Novel cluster-based probability model for texture synthesis, classification, and compression
Kris Popat and Rosalind W. Picard

Massachusetts Institute of Technology, Media Laboratory
Cambridge, Massachusetts 02139-4307
Telephone: 617/253-0335 Faz: 617/253-8874 email: popat@media.mit.edu, picard@media.mit.edu

ABSTRACT

We present a new probabilistic modeling technique for high-dimensional vector sources, and consider its application to
the problems of texture synthesis, classification, and compression. Our model combines kernel estimation with clustering,
to obtain a semiparametric probability mass function estimate which summarizes — rather than contains — the training
data. Because the model is cluster based, it is inferable from a limited set of training data, despite the model’s high
dimensionality. Moreover, its functional form allows recursive implementation that avoids exponential growth in required
memory as the number of dimensions increases. Experimental results are presented for each of the three applications
considered.

1. INTRODUCTION

In many information processing tasks individual data samples exhibit a great deal of statistical interdependence, and
should be treated jointly (e.g., in vectors) rather than separately. For some tasks this requires modeling vectors proba-
bilistically.

Estimating and using probabilistic models when dealing with a vector source poses difficulties not present in the scalar
case. To illustrate, consider a simple histogram estimate of the probability density function (PDF) of a 10-dimensional
vector. Suppose uniform hypercubic bins are used in the histogram, with 256 to a side. Then the total number of bins
is astronomically large: 256'° ~ 1.2 x 10?%. This causes two serious problems: one cannot obtain enough training data
to fill this histogram to the point where it would provide a reliable PDF estimate, nor can one obtain enough computer
memory to store the result.

Consider the training problem. The overwhelming majority of the histogram cells will be empty, even after training on
as large a data set as is practical. It is essential that all cells, including the empty ones, be assigned reliable probability
estimates. (In fact, when the model is used on data outside the training set, most of the encountered vectors will
correspond to empty histogram cells.) For certain sources it is reasonable to infer the probability of an empty cell from
the populations of “surrounding” non-empty cells. To do this is to make an assumption about the smoothness of the
PDF — that a small change in the vector causes a small change in the probability. This assumption is reasonable in
situations where the vector elements correspond to measured physical quantities, such as light, temperature, or sound.

A well-known method of PDF estimation that uses this assumption is Parzen estimation. In that approach, a kernel
PDF is reproduced at each training point, and the results summed. The kernel serves to “spread out” probability to the
space that surrounds each training vector. In the Parzen approach, the model contains the training data, and while it
does not require as much memory as a histogram, it nevertheless becomes unwieldy and computationally expensive as
the amount of training data gets large. It is desirable that the model summarize the data rather than contain it. The
Parzen technique can be modified to this end by replacing the training data with a much smaller set of representative
points, and by adapting the sizes and shapes of the kernels to match the statistics of the regions they represent. The
model presented here uses clustering to obtain this smaller set of points.

A remaining problem with high-dimensional PDF modeling is revealed by assuming that a good estimate of the PDF has
already been obtained, and that we now wish to apply the model to a particular information processing task. Returning

1

to our example of the 10-dimensional source, suppose we wish to quantize the vectors into their histogram bins and
arithmetic code the result. Such a problem arises, for instance, in entropy-constrained lattice quantization.! To perform
the entropy coding directly would require working with an alphabet of about 10?* members, each of which has probability
on the order of 1072* — clearly an infeasible task. An obvious alternative is to break down the joint PDF into a product
of conditional PDFs for the vector elements, but to do so, the model PDF must be of a form that is amenable to such
factorization. For example, a separable PDF model is of such a form, but does not capture the interdependence of the
vector elements. The proposed model, which does capture much of the interdependence while allowing simple recursive
computation of the terms in the factorization, is described in the next section.

2. CLUSTER-BASED PROBABILITY MASS FUNCTION

Let x = [x1,...,zn] be a discrete* random vector that follows a probability mass function (PMF) p(x). We assume
that the vector elements {z;} share a common alphabet of K letters, so that the alphabet for x has K members. We
wish to estimate p(x) from a large but limited set of training vectors {X!,..., X%}, using a model that makes feasible
element-by-element processing via the chain rule

p(X) :p(l‘l,...,x]v)
= p(fﬂl)p($2|$1)p(ﬂ?3|$1,$2) o 'p($N|$1, ce TN

(1)

2.1 Formulation

Our approach is to combine kernel estimation with clustering. First, a cluster analysis is performed on the training data
using a standard clustering procedure; for our work we selected the LBG algorithm?. The desired PMF is then modeled
as a weighted sum of M component PMFs, each centered on a different cluster. The number of components M is a
parameter, and determines both the accuracy and computational complexity of the model. Let g(x) denote the estimate;
let ¢,,(x) denote the m*™ component PMF of this estimate. Then

M
4(x) = > wingm(x), (2)

where wy, > 0 for all m and Ef\j:l wpy, = 1.

