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Finding Similar Patterns in Large Image Databases
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Abstract

We address a new and rapidly growing applica-
tion, automated searching through large sets of
images to find a pattern “similar to this one.”
Classical matched filtering fails at this problem
since patterns, particularly textures, can differ
in every pixel and still be perceptually simi-
lar. Most potential recognition methods have
not been tested on large sets of imagery. This
paper evaluates a key recognition method on a
library of almost 1000 images, based on the en-
tire Brodatz texture album. The features used
for searching rely on a significant improvement
to the traditional Karhunen-Loéve (KL) trans-
form which makes it shift-invariant. Results are
shown for a variety of false alarm rates and for
different subsets of KL features.

1 Introduction

As vastly increasing amounts of image and video are
stored in computers it becomes harder for humans to lo-
cate a particular scene or video clip. It is currently im-
possible, in the general case, to semantically describe an
image to the computer and have it retrieve it. A simpler
and more immediate solution might be to have the user
show the computer example image data, or to speak to
it keywords with which it has previously associated image
features, and then have the computer search for similar
patterns or features. However, no existing image process-
ing tools are known to solve this problem for a large general
set of images.

Most people know of the ease with which a computer can
perform text-string matching. Similar techniques based on
matched filters have been successful for signal detection in
noise. These types of solutions, however, fail for the prob-
lem described above. Two uncorrupted patterns, especially
two textures, can be visually similar and still differ in every
pixel. Consider for example two video clips of a waterfall
taken several minutes apart. Although the pixel values in
these two “temporal texture” images will differ, their se-
mantic appearances are likely equivalent. When a human
asks a computer to find a particular picture, one would like
the computer to understand the human’s similarity crite-
ria.

Ideally, we could define a measure of perceptual or se-
mantic similarity and use it instead of the ubiquitous mean-
squared error measure of similarity. A step toward this
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ideal is to transform the data so that perceptually similar
things become measurably close to one another in some
new space. The mean-squared error, or a weighted version
of it is then used to measure “closeness” in this new space.

Most studies of potential transformation algorithms
have been run on small sets of test data, typically four
to sixteen images at once from the standard Brodatz li-
brary of natural textures [1]. Moreover, selected test im-
ages have typically exhibited a lot of visual and semantic
dissimilarity, as well as a lot of within-class homogeneity.
The selected subsets usually do not include the less homo-
geneous samples from the Brodatz library or those samples
which are different shots of the same material, possessing
“semantic” similarity. In this study, the inclusion of non-
homogeneous patterns gives a scenario closer to what one
would expect searching through an image database.

The Brodatz library is limited in that most patterns do
not include perspective distortions, most are uniformly il-
luminated, and there is not much diversity in orientation.
Nevertheless, it still challenges the existing texture discrim-
ination tools. To our knowledge, this study is the first
which uses the entire available Brodatz library'. From the
interior of each of 111 original 8 bit 512 x 512 Brodatz im-
ages, nine 128 x 128 subimages were cropped. This yields
a set of d = 999 128 x 128 images which are called the
“Brodatz database.”

2 Feature selection

Optimal feature selection remains an open research
problem. For texture, it has been shown that local second
order statistics are important, and that statistics such as
co-occurrences incorporate perceptually significant changes
[2]. However, features based purely on co-occurrences have
been out-performed by features based on outputs of vari-
ous local filters, and emphasis has shifted to the choice of
these filters [3, 4, 5]. This study begins with the “eigen-
filters,” or principle components of the texture covariance.
Eigenfilters have been shown to provide good texture dis-
crimination on small sets of data [3, 4].

The eigenfilter method is more commonly known in
the image coding community as the Karhunen-Loéve (KL)
transform or principal components analysis, and is optimal
for decorrelating the features. Although there is no direct
evidence that the human visual system uses an eigenvector-
based method, there are some who believe that humans

!Note the borders were not used since in several cases
their data was corrupted by the imaging process. Also,

the original Brodatz library has 112 images, one of which
appears to have been omitted from the digital library.



Figure 1: Photobook displays images in raster scan order, by their similarity to the upper left image.

construct basic “templates” of commonly occurring config-
urations and then use combinations of these for recogni-
tion. However, based on currently available understanding
of the human visual system, it is highly unlikely anyone can
prove that a given algorithm imitates the human notion of
“visual similarity” on more than a trivial set of data.

