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ABSTRACT

The performance of a statistical signal processing sys-
tem is determined in large part by the accuracy of the
probabilistic model it employs. Accurate modeling often
requires working in several dimensions, but doing so can
introduce dimensionality-related difficulties. A recently in-
troduced model circumvents some of these difficulties while
maintaining accuracy sufficient to account for much of the
high-order, nonlinear statistical interdependence of sam-
ples. Properties of this model are reviewed, and its power
demonstrated by application to image restoration and com-
pression. Also described is a vector quantization (VQ)
scheme which employs the model in entropy coding a Z% -
lattice. The scheme has the advantage over standard VQ
of bounding maximum instantaneous errors.

1. INTRODUCTION

Many signal processing techniques employ probabilistic
models, explicitly or implicitly. The performance of such
techniques depends in large part on the accuracy of the
model — that is, on how well it predicts or accounts for
signal behavior. In image processing, the samples (pixels)
exhibit significant statistical interdependence; this must be
exploited if the model is to be accurate. The model should
describe the joint behavior of pixels that are statistically
related. Unfortunately, as the number of pixels (dimension)
increases, two fundamental problems arise: the available
training data becomes relatively sparse, and the effective
alphabet becomes so large as to be unmanageable.

Kernel estimation [1] alleviates the sparse data problem
by making a smoothness assumption about the underly-
ing probability law. Traditional kernel estimates contain
the training data, which can make the estimates unwieldy.
Also, with traditional kernel estimates, the problem of the
large alphabet remains. In principle, the joint statistical
description provided by the kernel estimate could be used
to obtain a conditional description for the individual pixels
(using the relationship between joint and conditional prob-
ability); however, in practice this computation would be
infeasible because of the dynamic range of the quantities
involved.

A modeling technique for random vectors which allevi-
ates these problems has recently been proposed, and its ap-
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plication to textured data considered [2]. The model com-
bines kernel estimation with clustering, yielding a semipara-
metric probability mass function (PMF) estimate which
summarizes — rather than contains — the training data.
Because the model is cluster based, it is inferable from a
limited set of training data, despite the high dimensional-
ity. In addition, the technique is amenable to a computa-
tional procedure which circumvents the problem of expo-
nential growth in alphabet size. The next section reviews
this model; the remaining sections consider application of
the model to image restoration and both lossy and lossless
compression.

2. CLUSTER-BASED PROBABILITY MODEL

The essential details of the model are now summarized.
Let x = (z1,...,zn~) be a discrete random vector that obeys
an unknown probability mass function (PMF) p(x). This
PMF is approximated by a function

q(x) =
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where M is a parameter that determines the complexity of
the model, the wy,’s are positive weights which sum to one,
and the fm n(zn)’s are individual 1-dimensional PMF’s.
The weights and 1-d PMF’s are obtained via cluster anal-
ysis, taking the wp,’s to be the normalized cluster popu-
lations, and fitting discretized separable Gaussians to each
cluster to obtain the fm. . (zn)’s.

The advantage of restricting ¢(x) to be of the form (1)
is computational: the vector components can be processed
sequentially rather than jointly, with no loss of accuracy.
In particular, let X = (Xi,...,Xn) denote a particular
realization of x. Then ¢(z,|X1, ..., Xn—1) can be computed
recursively for 1 <n < N as
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Figure 1: Formation of data vector x from degraded and
original pixels, for use in the training phase. In the restora-
tion phase, the final component of the vector is unknown;
its value is estimated by maximizing its PMF conditioned
on the degraded pixels.

and where C), is a normalizing constant chosen such that
S rmam=112].

Regarding quality of the estimate, work on radial basis
functions [3] suggests that ¢(x) can well approximate any
p(x) that satisfies certain smoothness constraints. Ques-
tions remain about convergence of g(x) to p(x) as the num-
ber of clusters increases; also, more research is required to
determine precise approximation properties of the model
with respect to criteria such as information divergence [4].