To facilitate factoring g(x) as in (1), the g,,’s are restricted to be separable. That is, each g,, is required to be expressible
in the form

N
an(x) = H fm,n(xn)a (3)

where the f,, ,’s are 1-dimensional PMFs. It is worth emphasizing that, although the component PMFs are separable,
the resulting overall PMF ¢(x) is generally far from separable.

A number of choices are possible for the f,, »’s; indeed there may be no unique best choice in a given situation. A
reasonable choice can be obtained by assuming that, in general, the density of training points peaks at the cluster
centers, and smoothly and monotonically diminishes away from those centers. This suggests that a discretized Gaussian
is a reasonable choice, i.e.,

2

Frnn(2) = Ko™ (@i)/ 20%0), "

where K, , is such that

> frm(z) =1

all z

In practice, continuous-valued quantities must be discretized for computer processing. We therefore limit our considera-
tion to discrete distributions for the remainder of this paper.

2

This choice of f, » is used throughout this paper. The parameters ji,, ., and o, ,, are obtained directly from the statistics
of each cluster. In particular, i, , and oy, , are taken as the sample mean and sample standard deviation, respectively,
along dimension n, of the training points falling within the Voronoi region of cluster m. The weighting factor w,, is
taken to be the population of cluster m in the training data, divided by the total number of training points.

Combining the above, we have the following expression for g(x):
M N L
q(x) = Z Wi H Kmme_(x"_“"“") /205,) (5)
m=1 n=1

Although use of the proposed technique mitigates some of the problems associated with high dimensionality, it does not
eliminate them. As a practical matter, the value of N must be restricted. If N is unreasonably large, then the problem of
insufficient training data once again emerges; in addition, an excessive number of clusters is required to approximate the
true PMF. We have found that restricting NV to be between 5 and 15 generally results in the best system performance.

2.2 Recursive computation

The principal motivation for restricting the form of the PMF is to allow separate processing of the vector elements
via the chain rule (1) without sacrificing accuracy. This is an important property; it makes explicit evaluation of the
cluster-based PMF feasible. In this section we describe how such computation can be accomplished.

We first note that if no restriction is placed on the form of the PMF| then the chain rule would really offer no simplification.
Computing the final factor on the right-hand side of (1), for instance, involves evaluating p(x), which is precisely what
we are trying to avoid.

Let X, denote the particular value assumed by z, in a sample realization X of x. It is assumed that Xi,..., X,,_1
are available for use in the computation of ¢(z, | X1,...,X,,—1). This assumption is justified in a number of important
applications, including those considered in this paper. Specifically, in the cases of decoding and synthesis, X,, is the
direct result of processing q(z,, | X1,...,X,—1). In typical applications of encoding and classification, all of the X,,’s are
available a priori. Let Z = {i1,...,in'} be a subset of the indices {1,..., N}, where N’ < N. By summing over the
indices not in Z, it is easy to verify that

M
(I(l'il,- . 7$iN/) = Z Wm H fm,n(xn)a (6)

nel

i.e., the estimate of the marginal PMF can be obtained by simply ignoring the unwanted dimensions. Using this property
and the definition of conditional probability, we obtain

M
oler) = L=t wglfm’l(“) :

S Twim fat (X0)] fm2(@2)
Cy '

q(z2 | X1) =

S W frn (X0) fr2(X2)] frm 3 (3)

g(zs | X1, Xo) = c, ;

etc.,

where each (), is the sum of the corresponding numerator over all values of x,,. A recursive procedure for computing
the conditional PMFs is obtained by introducing a variable r,, , and identifying it with the bracketed quantities above.
Specifically, if we define
Wy if n = 0;
P = (8)
Clrmn-1fmn(Xn) ifl1<n<N,

3

where C), (different from C,, above) is chosen such that

M
§ Tm,n = 1,
m=1

then the conditional PMF estimate for the n'® element can be written
M
q(mn|X17~'~7Xn71) = Z Tmmflfmm(xn) (9)
m=1

Expressions (8) and (9) provide the desired means of processing the vector elements separately.
2.3 Relationship to mixture models, radial basis functions, and neural networks

From expression (5) it is clear that the proposed model can be thought of as a special case of a mixture density, in
particular, one having separable components. However, the interpretation and use of the quantities that comprise the
proposed model, as well as the overall goal of the model, are very different from those of a traditional mixture density,
as we now briefly discuss.

