, perhaps by a subtle
nudge in a helpful place. Wearables that measure other phys-
iological responses can help you identify causes of stress and
anxiety, and how well your body is responding to these.?! Such
devices might be connected to medical alert services, a commu-
nity of friends and family, or perhaps just a private “slow-down
and attend to what you’re doing” service, providing personal
feedback for your private reflection — “I sense more joy in you
tonight.”

With willing participants, and successful affective comput-
ing, the possibilities are limited only by our imagination. Af-
fective wearables would be communication boosters, clarifying
feelings, amplifying them when appropriate, and leading to
imaginative new interactions and games. Wearables that de-
tect your lack of interest during an important lecture might
switch into a recording mode for you, taking notes while as-
suming that your mind is wandering. Games where players
don affective computers might add points for courage. Your
wearable might encourage you during a workout, “I sense anger
reduction.” Wearables with networked agents might help peo-
ple reach out to contact those who want to be contacted, not
just based on common interests as expressed through internet
news groups, but also through common mood. For example,
it might recognize your emotional state could be improved by
striking up a conversation with someone with common interests
right now; and it might let you know who’s available that would
enjoy this opportunity.

Of course, you could remap your affective processor to change
your affective appearance, or to keep certain states private. In
offices, one might wish to reveal only the states of no emotion,
disgust, pleasure, and interest. Affective computing does not
enforce emotion recognition or expression on anyone. Instead,
it provides an opportunity for additional communication, one
which can be used for both good and bad purposes, with hopeful
emphasis on the former.

5.7.1 New data needed

Despite a number of significant efforts, emotion theory is in
its infancy. People’s emotional patterns depend on the context
in which they are elicited — and so far these have been limited to
lab settings. Problems with studies of emotion in a lab setting
(especially with interference from cognitive social rules) are well
documented. The ideal study to aid the development of the
theory of emotions is real-life observation, recently believed to
be impossible [30].

However, as in the examples above, a wearable affective com-
puter that attends to you during your waking hours could po-
tentially notice what emotions you express, as well as a variety
of conditioning factors such as what you eat, what you do, what
you see, hear, etc. Computers excel at amassing information,
and their ability to analyze and identify patterns is being im-
proved rapidly. Given a willingness on the part of the wearer
to share this information with researchers, a wealth of impor-
tant data could be gathered for furthering theories of learning,
intelligence, perception, diet, exercise, communication, mental
health, and more.

6 Summary

Emotion was identified by Donald Norman in 1981 as one of
the twelve major challenges for cognitive science [91]. In this
paper | have argued that emotions can no longer be considered
a luxury when studying essential rational cognitive processes;

21G8ee [90] for a discussion of emotions and stress.



instead, recent neurological evidence indicates they are neces-
sary not only in human creativity and intelligence, but also in
rational human thinking and decision-making. I have suggested
that if computers will ever interact naturally and intelligently
with humans, then they need the ability to at least recognize
and express affect.

Affective computing is a new area of research, with recent
results primarily in the recognition and synthesis of facial ex-
pression, and the synthesis of voice inflection. However, these
results are just the tip of the iceberg; a variety of physiologi-
cal measurements are available which would yield clues to one’s
hidden affective state. Moreover, these states do not need to be
universal in their expression for a computer to recognize them.
I have proposed some possible models for the state identifica-
tion, treating affect recognition as a dynamic pattern recog-
nition problem. More research is needed to discover which of
these tools, coupled with which measurements, both of the per-
son and their environment, give reliable indicators of affect for
an individual.

Given modest success recognizing affect, significant leaps in
both theory and practice are possible. Affect plays a key role
in understanding phenomena such as attention, memory, and
aesthetics. I have described over fifty possible applications
in learning, information retrieval, communications, entertain-
ment, design, health, and human interaction where affective
computing would be beneficial. In particular, with wearable
computers that perceive context and environment as well as
physiological information, there is the potential of gathering
data for advances in cognitive and emotion theory, as well as
for improving our understanding of factors that contribute to
human health and well-being.

Although I have focused on computers that recognize and
portray affect, I have also mentioned evidence for the impor-
tance of computers that would “have” emotion. Emotion is not
only necessary for creative behavior in humans, but neurologi-
cal studies indicate that decision-making without emotion can
be just as impaired as decision-making with too much emotion.
I have used this evidence to suggest that building computers
that make intelligent decisions may require building computers
that “have emotions.”

I have also proposed a dilemma that arises if we choose to
give computers emotions. Without emotion, computers are not
likely to attain creative and intelligent behavior, but with too
much emotion, we, their maker, may be eliminated by our cre-
ation. Although this scenario is far afield and included mostly
as a worst-case possibility, it is important that researchers dis-
cuss potential hazards of affective computing together with its
potential benefits.

I have suggested a wide range of benefits if we build comput-
ers that recognize and express affect. The challenge in building
computers that not only recognize and express affect, but which
have emotion and use it in learning and making decisions, is a
challenge not merely of balance, but of wisdom and spirit. It is
a direction into which we should proceed only with the utmost
respect for humans, their thoughts, emotions, and freedom.
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