3 Principal components analysis

The principal components analysis is conducted as fol-
lows. Let x; € R™1 i =1,...,d, n = 128% be a vector
representing the DFT magnitude of one of the images in the
database. The vectors x; are formed by raster scan order-
ing the rows of the image into one long vector. Ten percent
of the images, p = 100, are picked at random for training,

Xt;,..+,Xt,, and used to form an estimate of the “pooled
. - _ 1 P _ _ r '
covariance”, C = =5 ' (x;; — m)(x; —m) = XX,
where m is the training set sample mean, m = 5> % x,..
P J=1""

Each principal component, q;, is an eigenvector of this co-
variance matrix having associated eigenvalue A;:

Cq, = XX'qJ = A;q;, (1)

Taking into account that C will have at most p << n
eigenvectors we can save computation by first solving for
the eigenvectors of the problem:

X'Xu; = A\uy. (2)
Left multiplying both sides of (2) by X gives
XX'(Xu;) = A;(Xuy)

so that the desired vectors for projection can be obtained
by q; = Xu;. With this analysis the calculations are
greatly reduced. The associated eigenvalues are used to

order the eigenvectors. Note that in recognition, unlike in
coding, A; > A; does not imply that u; will be more useful
in reducing error than u; [6].

For a given database, these values and the projection
of each x;, 1 = 1,...,d, onto the p eigenvectors are pre-
computed and stored. These projections (or KL transform
coeflicients) are the features used for comparing patterns.

Earlier texture applications of eigenfilters computed the
coefficients directly from the covariance estimate of the spa-
tial data. However, using the DFT magnitudes makes the
KL features invariant to spatial translation. This one dif-
ference made an immediately noticeable improvement in
the recognition ability of the algorithm. This improvement
is similar to one noticed by Akamatsu, et. al. [7] in face
recognition. Incorporating translation-invariance makes
the recognition algorithm perform a little more closely like
a human. Other invariants not investigated here [8] may
also be similar to those used by humans. Although phase
is important for structural image reconstruction, the linear
part of the phase appears to be unimportant for much of
pattern recognition. We suggest that selective use of phase
components should be better than discarding all the phase.

It should be noted that horizontal/vertical boundary ef-
fects were mitigated by first windowing each image with
a 2D isotropic Gaussian filter, & = 24, before computing
its DFT. The windowing eliminated the corner regions, in
most cases reducing the information available for compar-
isons.

4 Photobook test environment

The Photobook test environment is illustrated in Fig. 1
running with features based on the phase invariant KL co-
efficients. For the example shown, the first twenty coeffi-



cients were used as features. The Euclidean distance was
used on these features to measure similarity. Using twenty
coefficients gave surprisingly good performance while main-
taining the interactive speed of the system. (Actually, the
re-display time was found to be the limiting factor speed