A mixture density approach is traditionally used in situations calling for unsupervised learning. Specifically, a mixture
model arises when an observation x is believed to obey probability law pp,(x|w;,) with probability P(wy,), where
wi,...,wy are “states of nature,” or classes.® Formally P(w,,) corresponds to our wy, and p,(x|wy,) to our g, (x), but
the interpretations are completely different. In the mixture case each of the component densities corresponds to a different,
physically meaningful class, and the objective is to estimate the class-conditional component densities {p,,(x |w.)} and
the priors {P(w,,)} from observations. In contrast, the component PMFs in the proposed model are merely “building
blocks” used to achieve the desired overall PMF shape; their physical significance, if any, has yet to be explored. Our
objective is not to decompose the PMF of the observation, but rather to summarize its shape in a computationally
convenient form, so that good performance can be achieved in applications where the model is employed.

If the f,, n’s are chosen appropriately, then expression (5) amounts to a radial basis function (RBF) approximation to
p(x). Consequently, one might expect that the RBF literature can provide insight into such issues as training, means of
implementation, and bounds on approximation accuracy.®®> Much of the RBF literature is concerned with interpolation®
and approximation with respect to Ly norm™® or L; norm.’ In our case, the function being approximated is a PMF.
As it turns out, the approximation criterion that is most natural in the applications we consider is not a distance
metric in the strict sense of the term. Specifically, the appropriate criterion is the information divergence, or Kullback-
Leibler number,'® which is asymmetric and does not satisfy the triangle inequality. Consequently, much of the RBF
approximation theory does not apply. In any event, regarding expression (5) as an RBF expansion is useful in that it
provides an alternative interpretation of the model — as a means of interpolating probability.

The relationship to RBFs suggests a connection to neural networks. Our approach does have certain elements in common
with neural network approaches.* Both are capable of learning complex, nonlinear relationships from training data, and
exploiting them in performing various information processing tasks. We expect that the applications we are considering
could be handled by an appropriate type of neural network with a comparable level of performance. However, a distinction
can be drawn between the two approaches: there is nothing inherently “neural” about our technique, and it is not
connected to any specific class of hardware topology.

If we compare our technique with a classical neural network like a multilayer perceptron, another distinction emerges.
The set of weights in the perceptron, which completely determines its function, has no obvious interpretation outside
the network. For instance, the set of weights cannot be used by some other perceptron to perform a different task. In
contrast, our method provides an explicit probabilistic model for the source, which can be used equally well in a variety
of applications like compression, restoration, synthesis, and classification. In principle, this distinction vanishes when
the goal of the neural network is specifically to estimate the PMF,!! rather than to carry out the ultimate information
processing task. In this case, the approaches may be accomplishing the same thing in different ways. To understand the
similarities and differences more fully requires study beyond the scope of this paper.

If a sufficiently broad interpretation is used, then an implementation of our approach using a parallel structure might be
regarded as a particular neural network with a specific learning algorithm.

4

3. APPLICATION TO TEXTURE SYNTHESIS

The cluster-based probability model summarizes the training data — but how well? One way to evaluate its success is to
consider the question, “what patterns is this model most likely to synthesize?” Texture synthesis not only helps us see
what information the model has captured, but also has direct applications in areas such as model-based image coding,
computer graphics, and multimedia design.

There has been a lot of previous work on texture synthesis, with methods loosely categorized as either structural or
statistical.'? Structural methods tend to work best on regular patterns like bricks or lizard skin; statistical tend to work
best on stochastic patterns like sand or cork.

The greatest success with probabilistic models in the literature has been on “stochastic microtextures”, patterns which
not only lack regular structure, but which also exhibit only local variations. (Informally, this usually translates into
variations that span fewer than ten pixels.) Probabilistic models used for synthesis of such patterns include Markov
random fields,'® noncausal autoregressive models,'* and Long-Correlation random fields.'® Deterministic methods have
also been successful for synthesizing textures with a given second- or third-order PMF.!%:!7 However, none of these have
been shown to be successful at synthesizing general structured textures.