3. APPLICATION TO
MAXIMUM-LIKELTHOOD IMAGE
RESTORATION

Suppose that an image has been degraded and we wish
to restore it. It is assumed that a large set of (original, de-
graded) image pairs is available for the purpose of training.
In our example, we consider degradation by additive white
noise, but the procedure is well suited to many other types
of distortion — even ones which cannot be expressed simply
in mathematical form.

First, vectors are formed for each original pixel in the
training set, as shown in Figure 1. Next, the necessary
quantities in (1) are estimated by cluster analysis, as de-
scribed in the previous section. For the examples in this
paper, the clustering was carried out using the LBG algo-
rithm [5].

For each pixel location in a given degraded image, let
Xi,...,Xn_1 denote the observed values of the neighbor-
hood pixels, and let zx be the original (unknown) pixel
value. To restore the pixel, we take ¢(zn|X1,...,Xn-1) as
the likelihood function and maximize it with respect to zx.
Figure 2 shows experimental results for this type of restora-
tion in the case of additive white Gaussian noise. The tech-
nique achieves significant noise reduction while maintaining
considerable sharpness. For a set of 5 test images degraded
with additive white Gaussian noise (variance = 100), the
technique increased SNR by an average of 4.3 dB.

This technique requires only weak assumptions about
the statistics of the degradation — stationarity and spatial
locality. Therefore, it is expected to perform reasonably in
restoration problems where the degradation process is local
but highly nonlinear and/or difficult to express mathemat-

Figure 2: Image restoration example. An original 128 x
128 8-bit image (top left) is degraded by additive white
Gaussian noise with a variance of 100 (top right). Using a
3 x 3 neighborhood (N =9+ 1 = 10) and M = 256, the
cluster-based model was trained on a set of 20 (original,
degraded) pairs of natural images, which did not include the
test image. In the restored image (bottom left) the noise
has been reduced at the cost of a small amount of softening
and patchiness. For comparison, the result of applying a
separable 11-tap Wiener filter is also shown (bottom right)
— note that the proposed technique achieves less blur than
the filtering approach, with a comparable degree of noise
reduction.

ically, such as de-halftoning and film grain reduction.

This method of restoration is similar in spirit to an in-
terpolative vector quantization technique proposed by Ger-
sho [6]. Both have the potential to “learn” nonlinear statis-
tical relationships from training data and to use those rela-
tionships to fill in missing values. However, the techniques
differ in one important respect. In the proposed scheme
several clusters interact in determining the restored value,
rather than the value being determined by a single code-
book entry. As a consequence, restored values are not lim-
ited to only those appearing explicitly in a codebook. The
technique is more than a lookup table; it uses the available
information to synthesize the missing value.

4. APPLICATION TO LOSSLESS
COMPRESSION OF GRAYSCALE IMAGES

Langdon and Rissanen [7] have described an efficient
reversible compression scheme for binary images. In their
system, each pixel is arithmetically encoded using a PMF
that is conditioned on a nearby set of previously encoded
pixels, i.e., on a neighborhood of pixels that precede it in



Figure 3: Block diagram of lossless compression system for
grayscale images.

[ AN AN J
(AN BN AN BN J
e o X

Figure 4: Semicausal conditioning neighborhood for lossless
compression. The pixel marked ‘X’ corresponds to x,, and
the pixels marked ‘e’ correspond to Xi,..., Xny_1.

raster order. For binary images and typical neighborhood
sizes of N — 1 = 10, it is feasible to estimate the conditional
PMF’s from occurrence counts, since the number of pos-
sible conditioning states (2 ~!) remains manageable. In
the case of grayscale images however, the number of pos-
sible conditioning states (22N =) becomes astronomically
large, making count-based probability estimation infeasible.

The proposed model can replace the count-based model,
making direct arithmetic coding of grayscale pixels feasible.
The system is shown in Figure 3. The pixels are arithmeti-
cally encoded in raster order, the PMF used for each pixel
being conditioned on a set of previously-encoded pixels so
that the decoder can have the same conditioning informa-
tion. (At the top and left boundaries, unavailable condi-
tioning pixels are arbitrarily set to 128; the resulting local
inefficiency has little effect on the overall bit rate.)