wise. ) Avg. Recogn. | Brodatz || Avg. Recogn. | Brodatz
Initially, Photobook displays forty randomly selected im- Rate Texture Rate Texture
ages from the database. The user selects an image of in- 12.35 D88 60.49 D64
terest, and after about 2 seconds on a DECstation 5000 14.81 D89 60.49 D75
the display is updated with the “nearest” patterns. In the %g?g Bi% ggig ng
case shown, the user selected D51-raffia and the algorithm 1859 D583 62.96 D10
found the eight other subimages from the original D51 im- 19.75 D42 64.20 D47
age. It also found several other textures, such as D72-tree 20.99 D107 65.43 D106
stump which has subimages visually similar to D51. 22.22 D40 65.43 D2
23.46 D72 65.43 D79
5 Recognition results %i:gg ng gg:gg B?g
. . . , . 24.69 D69 66.67 D3
Elrst using a zero false alarm c.onstramt, the very 95 93 D60 66.67 D46
strictest, we determined the classification performance for 25.93 D41 66.67 D71
every sample in the Brodatz database. This test required 25.93 D91 67.90 D52
that Photobook return the eight other samples from the 25.93 D98 69.14 D24
source image as the first eight nearest samples. This was 25.93 D13 69.14 D87
. . . 27.16 D90 70.37 D15
repeated for all nine samples of each image, averaging the 2716 D73 71.60 D80
number recognized in the first eight. The patterns are or- 39210 D27 7407 D76
dered by these recognition rates in Table 1. 34.57 D100 74.07 D12
These results can be used in many ways. If a researcher 34.57 D7 75.31 D82
picks only a subset of the Brodatz library, and happens 34.57 D108 76.54 D81
to pick patterns at the high end of this table, then they gggg Bg% gggg ng
can claim better than 90-100% performance. If they pick 35 80 D63 31.48 D4
patterns located near the left, then this method will result 35.80 D112 82.79 D51
in reduced performance. Hence, these results can be used 37.04 D28 82.72 D1
to estimate a measure of “difficulty” for a particular subset 37.04 D54 82.72 D50
of patterns. It is interesting to observe where the patterns 38.27 D39 85.19 D25
people have traditionally used appear in this table. One ggg% ng ggi% Bég
can also use these results to typify the types of patterns 40.74 D59 86.492 D105
the eigenvector method seems best/worst suited for. 42.00 D36 ]7.65 D17
Note that the results reported here correspond to a 42.00 D111 88.89 D8
“worst case” scenario, or a lower bound on performance. 42.00 D66 90.12 D84
Typically researchers evaluate performance on a smaller 43.21 D61 90.12 D95
N 43.21 D70 91.36 D32
subset of the Brodatz patterns where the discrimination 45.68 D48 95.06 D57
has less potential to choose a wrong pattern. These results 45.68 D109 96.30 D21
are also conservative for another reason. As mentioned, the 46.91 D5 97.53 D83
Brodatz database contains different images (e.g. D3 and 48.15 D86 97.53 D37
D36, both of reptile skin) that humans may judge to look 49.38 D74 97.53 D56
similar, but which our results declare to be a “miss” be- g?g? 8%84 gggg Big
cause the source images differ. This case appears to occur 51.85 Do4 98.77 D110
more frequently than the opposing case where two visually 51.85 D33 98.77 D6
different samples from the same source image are declared 51.85 D67 98.77 D77
to match. When a source image was very inhomogeneous, 54.32 D19 100.00 D34
the performance was poor as one would expect for both 55.56 D11 100.00 D55
the human and the computer algorithms. gg?g B;g %8888 B%g%
The data presented above was for the strictest case, zero 56.79 D22 100.00 D20
false-alarms. Fig. 2 shows the results of a study that al- 58.02 D9 100.00 D14
lows up to 32 false alarms. This limit is appropriate as 58.02 D96 100.00 D53
the screen only displays 40 images at once. It is accept- 59.26 D103
able in database search applications to declare success if
all the patterns it should have found get displayed. Fach Table 1: Brodatz textures ordered by recognition rates.

point on this plot was formed from an average of the per-
formance for all the 999 database images. Similar to the
Neyman-Pearson operating characteristic [6], these curves
show that the performance of the shift-invariant principal
components will increase monotonically with the permit-
ted number of false detections. In the limit of course, as
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Figure 2: An approximate “operating characteristic” for
the Brodatz database.

the number of false detects goes to 990, all the curves will
reach 100%. A method which has a curve lying above this
one can be considered an improvement. Thus, this data
can be used as a bench mark for subsequent methods.

As noted, the coeflicients for the largest eigenvalues (ex-
cept DC) may be optimal for representation, but this is not
necessarily true for discrimination. To find the best opti-
mal subset of size p requires a search over the power set
of coefficients, a size 27 problem. Clearly this is unreason-
able for large p. A suboptimal alternative was taken here,
picking subsets of size s = 10, 20, 40, 60, 80, and 100 from
the coefficients corresponding to the s largest eigenvalues.
The DC coefficient was only included in the last case.

The results of this study are shown in Fig. 3. Each point
here is the average over a whole table of data like that in
Table 1. This study verifies that using more coefficients,
although better for representation, is not necessarily better
for discrimination or classification. After the first sixty co-
efficients the performance degrades. The greatest increase
can be seen to occur at twenty coefficients, where we con-
cluded the best price-performance was for the interactive
Photobook system.

6 Summary

The “similar pattern” recognition problem has been in-
vestigated in the context of a set of 999 images based on the
entire Brodatz library of textures, the standard source in
texture classification. The performance of a shift-invariant
principal components algorithm was characterized for each
pattern, for various false alarm rates, and for various sub-
sets of features. These results provide a bench mark for
comparing alternate algorithms. Additionally, they pro-
vide one ordering of the images from “difficult” to “easy”
for their recognition from within the Brodatz database.
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detects, varies while increasing the number of features.
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