The key problem with probabilistic texture synthesis models has been their inability to capture long-range or higher-order
information in the textures. To do so with most models would lead to the types of difficulties described in Section 1.
Consequently, there do not appear to be any attempts in the literature to incorporate higher than third-order statistics.

The new cluster-based probability model is not only able to characterize interactions beyond third-order, but, as we will
now see, it is also able to synthesize structure that other probabilistic models have not yet been shown to capture.

3.1 Nonhierarchical texture synthesis

Using the recursive implementation, pixels are synthesized sequentially. The simplest approach is to synthesize the pixels
in raster order. Each pixel is assigned a pseudorandom value that is generated according to its conditional PMF, where
the conditioning values are a subset of the previously generated pixels. The locations of the conditioning pixels relative
to the current one define a causal conditioning neighborhood. Two such neighborhoods are shown in Figure 1.

olo|e
olo|0 ojo|joo0
o X e o X

Figure 1. Causal conditioning neighborhoods used with the proposed model in nonhierar-
chical texture synthesis and compression.

Before the above procedure can be applied, the model must be trained. The first step is to obtain a sequence of sample
vectors from a training image. For each pixel in the training image, the neighborhood pixels and current pixel are
concatenated into a vector, with the current pixel appearing as the last element. A cluster-based model is then trained
on these vectors using the procedure described in Section 2.1. The parameter M is selected according to the available
computational resources and the desired fidelity of the model; in our work we have used values ranging between 32 and
2048. To speed the training process, the set of training vectors can be decimated prior to clustering. We used at least
20M training vectors for the examples in this paper.

The final step is to apply the model to generate each pixel in raster order. Expressions (8) and (9) are used to obtain
the conditional PMF for each pixel, which is then used in generating the pseudorandom pixel value. In cases where the
neighborhood specifies conditioning locations outside the image, a constant value of 128 is assumed; we have found that
border effects due to this choice usually die away after a few rows or columns.

5

PRAREER R
i

: ..i . qu..l“u g
= 4 5 ¥ d “.'I i
I } Beal e ;
i " P
pege 1 .L':'_.,. ",‘uﬁ;‘:::gﬁ; o I"_“’”'\ur 'll..,.l]
e # L] i g
f t‘.“m“h"‘;u':ﬂfu

I "-‘!"l* --llr.:p\u...

Figure 2. Results of applying nonhierarchical texture synthesis procedure to two Brodatz
textures: D21 (French canvas) and D1 (aluminum wire mesh). A 64 x64 patch of the original
is shown on the left, followed by four synthesized textures that differ in their condition masks
and values of M. From left to right, mask (a) and M = 128; mask (b) and M = 128; mask
(a) and M = 512; mask (b) and M = 512.

Figure 2 shows the results of using this technique to synthesize two natural textures selected from the Brodatz'® collection.
Notice that in the best case, the technique performs reasonably on the microtexture (top), but fails completely on the
bottom texture which has macroscopic structure. This is to be expected, since the pixels in the macroscopic texture have
statistical interdependences that extend spatially well beyond the size of the neighborhood. For the reasons mentioned
at the end of section 2.1, the problem cannot be fixed by simply using larger neighborhoods.

3.2 Hierarchical texture synthesis

The above technique can be modified so that the texture is synthesized in several stages, beginning with a coarse resolution
version of the texture (establishing macroscopic structure), and proceeding to progressively finer resolutions (filling in
microscopic detail).

A number of variations on this theme are possible. Here we consider a simple hierarchical approach, wherein each finer
resolution is obtained by first upsampling the current resolution, then filling in the missing pixel values using the proposed
cluster-based model. Unlike filtering, which is the conventional method of interpolating the missing pixels, the proposed
model is able to exploit the complex nonlinear statistical relationships that exist among pixels, both within and across
resolution levels.

Figure 3. Three classes of pixel — indicated as a, b, and ¢ — are determined by positional
relationship to the upsampled (shaded) pixels.

The details of this technique are now summarized. First, a coarse image is obtained using the nonhierarchical technique
described earlier. This image is upsampled by a factor of two in each dimension. The pixels that need to be filled in
can be divided into three classes, according to their position relative to the upsampling lattice (see Figure 3). Each
of these classes has a different statistical relationship to the coarser resolution pixels, and must therefore have its own
probabilistic model. The models also differ across pairs of resolution levels; that is, we do not impose statistical self-
similarity across scale. As in the nonhierarchical case, the neighborhood includes only those pixels which have already
been given values: those carried over from the coarser level, and those previously synthesized at the current level. A
possible set of neighborhoods is shown in Figure 4.

o/eojo0|0 o|o|0 o ofo|e

oo |X|® o000 o|lo|o|o @
oo X oo X

)) ° o o () ()

Figure 4. Conditioning neighborhoods used with the proposed model in hierarchical texture
synthesis. Shaded pixels are those carried over from the previous resolution level.