The compression system was applied to several 8-bit
monochrome images of natural scenes, using a 16-bit K-ary
arithmetic coder [8] and the 10-pixel conditioning neigh-
borhood shown in Figure 4. In each case, the cluster-based
model was trained on a set of 20 images that did not include
the test image. The resulting rates were between approx-
imately 4.5 and 5.5 bits/pixel. This performance range is
similar to that reported recently for other lossless compres-
sion approaches [9]. We believe that we can improve upon
these results. For example, a hierarchical approach (similar
to the one we used in texture synthesis [2]) is likely to result
in better compression in the larger homogeneous regions of
an image.

A popular method of lossless grayscale image compres-
sion is to apply the Langdon-Rissanen binary scheme (or
a variant) to bit-planes of the image, rather than to the
original image [9]. Although a K-ary source can always be
reversibly decomposed into [log, K| binary sources, there is
an important difference between direct and bit-plane encod-
ing. The difference is in ease of modeling. While a smooth-
ness assumption for the PMF is justified in the original
pixel domain, it is definitely not justified in the bit-plane
domain. Since smoothness of the PMF is lost, it cannot
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Figure 5: A vector quantization scheme that limits maxi-
mum error. Top left: standard VQ codebook with 64 repro-
ductions, designed using the LBG algorithm for a particular
2-D source. Top right: reproductions corresponding to N-
fold uniform scalar quantization with joint entropy coding,
with the spacing chosen to give the same mean-square error
as the 64-point standard VQ. Middle: a set of test points
outside the training set, quantized using each of the two
codebooks. Bottom: resulting error vectors for standard
VQ (left) and N-fold scalar quantization (right).

be exploited by the modeling apparatus. Each condition-
ing state must then have occurred explicitly in the training
data in order for the corresponding conditional PMF to ex-
ist. In contrast, by working in the original pixel domain,
the cluster-based model can exploit PMF smoothness to
effectively interpolate the PMF’s corresponding to missing
conditioning states as necessary.

5. LOSSY COMPRESSION: A VECTOR
QUANTIZATION SCHEME WITH LIMITED
MAXIMUM ERROR

In recent years, lattice quantization has received much
attention as a computationally simpler alternative to full-
search vector quantization (VQ). The usual approach is to
choose an appropriate lattice, then scale and truncate it in
such a way that rate and mean-square-error (MSE) perfor-
mance is comparable to that of full-search VQ [10, 11, 12,



13].

Lattice VQ also has the potential of limiting maximum
errors, provided that an untruncated lattice is used [14].
The idea is illustrated in Figure 5. For untruncated-lattice
VQ to perform well for nonuniformly distributed input (the
case of interest in image coding), it is essential that the
lattice points be efficiently entropy coded. The difficulty lies
in the astronomically large alphabet of lattice points that
must be handled. Senoo and Girod [14] attack the problem
by efficiently entropy encoding only those points that occur
frequently in the training data, using a simple fixed-length
code for the remaining points. The success of this approach
depends on the “frequent set” being small enough to be
likely to have been well represented in the training data. In
high dimensions (say N > 5) and at medium to high rates
(> 1 bit/pixel), this may not be true.

If a simple hypercubic (Z7) lattice is used, then the
cluster-based model can be employed along with K-ary
arithmetic coding to achieve the desired efficient entropy
coding. This amounts to /N-fold uniform scalar quantization
followed by joint entropy coding of the quantized scalars.
While it is true that a ZV lattice is suboptimal in terms of
space-filling, the performance penalty for using it instead
of a more efficient lattice is known to be quite small. This
has been established theoretically in the case of asymptoti-
cally high rate [10, 15], and experimentally in the low- and
medium-rate regions for some sources [14]. In the exam-
ple illustrated in Figure 5, the rate-MSE performance was
examined and found to be comparable to that of standard
VQ. If this performance can be shown to be comparable in
general, then the proposed technique would be a good alter-
native to standard vector quantization in situations where
it is desired that maximum errors be bounded.

