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Abstract� The aura matrix of an image indicates how much of each graylevel is present in the neigh

borhood of each other graylevel and generalizes the popular texture analysis tool� the co
occurrence
matrix� In this paper� we show that interesting structure appears in both the aura and co
occurrence
matrices for textures which are synthesized from Gibbs random eld models� We derive this struc

ture by characterizing congurations of the distribution which are most likely to be synthesized when
the Gibbs energy is minimized� This minimization is an important part of applications which use the
Gibbs model within a Bayesian estimation framework for maximum a posteriori �MAP� estimation� In
particular� we show that the aura matrix will become tridiagonal for an attractive auto
binomial eld
when suitable constraints exist on the histogram� neighborhood� and image sizes� Under the same con

straints� but where the eld is repulsive instead of attractive� the matrix will become anti
tridiagonal�
The interpretation of this structure is especially signicant for modeling textures with minimum en

ergy congurations� zeros in the matrix prohibit certain colors from occurring next to each other� thus
prohibiting large classes of textures from being formed�
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� Introduction

Since the equivalence between Markov and Gibbs random elds �GRF��s was established by the
Hammersley
Cli�ord theorem ��� there has been a great interest in using random eld models for images
and image texture patterns� A nice variety of textures have been shown to exist as samples of a Gibbs
random eld ���� GRF�s are also frequently incorporated into a Bayesian framework where� often by
simulated annealing� a maximization is performed of an a posteriori probability ���� In these cases and
others where textures are being synthesized as samples of Gibbs models with low energy� it is helpful
to know the kinds of patterns that are likely to be formed�
In a recent paper ��� we have shown that the Gibbs energy can be computed for a large class of GRF

models by using a generalized form of graylevel co
occurrences that we call �aura measures�� When
organized in a matrix indexed by the graylevels� the aura measures form an �aura matrix� that is a
generalization of the co
occurrence matrix� a popular texture analysis tool� We say that a �ground
state aura matrix� is the aura matrix corresponding to the minimum energy pattern� The purpose of
the present paper is to show that the structure of the ground state aura matrix can be determined
algebraically for a large class of GRF texture models� We provide a detailed analysis of the auto

binomial GRF case and indicate how the methodology can be applied to the case of another popular
texture model� the Potts model�
The results described in this paper are signicant because of the following reasons�

�� Knowing the structure of the ground state aura matrix helps characterize the minimum energy
pattern and when it is attained�

�� These results indicate� apparently for the rst time� a relationship between a texture synthesis
model and its co
occurrence matrix� Identifying properties of a texture which correspond to
structure in co
occurrence matrices has been an important pursuit ����

�� Most importantly� we show for the rst time that the ground state aura matrix structure implies
strong restrictions about which classes of patterns can and cannot be generated as minimum
energy congurations of the auto
binomial GRF�

The paper is organized as follows� Section � contains the notation� assumptions� and basic denitions
of the paper� It is also motivational in that it describes the basic experimental discovery that has led
to the theory developed in this paper� Background for the aura framework is provided in Section ����
Sections ��� are the mathematical groundwork of the paper� Based on Birkho��s theorem about the
convex hull of permutation matrices� we show why what has been observed experimentally is theoreti

cally bound to happen� given the assumptions and the constraints of the problem� We have assigned the
proofs to a set of appendices that can be consulted as desired� our results can be understood without
reading these appendices� In Section �� we comment on some of the applications and implications of
the results obtained in this paper� Finally� the last section is devoted to a summary of our ndings�

� Background

��� Notation and assumptions

Let an image be represented by a nite rectangular M �N lattice S with a neighborhood structure
N � fNs� s � Sg� where Ns � S is the set of neighbors of the site s � S� Every site has a graylevel
value xs � � � f�� �� � � � � n� �g� Let x be the vector �xs� � � s � jSj� of site graylevel values and � be
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the set of all congurations taken by x� A neighborhood structure is said to be symmetric if �s� r � S�
s � Nr if and only if r � Ns� The set of all sites with graylevel g is Sg � fs � Sjxs � gg� �g � �� The
vector of graylevel values is g � ��� �� � � � � n� ��T �
The basic methodology for GRF texture synthesis is the following� For the nite periodic lattice

S� with the symmetric neighborhood structure fNs� s � Sg� we dene the local two
site interaction
potentials between neighboring pixels� Vsr�xs� xr�� r � Ns� and the Gibbs energy

E�x� �
X
s�S

X
r�Ns

Vsr�xs� xr�� ���

To the Gibbs energy� thus dened� we can assign a random eld whose probability distribution is given
by

P �x� �
�

Z
exp�� �

T
E�x��� ���

where T is the �temperature� of the eld and Z is a positive normalizing constant� also known in
the physics literature as a partition function� The relationship between the above joint probability
distribution and Markov random elds is now part of the mainstream culture in image modeling ����
and we will not dwell on it� However� it is important for the subsequent development of the theory to
make explicit our assumptions�

�� Homogeneity� isotropy� symmetry� As is typical in the GRF literature we assume a homo�
geneous random eld so that the model is shift
invariant� In Section � we start our analysis by
assuming that the eld is isotropic so that the interaction potentials Vsr are all the same and equal
to V � Of course� most natural textures have anisotropy� The generalization of our results to the
anisotropic case is addressed in Section �� Finally� a constraint imposed by the homogeneity of
the GRF is that the neighborhood structure must be symmetric�

�� Histograms� image and neighborhood sizes� Without any histogram constraints the opti

mum state of the isotropic GRF may have a trivial patternless solution� Though real textures can
have any histogram� we assume that the histogram is constrained to be uniform throughout the
pattern formation� Thus� jSgj � NM�n � �� �g � �� This is equivalent to the maximum entropy
prior when nothing is known about the initial distribution� Monte Carlo synthesis methods such
as the Metropolis exchange algorithm implicitly constrain the histogram to be equal to its initial
value� Note that strictly speaking� the histogram constraint destroys Markovianity� thus� it is a
misnomer to call the constrained Gibbs random eld a Markov random eld�

We further assume that the image size is �large� compared to both the neighborhood size and
number of graylevels� This assumption can be formalized by letting the lattice dimension jSj �
MN �� while jNsj � � and n take typical image processing values � � � � �� and � � n � ����
Typical neighborhoods for GRF�s of orders �
� are shown in Figure � �a�� In practice� images of
size ��� �� are large enough to demonstrate the results derived in this paper�

�� Lattice connectivity and periodic boundary� We represent an image as a lattice with each
pixel corresponding to a node� When the image is modied only the values at lattice nodes may
change� This representation implicitly assumes a connected lattice� For simplicity of notation we
also assume a periodic boundary�

��� Texture formation� the auto�binomial model
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�a� �b�

Figure �� �a� Neighbors of the site s for model orders �
�� The neighborhood of order p contains all
points with labels � p� �b� The auto
binomial bonding parameter �k corresponding to each neighbor�

In this section we consider the auto
binomial Gibbs model rst studied for textures in ���� and
shown there to be capable of synthesizing a large variety of patterns� The homogeneous model has the
pairwise interaction potential Vsr�xs� xr� � ��rxsxr� where �r is a bonding parameter which weights
the neighbors as shown in Figure � �b��
The use of this model to synthesize textures is illustrated in Figure � where twelve ��� �� samples

with n � � are shown for three di�erent sets of parameters� Within a column all the samples have the
same set of parameters� Each was also synthesized at a constant temperature� T � � �no annealing�
this is the case for all the texture samples shown in this paper�� The rows correspond to samples of a
GRF after the �� ��� ���� and ���� iterations of synthesis using the Metropolis exchange algorithm as
was done in ����
The rst row shows the e�ect of one iteration of the synthesis on an initial uniform random image�

In the second row are textures which were said to have �converged� according to the criteria of ��� �� ���
Patterns synthesized with about ��
�� iterations� like those in the second row� have been shown to
correspond nicely to stochastic natural texture patterns� It has been assumed that the values of the
GRF bonding parameters correspond to textures formed at this stage of the synthesis process�
The reason we show this example is to indicate that although the patterns are changing quite slowly�

after ��� and ���� iterations �rows three and four� the patterns are perceptually di�erent� That is� in
each column� one set of parameters is generating more than one type of texture pattern� The changes
in each column indicate that the energy for the given parameters is still being minimized� Natural
questions which arise then are� �what will the minimum energy pattern look like�� and �how will one
know when it is reached�� In this paper� we will show how the aura matrix is useful for answering these
questions�

��� Aura measures� aura matrices� de�nitions and properties

The aura measure indicates �how much� of a general subset is present in the neighborhood of another
subset� Although the measure is general� in this paper the subsets are the Sg�s� i�e�� sets of sites having
the same graylevel� The aura measure has been formally dened as follows ����
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i � ���

i � ����

�a� �b� �c�

Figure �� In each column� four �� � �� samples of an MRF are shown� The parameters in �a� are
�� � �� � �� � �� � ���� and �� � �� � �� � �� � ����� �b� � � ���� and �c� �� � �� � �� � �� �
�� � ����� �� � ����

De�nition � Let A�B be two subsets on the lattice and let Ns be a neighborhood structuring element�
The aura measure� denoted by m�A�B�� is de�ned by

m�A�B� �
X
s�A

jNs 	Bj� ���

Now consider the case where we have a collection of subsets that form a partition of the lattice� Then
we can dene the aura measures of these subsets with respect to each other� The following denition is
adopted from ����

De�nition � Let Si � S� i � �� �� � � � � n � �� Sn��
i	
 Si � S and Si 	 Sj � 
 unless i � j� Then the

aura matrix� A� is the n�n integer matrix de�ned by A � �aij � where aij � m�Si� Sj�� � � i� j � n� ��

For any two graylevel sets Sg�Sg�� we use the shorter notation m�g� g�� � m�Sg�Sg��� The normalized
aura matrix�M� is dened byM � �

��
A� and referred to as the miscibility matrix� The elements of M

will be denoted by m�g� g���
When the neighborhood structure is symmetric� the aura matrix� and therefore the miscibility matrix

is symmetric� Moreover� because of the uniform histogram constraint� the miscibility matrix is doubly
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stochastic�� These statements� along with many other properties of the aura matrix and aura measures
are proved in ���� In addition to these properties� the constraints of the lattice geometry yield the
following�

�� Aura matrix irreducibility� Because the lattice is connected� one can reach any graylevel set
from any other graylevel set� Equivalently� from any row i of the aura matrix� there is a path of
non
zero elements� aik� akj � ajl� etc�� which eventually reaches all the rows� This is equivalent to
the constraint that the aura matrix be irreducible� An example of an irreducible matrix is one
that has aij �� � for ji� jj � �� an example of a reducible matrix is one that is block diagonal�

�� Constraints on boundary length� On the connected lattice with more than one graylevel
there will be boundaries between the di�erent graylevels� g� g�� A length related to m�g� g�� can be
associated with these boundaries� Upper and lower bounds for m�g� g�� can be determined easily
in some cases�

Example � Consider the binary case with four nearest neighbors on an M � N lattice� The
minimum boundary occurs when the graylevels �or in general� �colors�	 divide into two regions�
The boundary between the two regions will be as straight as possible� attaining in the limit a
minimum length of m��� �� � �min�M�N�� Note that if we did not assume a periodic lattice� then
the minimum length would be m��� �� � min�M�N� since the regions would no longer share an
edge along the lattice boundary� Similarly� the maximum boundary length occurs when two colors
form a checkerboard
 it has length �NM �

One of the most interesting features of the aura measures is that they reveal a linear structure behind
the Gibbs energy minimization� For the case of the isotropic� homogeneous� pairwise interaction model�
it has been shown that the Gibbs energy can be rewritten as a linear combination of aura measures ����

E�x� �
X

g�g���

V �g� g��m�g� g��� ���

A generalization of this result to an anisotropic eld was given in ���� The aura matrix irreducibility
and the bounds on boundary length can also be written as linear constraints on the aura measures�
These constraints along with the linear form of the Gibbs energy as a cost function constitute a linear
program with the aura measures as variables� Theoretically� this program can be solved to nd the aura
measures� The approach adopted here is however di�erent as is explained in the subsequent sections�

� Structure of the auto�binomial aura matrix� isotropic case

This section begins the mathematical groundwork of the paper� From now on we concentrate on
characterizing the textures that minimize the Gibbs energy�

��� Formulation

Using the linear aura formulation for the Gibbs energy� the cost function being minimized for an
isotropic� homogeneous� auto
binomial GRF where V �g� g�� � ��gg�� is

min
x��

��
X

g�g���

gg�m�g� g�� ���

�A doubly stochasticmatrix is one where all elements are nonnegative and where every row and column sums to ��
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which in terms of the aura matrix can be written as

max
x��

�gTAg� ���

The maximization is over the set of image congurations� these congurations determine the values of
the aura measures� m�g� g��� Solving the above problem is equivalent to solving

max
x��

�gTMg� ���

since scaling the objective function does not change the solution� The intent of this paper is to show
what kind of matrix �and hence� pattern� structure will occur when the optimization is solved�

��� Decomposition into permutations

The following theorem by Birkho� is the key new insight used to derive the structure in the aura
matrix�

Theorem � Every doubly stochastic matrix is a convex combination of permutation � matrices�

Proof� A proof appears in �����

Theorem � means thatM can be decomposed as

M �
X
��Pn

��P�� ���

where P� � �n�n is the permutation matrix corresponding to the permutation � � Pn� the group of all
permutations of the set � � f�� �� � � � � n� �g� and where the �� �s satisfy the constraintsX

��Pn

�� � �� ��  �� �� � Pn�

Combining ��� with ��� gives

max
x��

�
X
��Pn

��g
TP�g ���

subject to
X
��Pn

�� � �� ��  �� �� � Pn�

We will focus on solving the problem in ��� subject to assumptions stated in Section ��

��� Aura matrix structure� example

Before proceeding with our arguments it is helpful to consider an example of the aura matrix
structure� Returning to Figure �� we compute the aura matrices for each of the attractive isotropic
patterns in column �b��
Suppose the elements along each diagonal of M are summed�

M� �
X

i�j	�

m�i� j�� 	 � ��n� ��� � � � � �� � � � � n� ��

�A brief review of the basic usage of permutations is provided in Appendix A�
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If M� vs� 	 were plotted at di�erent energy values� then it would be observed to �sharpen� around
	 � � as the energy is decreased� This corresponds to the matrices becoming more and more diagonal�
Figure � shows the M� for the aura matrices of Figure � �b��
Is this behavior typical� The arguments which follow indicate �yes�� We will show that for the

isotropic attractive case� under suitable assumptions� this sharpening will always occur� For the isotropic
repulsive case it will also occur� but along the anti
diagonal� For anisotropic cases the behavior will be
a combination of these �sharpening� e�ects� These three case will be dealt with in detail in the next
three sections�

� Structure of the auto�binomial aura matrix� attractive case

For the attractive case� � 
 �� we want to characterize the ��s �permutations� which maximize the
sum of nonnegative numbers� X

��Pn

��g
TP�g� ����

subject to the constraints and assumptions already stated� The resulting set of P��s which maximizes
���� will provide the structure of the �ground state� aura matrix� In Sections ���
��� this set of
permutations is characterized� yielding the key insights into the matrix structure� Section ��� discusses
approximations on the coe cients� ��� corresponding to these permutations�

	�� 
Best� solution is infeasible

Since P� is a permutation matrix it is orthogonal and preserves the norm� i�e�� kP�gk � kgk� Hence�
the dot product gTP�g is equal to kgk� cos �� where �� is the angle between g and P�g� Observe that
the maximum of this dot product occurs when cos �� � �� corresponding to P� � I� the identity
matrix� Using only the identity permutation� �I � there is a trivial solution which maximizes �����
� � f�� j �� � � for � � �I � and �� � � for all other � � Png�
However� the trivial solution is infeasible� By assumption of a connected lattice� M must be irre


ducible� thus�M cannot be diagonal� and consequently� it cannot be constructed from only a weighted
identity matrix� If it were feasible the �sharpening process� would yield a bandwidth function�M�� that
is just an impulse at 	 � ��

	�� 
Next best� solution

Now we characterize the permutations which give the �next best� maximum of the objective function�
With a su ciently large lattice� these do provide a feasible solution�
Note that maximizing ���� is the same as minimizing

�g � gTg �
X
��Pn

��g
TP�g� ����

which can also be written as

�g �
X
��Pn

��

�
gTg � gTP�g

�
�

X
��Pn

������� ����

because
P

��Pn
�� � ��
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Figure �� Sharpening of the bandwidth function� M�� for the four textures in Figure � �b��
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It su ces now to nd the �next best� maximum of ���� by choosing P� �� I that minimizes the
�mismatch��

���� � gTg � gTP�g� ����

Intuitively we must nd the permutations which make P�g as close as possible to g but not equal to
it� A standard result from algebra ���� states that every permutation can be written as a product of its
disjoint cycles � � ���� � � ��k

��
Let �j denote the set of elements in � which the cycle �j permutes� Clearly we have

S
��j�k �j � �

and since the cycles are disjoint� the �j �s form a partition of �� Observe that if q � �j � then �j�q� � �j �
Also� �q �� �j � we have �j�q� � q�
Let the length of a cycle �j be the number of elements of �j and denote this length by lj� Denote

the set of adjacent transpositions �cycles which contain only two adjacent elements from �� by P� � Pn�
Note that for all n� � permutations � � P� � the corresponding permutation matrix P� is tridiagonal�

Example � Consider the case where n � �� Then the following three permutation matrices correspond
to � � P� � �

����
� � � �
� � � �
� � � �
� � � �

�
����

�
����
� � � �
� � � �
� � � �
� � � �

�
����

�
����
� � � �
� � � �
� � � �
� � � �

�
���� �

The following proposition� proved in Appendix B� is instrumental to our arguments�

Proposition � Let � be a permutation di�erent from the identity� Write the decomposition of � into
disjoint cycles as � � � � t�� � � ��k� where �� � � � � t represent the disjoint cycles which are adjacent trans�
positions� Denote the lengths of ��� � � � � �k by l�� � � � � lk  �� respectively� Then

����  t !
kX

j	�

lj �

From the above proposition� one can easily prove

Corollary � Let � � Pn be an arbitrary permutation� Then ���� � � if and only if � is an adjacent
transposition�

It follows that the adjacent transposition has the minimum mismatch of all permutations except the
identity permutation� Therefore the desired �next best� maximum of ���� is given by the permutation
matrices P�� � � P� � Consequently� the permutations of P�

� � P� � fIg both maximize ��� and satisfy
all the constraints�
We have nished characterizing the permutations we will need for our main results� In the next

section� we discuss the role of the coe cients� ��� used in the convex combination of the permutations�
These coe cients are related to the minimum boundary lengths which can occur between the di�erent
sets of graylevels in the pattern�

�A brief review of cycles is provided in Appendix A�
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	�� Minimum boundary approximations

Let us consider simplifying the optimization problem in ��� by keeping only the elements of Pn which
are equal to the identity permutation or an adjacent transposition� Let these two cases be represented
by w
 � gTIg� and w� � gTP�g� � � P� � Because � is an adjacent transposition� by Corollary ��
w� � w
 � �� Let "� � ��i�

T � We now have

max
��

�
w
 !

	
n��X
i	�

�i



�w
 � �� ����

subject to �
� �i 
 �

�
 !
n��X
i	�

�i � ��

The case n � � can be easily treated � it becomes a maximization of �
� subject to the constraints
�
 � �� �� and �� 
 �� Intuitively� this corresponds to maximizing the elements along the diagonal of
the aura matrix� but not allowing it to become a diagonal matrix� The o� diagonal elements decrease
to the lower bound on m��� �� found in Example �� In general� however� solving for these lower bounds
can be very di cult� We will brie#y discuss the problem with n 
 �� and then examine some helpful
approximations on the �i�
Consider the general case n 
 �� Note that all the �i� � � i � n � � are weighted by the same

constant� When the Monte Carlo optimization algorithm rearranges the pixels to maximize a weighted
sum� it will tend to contribute more to the terms having higher weights� Since the �i have the same
weights� and since we are assuming a uniform distribution of graylevels� on average the algorithm will
contribute uniformly to �i� � � i � n � �� Characterizing �
 and the expected value of the others�
$� � E��i�� the problem can be rewritten as�

max
��

��
 ! �n� ��$��w
 � �n� ��$� ����

subject to �
� $� 
 �

�
 ! �n� ��$� � ��
By substituting the second constraint into the objective function� it is evident that the problem is solved
by minimizing $�� Since $� corresponds to the values o� the diagonal� its minimization is achieved by
setting it equal to the lower bound of m��� ���
From miscibility analysis ��� we know that the �mixing� between colors � and ��m��� �� � ��m��� ���

is bounded below by the minimum boundary length between the two graylevels� Intuitively� the only
reason we would not be able to nd �i which solve ���� is if there are not enough elements of graylevel
� to surround the set of graylevel �� If there are not enough ��s� then it must be true that m��� i� 
 �
for some other graylevel i 
 �� If this were the case then the matrix would not be tridiagonal�
Since nding precise lower bounds on the boundary lengths between di�erent graylevels is quite

di cult in general� we consider some reasonable approximations that indicate where the aura matrix
structure results will hold�
In the plane� the minimum boundary around a set Sg of size � is approximately the circumference

of a circle of area �� The circumference can be roughly approximated by the aura measures for the
p � �� � order neighborhoods� Let � � �r� so that r �

p
���� then the circumference is c � �

p
��� For

approximately � 
 c� i�e�� � 
 ��� the set Sg can be surrounded by the set Sg� �
For higher order GRF�s these approximations also need to incorporate the width� �� of the neigh


borhood� �The width considered here is a nonlinear function of the neighborhood� for p���� the width
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�a� �b�

�c� �d�

Figure �� Examples of near
minimum
energy patterns for rst
order MRF�s with postive isotropic bond

ing parameters� Images �a�
�d� correspond to �
� graylevels respectively� Each image is ��� ���

is �� for p���� the width is �� etc�� If the measure is formed over a wider neighborhood� and if it is to
only contain one color� then there needs to be enough of that color to surround the set of ��s throughout
the width of that neighborhood� Thus one would need approximately � 
 ���� For � � � the ��� ��
image is su ciently large for a standard ��� graylevel image to develop the tridiagonal structure�

	�	 Minimum boundary con�gurations

As mentioned� the problem of characterizing minimum boundary congurations is very di cult�
With the assumptions we made at the start� and when � � NM�n is su ciently large� then there
are orderly congurations for the colors which always permit the tridiagonal structure� Examples of
patterns which nearly have these minimum boundaries are shown in Figure ��
The above arguments allow us to state the following key result for the structure of the attractive

isotropic auto
binomial GRF aura matrix�

Proposition � For NM�n large enough compared with ��� the ground state aura matrix of the at�
tractive isotropic auto�binomial GRF is tridiagonal�

Given the structure of the ground state aura matrix� its trace can also be characterized�

��



Corollary � The trace of the ground state aura matrix of the attractive isotropic auto�binomial GRF
will increase linearly with respect to the number of graylevels� Let �
 be the weight of the identity
permutation� Then�

n��X
i	


m�i� i� � ��
n��X
i	


m�i� i� � ���n! ���
 � ����

The proof of the corollary is in Appendix C� The trace for the ground state miscibility matrix is bounded
above by n� and could only equal n if �
 � �� i�e�� if the aura matrix becomes reducible�
If the relative bounds of Proposition � are not satised then the new structure can be predicted by

continuing the analysis method set forth in this paper� For example� the �next best� set of permutations
are those in the set Pn � P�

� with minimum mismatch� For n  � this would be the permutations
comprised of two adjacent transpositions� i�e�� ���� � �� Use of these would still preserve the tridiagonal
structure� The structure will increase to penta
diagonal at the point where cycles of length � are required�
and so forth�

� Structure of the auto�binomial aura matrix� repulsive case

In this section where � � �� we will show that there is a nice symmetry which enables this same
analysis to be applied �at the other end�� nding the permutations with maximum mismatch� These
also have the property of maximizing miscibilities� hence maximizing boundary lengths ����

��� Energy in terms of the reversing permutation

Now we want to characterize the ��s which minimize the sum of positive numbers�X
��Pn

��g
TP�g� ����

subject to the constraints and assumptions already stated� For n � �� the minimum value � is reached
by setting

P� �

�
� �
� �

�
�

Observe that for n 
 � the minimum is strictly positive� both g and P�g are in the positive orthant
of �n� Observe also that minimizing the above sum is equivalent to maximizing the mismatch� ����� of
����� i�e�� nding the vector �farthest� from g�
Let � be the permutation that reverses the order of the components of the vector g� For i � �� we

have ��i� � n � � � i� We will show now that the mismatch of the reversing permutation ���� is an
upper bound on ����� � � Pn� We will also show that ����� where  is an adjacent transposition� is
an upper bound on ����� � � Pn � f�g�
In order to accomplish this we consider the di�erence�

%��� � ����� ����� �
n��X
i	


i����i�� ��i��� ����

From Lemma � in Appendix D we have�

��



Proposition � Let � be a permutation di�erent from the identity� Write the decomposition of � into
disjoint cycles as � � � � t�� � � � �k� using �� � � � � t to represent the disjoint cycles which are adjacent
transpositions� Denote the lengths of ��� � � � � �k by l�� � � � � lk  �� respectively� Then

%���  t!
kX

j	�

lj �

It follows that %��� is bounded below by a positive number so that ���� is the maximum mismatch�
The �next best� maximum is given by the adjacent transposition� which has mismatch of ��

Corollary � Let � � Pn be an arbitrary permutation� Then ����� � ����� � if and only if � is an
adjacent transposition�

We conclude that the permutations ��� � � P� have the maximum mismatch of all permutations
except the reversing permutation� �� Thus� for all � � P� � we have that P�� gives the �next best�
minimum of �����

��� Symmetry between attractive and repulsive solutions

As mentioned� we have found that there is a nice symmetry present in the solutions to the repulsive
and attractive cases� This is formally stated in the following proposition which is proved in Appendix E�
Let r � P�g� Note that because P� is a re#ection� g � P�r�

Proposition � Let � � f���  �� � � P�g such that
P

��Pn
��� � �� Then � is a solution of

min
��

X
��Pn

��r
TP�g

if and only if � is a solution of
max
��

X
��Pn

��g
TP�g�

Reviewing� we have that the identity permutation is the best unconstrained solution to the symmetric
problems�

max
��Pn

gTP�g � gTg �
n��X
i	


i�� ����

and

min
��Pn

rTP�g � rTg �
n��X
i	


�n� �� i�i� ����

Continuing� let P� represent any of the matrices computing an adjacent transposition� Then P� is the
solution to the symmetric problems�

max
��Pn�fIg

gTP�g � gTP�g � gTg � �� ����

and
min

��Pn�fIg
rTP�g � rTP�g � rTg ! �� ����

��



Compare the two objective functions in these problems� If we replace P� in the minimization with
P�P� � we obtain

rTP�P�g � rTPT
�P�g � gTP�g�

giving the two problems the same original objective function� Therefore� the solution to the minimization
is just the solution to the maximization permuted by the re#ection ��
It follows that if the ground state aura matrix for the attractive case is tridiagonal� then the ground

state aura matrix for the repulsive case will be anti
tridiagonal� Given the same assumptions on the
optimizations� the structure of the ground state matrix for one case will be the reversing re#ection of
the structure for the other case� In the same way� the sharpening that occurs along the diagonal for the
attractive case will occur along the anti
diagonal for the repulsive case�
Combining this symmetry with Proposition �� we can state the following key result for the structure

of the repulsive isotropic auto
binomial GRF aura matrix�

Proposition � For NM�n large enough compared with ��� the ground state aura matrix of the repul�
sive isotropic auto�binomial GRF is anti�tridiagonal�

Corollary � The anti�trace of the ground state aura matrix of the repulsive isotropic auto�binomial
GRF will increase linearly with respect to the number of graylevels� Let �
 be the weight of the identity
permutation� Then�

n��X
i	


m�i� n� �� i� � ��
n��X
i	


m�i� n� �� i� � ���n! ���
 � ����

� Structure of the auto�binomial aura matrix� anisotropic case

Here we consider the anisotropic case where � may vary both in sign and magnitude for di�erent
order neighborhoods�

�� Notation

It is helpful to dene a subneighborhood� N k
s � Ns as the subset of neighbors having the same

bonding parameter �k� Each neighborhood can be written as a union of disjoint subneighborhoods�

Ns �
K
k	�

N k
s � and N k

s 	N l
s � 
� �l �� k� �s � S� ����

Letting the desired geometric primitive be the GRF subneighborhoods dened in ���� we have

m�g� g�� �
KX
k	�

mk�g� g��� ����

wheremk�g� g�� is the aura measure over a two element symmetric neighborhood� N k
s � fs!dk � s�dkg�

Forming an aura matrix over the subneighborhood k denes Ak � �mk�g� g��� for g� g� � �� In this case�
Ak is just a symmetric co
occurrence matrix� From �����

A �
KX
k	�

Ak� ����

��
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Figure �� This ����� pattern was synthesized using a rst order MRF with n � �� �� � � �horizontal��
and �� � �� �vertical�� The aura matrices for the two isotropic subneighborhoods are shown to illustrate
their tridiagonal and anti
tridiagonal structure�

�� Formulation

For the anisotropic case it has previously been shown ��� that the expression in ��� becomes

KX
k	�

�k
X

g�g���

gg�mk�g� g��� ����

In matrix form� the goal is to maximize
KX
k	�

�kg
TAkg� ����

where Ak is the corresponding symmetric aura matrix of mk�g� g��� Optimizing ���� corresponds to
individually optimizing the �kgTAkg�s since they are over disjoint neighborhoods� Each of these terms
then corresponds to an isotropic attractive or repulsive case�
For the rst and second order GRF the subneighborhoods are �connected� in the sense that one

can get from any neighbor to any other without leaving the neighborhood� In this case� or in the case
of higher order neighborhoods and isotropy� the aura matrix is irreducible and the individual attractive
or repulsive terms can be optimized as in the preceding sections� If the magnitudes of the bonding
parameters� j�kj� are constant for all k� and the conditions are such that Propositions � and � are
valid� then the ground state aura matrices for each of the subneighborhoods will be either tridiagonal
or anti
tridiagonal�
An example texture with aura matrices formed over subneighborhoods is shown in Figure �� In this

gure the patterns are not yet in a minimum energy conguration although the aura matrix structure
is already present�

��



For the third and fourth order anisotropic GRF� if the anisotropy is such that one or more of the
subneighborhoods are not connected� then the aura matrix is allowed to become reducible and the lower
bound conditions need minor modication� We do not go into detail here� but give an example where
this anisotropy will give di�erent aura structure�

Example � Suppose that �� is di�erent from the other �k� where N �
s is the subneighborhood corre�

sponding to the two horizontal third order elements� This subneighborhood is not connected since sites
s and s� ��� �� are separated by an element not in N �

s � Now consider a lattice with a pattern of binary
vertical stripes� alternating every other pixel� Taking aura measures with respect to N �

s � this pattern will
generate the diagonal aura matrix�

A �

�
NM �
� NM

�
�

This matrix is allowed to be reducible since e�ectively the non�connected neighborhood breaks the lattice�

For j�kj varying� the terms with largest j�kj will become tridiagonal or anti
tridiagonal fastest
following the interpretation of bonding parameters as temperature annealing rates ���� The interaction
of di�erent rates in di�erent directions leads to textural behavior that is much more di cult to predict�
and often quite a bit more interesting visually�

	 Applications and implications

��� Restrictions on texture patterns

These new results on aura structure are signicant for texture characterization� The ground state
aura matrix characterizes the large scale behavior of the resulting pattern� and the sharpening process
introduces zeros in the aura matrix which indicate that certain colors will not exist as neighbors in the
pattern�
For the case of tridiagonal structure and n 
 �� elements of A that satisfy jg � g�j 
 � will be zero�

This implies that textures in the ground states cannot have any mixing among graylevels g� g� when
jg � g�j 
 �� For the case of anti
tridiagonal structure� textures in the ground states cannot have any
mixing between graylevels g and n� �� g� when jg � g�j 
 �� These are serious restrictions� especially
during a posteriori maximization where the model is ideally sampled in its ground state�
For anisotropic models� when the ground state aura matrix consists of a linear combination of

tridiagonal and anti
tridiagonal matrices and n  �� then the aura measures m�g� g�� and m�g� n���g��
with jg � g�j 
 � will be forced to be zero� This can seriously limit texture patterns formed by energy
minimization of GRF�s� Patterns are prohibited from having colors g� g� interact� when g and g� are not
indices of either a tridiagonal or an anti
tridiagonal element�
Moreover� the sharpening process which happens on the way to the ground state gradually restricts

the space of feasible textures� Even as the matrices are becoming tridiagonal or anti
tridiagonal �i�e��
not yet in their ground states� their intermediate banded structures imply which large classes of cong

urations are exceedingly unlikely to occur� This bandedness has also been related to the temperature
of the model ���� so that the temperature can be used to guide these stages of pattern formation�
We have seen that the ground state structure results in a global pattern unlike the small scale

random patterns usually associated with GRF texture models� Note that the ground state pattern is
not unique since the assumption of the periodic lattice implies that the same pattern could occur in
NM di�erent positions�

��



Note also that the method developed to analyze the ground states of the auto
binomial model can
be generalized to deal with any model having a separable interaction potential of the form V �g� g�� �
F �g�H�g��� where F and H are two strictly monotonic functions of the pattern graylevels� However�
in some special cases where separability and monotonicity are both lacking� Birkhof�s decomposition
would still give us insight into the structure of the model ground states� We illustrate this fact in the
next paragraph in which we deal with another important class of Gibbs models� the Potts model�

��� Application to the Potts texture model

The Potts model �which is employed� although not by this name in ��� ���� can also be analyzed using
the methodology and assumptions of this paper� The pairwise interaction potential for the isotropic
homogeneous Potts eld is V �g� g�� � �	gg� � �� where 	gg� is the Kronecker delta symbol ����� After
substituting this potential into the energy expression of ���� the optimization problem for the Potts
model is

max
x��

�

�
�X

g��

m�g� g�� �
X
g	g�

m�g� g��

�
A � ����

Observe that ���� does not distinguish between graylevels other than if they are the same or di�erent�
Let w be an n
vector of ��s� and let D be a diagonal n� n matrix of the self
aura measures� Then the
objective function to be maximized is alternatively written as

� ��wTDw � �wTAw�� ����

Attractive case 	� 
 �
� We want to minimize wTAw and maximize wTDw� Clearly the aura
matrix will try to become diagonal� subsequently maximizing the self
aura measures�
Observe that this is the same boundary minimization problem as the auto
binomial case without the

ordering in#uence of the di�erent graylevels� In other words� even if the aura matrix A is normalized
and decomposed into permutations all the permutations would have the same e�ect on the energy�
Consequently� no permutations are favored for the cross
aura measures� The resulting aura matrix
structure is diagonally dominant with uniformly distributed o�
diagonal elements� Notice that if the
histogram is not constrained for the Potts energy then the lattice will become unicolor�

Repulsive case 	� � �
� The goal is to maximize wTAw and minimize wTDw� For this case
wTDw can usually be driven to zero without violating the irreducibility of the aura matrix� The
resulting aura matrix structure has zeros along the main diagonal with the remainder of the values
uniformly distributed along the o�
diagonals� It follows that no two elements of the same color can be
neighbors in the ground state� Again� this is a very serious restriction for a texture model ��

Anisotropic case� The anisotropic Potts case can be obtained from the isotropic cases by examining
the energy minimization over the subneighborhoods� Let Dk be a diagonal n�n matrix of the self
aura
measures over the subneighborhood N k

s � Then the objective function to be maximized is

KX
k	�

�k��w
TDkw � �wTAkw�� ����

�However
 this result should not surprise a reader familiar with the connections between graph coloring and the Potts
model �����

��



Again� because of the linearity of the energy and the disjointness of the subneighborhoods� the positive
and negative terms can be optimized individually� For each direction k� if �k 
 � then the synthesis
will try to maximize the elements along the diagonal and if �k � � then it will try to zero the elements
along the diagonal�

��� Implications for co�occurrence structure

In surveys of texture analysis� Haralick ����� Wechsler ����� and Van Gool et� al� ���� discuss both co

occurrence matrices and random eld methods� Van Gool et� al� basically summarize the understanding
of the structure of co
occurrence matrices by noting that if the displacement is small relative to the
texture coarseness the matrix values cluster near the main diagonal� while for larger displacements�
the values are more spread out� None of the surveys recognize any connection between GRF�s and
co
occurrences�
We believe that the aura matrix establishes the rst link between a texture model and the structure

of its co
occurrence matrix� The GRF models in this paper are completely characterized by the aura
matrix� hence� they are also completely characterized by the corresponding set of co
occurrences� Since
co
occurrence and GRF aura matrices have only nonnegative elements and the aura matrix is a sum of
co
occurrence matrices� then a zero in the aura matrix implies corresponding zeros in the co
occurrence
matrices� By showing there is structure in the GRF ground state aura matrices� we have shown there
is corresponding structure in the co
occurrence matrices�


 Conclusions

We have shown that under certain assumptions the structure of the aura and co
occurrence matrices
is either tridiagonal or anti
tridiagonal for the ground state isotropic� auto
binomial GRF� Consequently�
the theory presented here accounts for the experimental behavior observed during texture formation in
earlier publications ��� ��� For the anisotropic� auto
binomial GRF� the aura matrix is formed by linearly
combining the constituent isotropic matrices� Thus� its ground state is a combination of the tridiagonal
and anti
tridiagonal structures� For ve or more graylevels� we have shown zeros will appear in the
ground state matrices� these correspond to restrictions on miscibility between di�erent colors� Such
restrictions severely limit the kinds of texture patterns that occur when the Gibbs energy is minimized�
The study of the Potts model has also revealed stringent restrictions on the type of ground states�
These restrictions should be understood before modeling images with Gibbs random elds� Indeed� the
Bayesian approach to image processing and low level vision is typically based on the choice of an a
priori model and the maximization� often by simulated annealing� of an a posteriori probability� Our
results� which concern the a priori model� imply that one might be surprised by what is at the end of
the maximization�
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A Permutations� cycles� transpositions

A permutation of the vector g � ��� �� � � � � n � ��T gives a rearrangement of its elements� Every
permutation can be represented by a permutation matrix� an orthogonal matrix having in every row
and column exactly one nonzero coe cient equal to �� The following examples illustrate the use of
permutation matrices to rearrange the vector g�

Example � Suppose that we form the product of the permutation matrix P�� with g�

P��g �

�
������

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
������

�
������

�
�
�
�
�

�
������ �

�
������

�
�
�
�
�

�
������ �

We say that this is equivalent to permuting the vector g � ��� �� �� �� ��T by the cycle �� � ��� �� ���
It is a well known result in algebra ���� that any permutation can be written as a product of its disjoint
cycles� The permutation �� consists of only one cycle of length �� Note that using the cycle notation�
��� �� �� � ��� �� �� � ��� �� ���

Example � The permutation

P�� �

�
������

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
������

can be written as the product of its disjoint cycles�

�� � ��� ����� ���

In Example � the cycles are called transpositions because they have length �� The cycle ��� �� is also
an adjacent transposition since it transposes two elements j� j ! ��
If the cycles are not disjoint then they are applied from right to left�

Example � Let �� and �� be the same as in Examples  and �� Applying the new permutation �� �
���� to g yields

P��P��g � P�� ��� �� �� �� ��
T � ��� �� �� �� ��T�

B Proof of Proposition �

The following three lemmas are used to prove Proposition ��

Lemma � Let � � P� be an adjacent transposition� Then ���� � ��
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Proof� Assume that � exchanges the adjacent elements j� j ! � � �� Then its mismatch

���� �
n��X
i	


�i� � i��i��

�
X

i�fj�j�g

�i� � i��i�� !
X

i���fj�j�g

�i� � i��i��

� j� � j�j ! �� ! �j ! ��� � �j ! ��j � �j � �j ! ���� � ��

Is there any other permutation that has a mismatch this small� The answer is no� and comes from
the next two lemmas� The rst lemma gives a lower bound on the mismatch associated with a cycle
that is not an adjacent transposition� The second shows that the mismatch of a permutation will be
the sum of the mismatches of its cycles�

Lemma � Let � � Pn �P�
� be a cycle of length l� Then

����  l� ����

Proof� The proof is by induction on the length� First� assume that � has l � � but is not adjacent�
Let j� k � �� with jj � kj  �� Then

���� �
n��X
i	


�i� � i��i��

�
X

i�fj�kg

�i� � i��i�� !
X

i���fj�kg

�i� � i��i��

� j� � jk ! k� � kj � �j � k��  ��
Next� consider the two possible arrangements for cycles having l � �� �� � �i� j� k� and �� � �i� k� j��
Then

����� � i� � ij ! j� � jk ! k� � ki

�
�

�
��i� j��! �j � k�� ! �k � i���  ��

and

����� � i� � ik ! k� � kj ! j� � ji

�
�

�
��i� k�� ! �k � j�� ! �j � i���  ��

so ���� is true for l � �� ��
Finally� assume that ���� is true for length l  �� and show that it is true for length l!�� Let � have

length l ! �� We can always shift the cycle until its maximum element is written in the last position�
� � �i
� i�� � � � � il�� where il � maxfi
� i�� � � � � ilg� Now� form the l
length cycle� ��

� �i
� i�� � � � � il����
By the induction assumption� ���

�

�  l� But

���� �
lX

j	


�i�j � ij��ij��

��



�
l��X
j	


�i�j � ij��ij�� ! �i
�
l�� � il��il� ! �i

�
l � ili
�

�
l��X
j	


�i�j � ij��ij�� ! �i
�
l�� � il��i
� ! il��i
 � il��il ! �i

�
l � ili
�

�
l��X
j	


�i�j � ij�
�

�ij�� ! i�l � ili
 � il��il ! il��i


� ���
�

� ! �il � il����il � i
�  l ! � 
 l! ��

Lemma � Let � � �� � � ��k be the decomposition of the permutation � into its disjoint cycles� Then

���� �
kX

j	�

���j��

Proof� Let �j be the set of elements permuted by cycle �j � Since the cycles are disjoint the �j form a
partition of �� When i � �j � ��i� � �j�i� and when i � �� �j� ��i� � i� Thus�

���� �
X
i��

�i� � i��i�� �
kX

j	�

X
i��j

�i� � i�j�i��

�
kX

j	�

X
i��

�i� � i�j�i�� �
kX

j	�

���j��

The proof of Proposition � is completed as follows� From Lemma �� the bound on the permutation
���� will come from the sum of the bounds on its disjoint cycles� From Lemma �� each of the t adjacent
transpositions contributes a mismatch of �� and from Lemma �� the other k cycles contribute mismatches
which are at least their lengths� lj �

C Proof of Corollary �

Proof� From the decomposition of the ground state miscibility matrix we have�

M � �
I! $�
X
��P�

P��

Each of the n�� adjacent permutation matrices has n�� elements remaining on the diagonal� Summing�
and using the constraint on the coe cients� its trace is

n��X
i	


m�i� i� � n�
 ! �n� ���n� ��$�

� n�
 ! �n� ����� �
� � n! ��
 � ��
The aura matrix trace follows by scaling the miscibility matrix entries�
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D Proof of Proposition �

Lemma � Let � � Pn� Then %��� � �����

Proof�

%��� �
n��X
i	


i����i�� ��i�� �
n��X
i	


i�n� �� ��i�� �n� �� i��

�
n��X
i	


i�i� ��i��� � �����

E Proof of Proposition �

Proof� Suppose � is a solution of
max
��

X
��Pn

��g
TP�g�

then it also solves the problem

min
��

X
��Pn

��

h
gTg � gTP�g

i
�

which is by denition and by Lemma ��

min
��

X
��Pn

������ � min
��

X
��Pn

��%����

The right hand minimization problem is equivalent to

min
��

X
��Pn

��

h
gTP�P�g � gTP�g

i
�

or noting that PT
� � P� and r � P�g�

min
��

X
��Pn

��

h
rTP�g � gTr

i
�

This problem is equivalent to the maximization�

max
��

X
��Pn

��

h
gT r� rTP�g

i
�

which is solved by � if and only if the following is solved by ��

min
��

X
��Pn

��r
TP�g�
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