The models are trained in a straightforward way. Training data is obtained by first generating a set of subsampled
versions of the training image, then collecting vectors defined by the neighborhoods for each of the three pixel classes,
and for each pair of resolution levels. To obtain sufficient training data at coarse resolutions, the process is repeated
using different subsampling offsets. Parameter estimation is carried out using the technique described in section 2.1.

We applied this technique in two different ways. In the first, pseudorandom values are assigned to each pixel according
to its conditional PMF, just as in the nonhierarchical technique. The second way uses the conditional PMF to assign
pixel values by maximum-likelihood (ML) interpolation. In the first method the synthesized texture falls within a typical
set!® with respect to the model, while in the second, the synthesized texture has individually high probability. We will
refer to the first method as random; the second, as deterministic.

Figure 5. Results of deterministic hierarchical synthesis of Brodatz texture D1, with M =
2048 and N = 14. The original training image is shown at the top left; the remaining
images are the synthesis results at five successively finer resolution levels. The conditioning
neighborhoods used are those shown in Figure 4. Not shown is the coarsest resolution level;
in it the pixels appear to be essentially random.

Figure 5 shows the evolution of detail in the deterministic hierarchical synthesis of Brodatz texture D1. Notice that
much of the character of the original is present in the full-resolution result, including highlighting, bending and occlusion
of the wire strands.

Full-resolution results for eight Brodatz natural textures are shown in Figure 6, using both the random and deterministic
methods. For all textures, both methods capture much of the statistical and structural character of the original. The
deterministic outperforms the random method on textures having greater macroscopic structure.

T it S
— e Y]

rphe b N P,

SO

L

o Ao
3

8 - v R TR P 1Y yau
At ENY i : i A L S apaamEswiS

Figure 6. Results of hierarchical synthesis of eight Brodatz textures. Left to right and top
to bottom, the textures are D1 (aluminum wire mesh), D15 (straw), D20 (magnified French
canvas), D21 (French canvas), D22 (reptile skin), D77 (cotton canvas), D80 (straw cloth),
and D103 (loose burlap). In each case the three pictures are the original (left), random
synthesized (middle), deterministic synthesized (right). The pictures are 256 x 256. In all
cases, M = 2048 and the neighborhoods shown in Figure 4 are used.

4. APPLICATION TO TEXTURE COMPRESSION

Data compression systems can be divided into two classes: lossless systems, which are strictly reversible, and lossy
systems, which introduce some distortion but generally achieve much greater compression.

In a sense we have already described a form of lossy texture compression in the previous section — texture synthesis
from a model. One can easily imagine an image compression system based on this approach. Segmentation and model
information would be encoded and sent to the receiver. There, the information would be used to fill in the segments
so that the reconstructed image resembles the original. The large number of bits needed to specify the model would
be amortized over the size of the region, so that significant compression would be achieved when the regions are large.
However, the fidelity of such a system would be quite low in regions for which the model is weak. Consequently, such an
approach would be suitable only in applications where strict fidelity is not required.

Lossless compression systems are based on entropy coding, a process in which a sequence of source letters is reversibly
mapped to a compact, variable-rate code bit stream, according to an assumed probabilistic model of the source. Langdon
and Rissanen'® have devised an efficient lossless compression technique for binary images, and their technique has been
extended to grayscale images by breaking the image up into bit planes.?? This section considers an alternative approach,
wherein the proposed PMF model is used to directly arithmetic-code the pixel values. Our approach differs from the
two approaches cited mainly in that the proposed model is able to estimate the probability of previously unseen states,
whereas the models used in the binary and bit-plane methods are restricted to occurrence-count estimation.

8

Although we restrict consideration to lossless compression, much of our discussion is relevant to certain lossy methods
as well, since lossy compression systems usually employ a lossless compression element.

4.1 Using the model with arithmetic coding

Arithmetic coding is a form of entropy coding that in certain applications offers significant advantages over more tradi-
tional methods. It has near-optimal efficiency (relative to the assumed probability law) for a broad class of sources and
over a wide range of coding rates. Arithmetic coding is also inherently adaptive, allows encoding of large-alphabet low-
entropy sources without alphabet extension, and allows the probabilistic model to be specified explicitly and separately
from the actual coder.2!:22:23 The last property, which is of both philosophical and practical importance, is illustrated
schematically in Figure 7. There are several varieties of arithmetic coder; here we assume that the K-ary version of the
Langdon-Rissanen technique described in previous work?? is employed. The use of the proposed model with such an
arithmetic coder is now discussed.