As an area of future research, this approach can be ap-
plied to lossy image compression in a number of different
ways. For example, in any image subband coding system,
nonlinear statistical interdependence exists both within and
across subbands, despite critical sampling. This interdepen-
dence might be handled by the proposed technique.

Pentland and Horowitz [16] describe a hierarchical tech-
nique in which statistical interdependence is exploited by
conditioning the entropy coding of a VQ output on the cor-
responding VQ output at a coarser resolution level. Our
approach could fit directly into their framework, with the
conditioning occurring automatically by assembling vectors
both spatially and across resolution levels.

6. SUMMARY

We reviewed some properties of a recently proposed
cluster-based probability model, and discussed the model’s
application to image restoration and compression. The
model was found to work well in a maximum-likelihood im-
age restoration system. It performed moderately well in a
lossless image compression system; its performance is ex-
pected to improve if hierarchical processing is employed.
Finally, we described an entropy-coded vector quantization
technique based on the model. In contrast to standard vec-
tor quantization, the proposed technique bounds maximum
error.

[1]

[2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

7. REFERENCES

Richard A. Tapia and James R. Thompson. Non-
parametric Probability Density Estimation. The Johns
Hopkins University Press, Baltimore, 1978.

Kris Popat and R.W. Picard. A novel cluster-based
probability model for texture synthesis, classification,
and compression. In Proc. SPIE Visual Communica-
tions 93, Cambridge, Mass., 1993.

M.J.D. Powell. Radial basis functions for multivariate
interpolation: A review. In J.C. Mason and M.G. Cox
(eds.), editors, Algorithms for Approzimation. Claren-
don Press, Oxford, U.K., 1987.

Thomas M. Cover and Joy A. Thomas. Elements of
Information Theory. Wiley, 1991.

Y. Linde, A. Buzo, and R. M. Gray. An algorithm for
vector quantizer design. IEEE Trans. Comm., COM-
28:84-95, Jan. 1980.

Allen Gersho. Optimal nonlinear interpolative vector
quantization. IEEE Trans. Comm., 38(9):1285-1287,
Sept. 1990.

Glen Langdon and Jorma Rissanen. Compression of
black-white images with arithmetic coding. IEEE
Trans. Comm., COM-29:858-867, June 1981.

Kris Popat. Scalar quantization with arithmetic cod-
ing. Master’s thesis, Dept. of Elec. Eng. and Comp.
Science, M.I.T., Cambridge, Mass., 1990.

Majid Rabbani and Paul W. Jones. Digital image com-
pression techniques. SPIE Optical Engineering Press,
Bellingham, Washington, 1991.

J.H. Conway and N.J.A. Sloane. Sphere packings, lat-
tices, and groups. Springer-Verlag, 1988.

J.H. Conway and N.J.A. Sloane. Fast quantizing and
decoding algorithms for lattice quantizers and codes.
IEEE Trans. Inform. Theory, 1T-28:227-232, March
1982.

D.G. Jeong and J.D. Gibson. Lattice vector quanti-
zation for image coding. In ICASSP-89: 1989 Inter-
national Conference on Acoustics, Speech, and Signal
Processing, Glasgow, UK, May 1989. IEEE.

M. Antonini, M. Barlaud, and P. Mathieu. Image cod-
ing using lattice vector quantization of wavelet coeffi-
cients. In ICASSP-91: 1991 International Conference
on Acoustics, Speech, and Signal Processing, Toronto,
Canada, April 1991. IEEE.

Takanori Senoo and Bernd Girod. Vector quantization
for entropy coding of image subbands. IEEE Trans.
Image Proc., 1:526-533, Oct. 1992.

Tom D. Lookabaugh and Robert M. Gray. High-
resolution quantization theory and the vector quan-
tizer advantage. IEEE Trans. Inform. Theory, 1T-
35:1020-1033, 1989.

Alex Pentland and Bradley Horowitz. A practical ap-
proach to fractal-based image compression. In Proc.
IEEE Data Comp. Conf., Utah, 1991.