Figure 7. An arithmetic coder allows convenient and natural separation of the probabilistic
model from the bit-producing mechanism.

The probabilistic model supplied to the arithmetic coder is in the form of a sequence of 1-dimensional PMFs, one for
each source letter. The PMFs supplied to the coder must satisfy certain constraints to ensure unique decodability of the
code bit sequence. Assume that the source alphabet consists of K letters. Let £(k) denote the true probability that the
current source letter assumes value k, let £(k) denote the approximation to (k) used by the arithmetic coder, and let p
represent the number of bits of precision with which quantities can be manipulated and stored by the processor. Unique
decodability is ensured when 5 satisfies

&(k) =v,27" where 7 is an integer > 2. (10)

Greatest coding efficiency would be achieved when € = ¢, but constraint (10) generally prevents this. The effect can be
minimized by choosing the particular £ from the feasible set that minimizes average bit rate, which is well approximated
by

R = E[-log, (k)]

= (11)

= _Zf 10g2 k).

Comparing this with the information divergence'® between ¢ and fN,

£(k)

D(£|1€) = 25)logy =~ i)

we see that minimizing the average bit rate with respect to the assumed PMF is equivalent to minimizing the information
divergence between the true and assumed PMFs.

Subject to (10), R can be minimized over ¢ via a particular constrained optimization algorithm.?®> When the cluster-
based model is used to supply the probabilities for arithmetic coding, ¢(z, | X1,...,X,—1) plays the role of {. The

9

Table 1
Estimated* arithmetic coding rates (bits/pixel)

empirical M =128 M =512

marginal
texture entropy mask (a) mask (b) mask (a) mask (b)
D1 6.65 4.10 4.26 4.04 4.09
D20 7.02 4.54 4.88 4.45 4.59
D22 7.27 5.50 5.76 5.48 5.56
D77 6.82 5.10 5.24 5.06 5.03
D103 7.50 5.41 5.74 5.13 5.38

* Assuming at least 24 bits of precision.

computational cost of carrying out the optimization on ¢(z,, | X1,...,X,_1) for every n would be prohibitive, so we seek
an alternative.

Notice that the fy, ,’s need not be recomputed each time they are used; they can instead be stored in an NV x M x K
table. Suppose that the f,, ,’s are adjusted before they are stored so that they individually satisfy (10). Then it can be
shown that every g(z, | X1,...,X,—1) will satisfy (10), provided that the computation in expression (9) is carried out
using an intermediate precision of 2p bits. Although the g(z,, | X1,...,X,_1)’s that result do not necessarily minimize
R even if the individual f,, ,’s do, in practice, we have found that the inefficiency resulting from failing to optimize the
q(zn | X1,...,Xp—1)’s is usually quite small.

4.2 Compression of textures

The model can be used with arithmetic coding to compress textures (or natural scenes, for that matter) in a number of
ways. The simplest approach is a nonhierarchical technique similar to that described for texture synthesis in Section 3.1.
The pixels are coded sequentially in raster order, using for each pixel a conditional PMF based on a causal neighborhood.
Conditioning pixels which fall outside the image can be set to some constant value, say 128.

Compression results are summarized for five Brodatz textures in Table 1, using the masks shown in Figure 1. The numbers
are estimates based on PMFs quantized for use with the arithmetic coder, but the actual bit stream was not produced.
Hence these results must be regarded as preliminary. For comparison, the empirical entropy based on the marginal
histogram is also given. Training was done on a 256 x 256 portion of the original, while testing was performed outside
the training set on a separate 128 x 128 patch. Notice that the smaller mask usually gives slightly better compression
than the larger mask, with the difference decreasing as M increases. This is probably due to the value of M not being
large enough for the PMF to be accurately modeled in higher dimensional space.

Performance appears to be in the right ballpark, based on a comparison with numbers reported for lossless compression
of natural scenes (typically, between 4.5 and 5.5 bits/pixel).2° The compression ratio is expected to improve substantially
by using a hierarchical approach and making the model adaptive. This is left as an area for future work.

5. APPLICATION TO TEXTURE CLASSIFICATION

Because the cluster-based model provides an explicit PMF for the source, it is straightforward to use it in a Bayesian
classifier. Moreover, the classification can be carried out directly in the pixel domain, instead of employing more complex
features. This is possible because the model captures much of the high-order statistical characteristics of the source,
without having to rely on a lower-dimensional feature space.

Suppose there are J equally likely classes, and that vectors drawn from class j follow the PMF p;(x). Let S =
{X!,X2,..., XL} be a sample drawn from some unknown class, the identity of which we wish to determine with minimum
probability of error. Since the priors are equal, the minimum probability of error decision rule is simply the maximum
likelihood rule.?* Assuming for now that the vectors in S are independent, the likelihood function for class j is simply

P (X)p; (X?) -+ ps (XF). (12)

10

By taking the logarithm we obtain the decision rule:
L
Choose j for which 3" logp;(X') is maximized. (13)
=1

To evaluate each log p; (X!, the recursive technique described in Section 2.2 can be used, taking the sum of the logarithms
of the conditional probabilities.

Figure 8. A connection between data compression and classification: the minimum-error-
probability rule can be realized using a bank of ideal entropy coders, each tuned to a different
source.

Because an ideal entropy coder produces on average — log, p;(x) bits per vector x, the decision rule can be implemented
using the structure shown in Figure 8. Of course in practice, real entropy coders would not be used, since only the rates
and not the actual code bits are needed. Nevertheless, the implementation shows a connection between data compression
and classification.

5.1 Texture Classification

Since all of the pixels to be classified are available a priori, the vectors can be based on noncausal neighborhoods. For
instance, the neighborhood shown in Figure 9 can be used.

Figure 9. Neighborhood used with proposed model in texture classification.

11

Formed in this way, vectors corresponding to adjacent pixels are not independent, so that (12) is not strictly justified.
The resulting decision rule essentially ignores the statistical dependence among vectors. However, one can argue that if
the dependence among vectors is similar for all classes, ignoring it for all classes still results in a useful decision rule.

The summation in the decision rule (13) can be accomplished by averaging, and this averaging can be carried out in at
least two different ways. One is by spatial lowpass filtering, which is based on the assumption that pixels close together
come from the same class. Another is by averaging across several models, each working at a different resolution. Because
averaging logarithms corresponds to taking a product, this is a way of requiring that the sample texture match the
candidate texture simultaneously at several scales. These two types of averaging are not exclusive; a classification system
can employ both.

5.2 Four-class example

We applied the technique to classifying regions in a composite test image made of four Brodatz textures, shown on the
left in Figure 10. The textures are, clockwise from top left, D68, D55, D77, and D84. For each class, three models were
trained: one using the neighborhood shown in Figure 9, and the other two using the same neighborhood but with the
pixel locations scaled by factors of 2 and 4, respectively, around the center. Thus, models were obtained at three different
resolution scales.

To perform the classification, three vectors were formed for every pixel in the test image, one for each of the three
resolutions. For each class, the logarithm of the probability of each vector was computed using the appropriate model,
and the results averaged across resolutions. The classification results are shown in the middle image in Figure 10. The test
was repeated using spatial averaging in addition to resolution averaging; the results are shown on the right in Figure 10.
A 7-tap separable lowpass filter was used to perform the spatial averaging.

Figure 10. Four-class example of texture classification using the proposed model. From left
to right, the images are: the original composite test image, classification using resolution
averaging only, and classification using both resolution and spatial averaging.

6. SUMMARY

A novel, cluster-based probabilistic modeling technique for vector sources has been presented and applied to three
problems with textured data. The model uses clustering to summarize the data, and is of a form that is amenable to
recursive chain-rule evaluation without loss of accuracy. It is thus able to represent high-dimensional probability densities
without the outrageous demands on training data and memory that are usually required by high-dimensional models.

A one-pass hierarchical method for synthesizing textures using the model was developed. Two variations on this method
were considered: one random and the other deterministic. Both were found to perform well in recreating natural
microtextures. In the case of textures with macroscopic structure, the deterministic approach was found to perform
better.

12

The texture synthesis method developed here can be used as part of a model-based lossy compression system. Addition-
ally, a lossless compression system was developed using the model and found to compress by an average factor of about
1.6 over 5 textures. It was also shown that the proposed model interfaces naturally with an arithmetic coder, resulting
in a simple and quite general lossless coding system.

Finally, we applied the new model to the problem of supervised texture classification. This application differs fundamen-
tally from most model-based classification, in that the classification is carried out directly in the pixel domain, instead of
employing more complex features. Estimation of the model parameters does not need to be done for the incoming data.
These properties give the classifier the potential to work even on small and irregularly shaped regions. The classifier was
shown to give outstanding performance on a four-class problem.

Acknowledgement. The authors would like to thank Alex Sherstinsky for valuable comments on Section 2.3. This
research was supported in part by Hewlett Packard Laboratories, Palo Alto, California.

7. REFERENCES

1. K. Popat and R. Picard, “Cluster-based probability model applied to image restoration and compression,” Perceptual
Computing Group Technical Report #TR 233, M.I.T. Media Laboratory, 1993.

2. Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Trans. Comm., vol. COM-28,
pp. 84-95, Jan. 1980.

3. R. O. Duda and P. E. Hart, Pattern classification and scene analysis. Wiley, 1973.

4. T. Poggio and F. Girosi, “Networks for approximation and learning,” Proceedings of the IEEFE, vol. 78, pp. 1481-1497,
Sept. 1990.

5. T. Poggio and F. Girosi, “Extension of a theory of networks for approximation and learning: Dimensionality reduction
and clustering,” A.I. Memo #1167, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1990.

6. M. Powell, “Radial basis functions for multivariate interpolation: A review,” in Algorithms for Approzimation (J. Ma-
son and M. Cox, eds.), Oxford, U.K.: Clarendon Press, 1987.

7. D. Broomhead and D. Lowe, “Radial basis functions, multi-variable functional approximation and adaptive networks,”
Memorandum No. 4148, Royal Signals and Radar Establishment, Great Malvern, Worc., U.K., 1988.

8. S. Chen, C. Cowen, and P. Grant, “Orthogonal least squares learning algorithm for radial basis function networks,”
IEEE Trans. Neural Networks, vol. 2, pp. 302-308, March 1991.

9. G. Watson, “Data fitting by positive sums of exponentials,” in Algorithms for Approzimation (J. Mason and M. Cox,
eds.), Oxford, U.K.: Clarendon Press, 1987.
10. T. M. Cover and J. A. Thomas, Flements of Information Theory. Wiley, 1991.
11. M. D. Richard and R. P. Lippmann, “Neural network classifiers estimate Bayesian a posteriori probabilities,” Neural
Computation, vol. 3, pp. 461-483, 1991.
12. R. Haralick, “Statistical and structural approaches to texture,” Proc. IEEE, vol. 67, pp. 786-804, May 1979.
13. G. R. Cross and A. K. Jain, “Markov random field texture models,” IEEE Trans. Patt. Analy. and Mach. Intell.,
vol. PAMI-5, no. 1, pp. 25-39, 1983.
14. R. Chellappa and R. L. Kashyap, “Texture synthesis using 2-D noncausal autoregressive models,” IEEE Trans.
Acoustics, Speech, and Signal Process., pp. 194-203, February 1985.
15. R. L. Kashyap and P. M. Lapsa, “Synthesis and estimation of random fields using long-correlation models,” IEEE
Trans. Patt. Analy. and Mach. Intell., vol. PAMI-6, no. 6, pp. 800-809, 1984.
16. A. Gagalowicz and S. D. Ma, “Sequential synthesis of natural textures,” Comp. Vis., Graph., and Img. Proc., vol. 30,
pp. 289-315, 1985.
17. A. Gagalowicz and C. Tournier-Lasserve, “Third-order model for non-homogeneous natural textures,” in Proc. Int.
Conf. on Pattern Recog., 1986.
18. P. Brodatz, Textures: A Photographic Album for Artists and Designers. New York: Dover, 1966.
19. G. G. Langdon and J. Rissanen, “Compression of black-white images with arithmetic coding,” IEEE Trans. Comm.,
vol. COM-29, pp. 858-867, June 1981.
20. M. Rabbani and P. W. Jones, Digital image compression techniques. Bellingham, Washington: SPIE Optical Engi-
neering Press, 1991.
21. J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM J. Res. Develop., vol. 23, pp. 149-162, March 1979.
22. J. Rissanen and G. G. Langdon, “Universal modeling and coding,” IEEFE Trans. Inform. Theory, vol. IT-27, pp. 12-23,
1981.
23. K. Popat, “Scalar quantization with arithmetic coding,” Master’s thesis, Dept. of Elec. Eng. and Comp. Science,
M.I.T., Cambridge, Mass., 1990.
24. J. H. Shapiro and A. S. Willsky, “Notes for course 6.432, Stochastic Processes, Detection, and Estimation,” 1988.

13

