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Abstract

This paper describes an original approach to the
analysis and prediction of graylevel textures gen�
erated as equilibrium states of Gibbs�Markov
random �elds� This approach is physically mo�
tivated by the analogy that exists between the
graylevel textures and the miscibility patterns of
multiphase �ows� The physics of the situation
is captured using miscibility matrices that are
related to the co�occurrence matrices classically
used for texture discrimination� Simulations are
provided to motivate and illustrate our approach�

� Introduction

This paper describes an original approach to the analysis
and prediction of graylevel textures generated as equilib�
rium states of Gibbs�Markov �MRF� random �elds� This
approach is physically motivated by the analogy that ex�
ists between the graylevel textures and the miscibility pat�
terns of multiphase �ows� The physics of the situation is
captured using miscibility matrices that are related to the
co�occurrence matrices classically used for texture discrim�
ination� The approach described in this paper provides a
direct link between the MRF methods for texture synthesis
and the statistical methods such as co�occurrence matrices�
The miscibility matrices also reveal large scale structure
that is not revealed by the MRF bonding parameters�
The paper is organized as follows� In Section � we brie�y

review the fundamentals of texture synthesis using MRF
models� In Section 	 the new concepts of aura
 aura mea�
sures
 and miscibility matrices are introduced� These are
then applied in Section � to give a miscibility formulation
to the MRF texture synthesis method� Simulations sup�
porting the miscibility approach to MRF texture synthesis
are given in Section ��

� The MRF Approach to Texture
Synthesis

��� Background

One�dimensional and causal Markov models have a long
history of usefulness for many image processing applica�
tions� Since the establishment of the equivalence between
Gibbs and Markov random �elds
 there has been renewed
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emphasis on ��D noncausal MRF
s� In particular
 these
MRF
s have been explored for the representation of nat�
ural texture patterns ��
 �
 	
 ��� The assumption that
the MRF can model image textures has also been used
to justify MRF models in image restoration
 compression

segmentation
 and classi�cation ��
 �
 �
 ���
We model the image as a �nite rectangular lattice S

with a neighborhood structure N � fNs� s � Sg
 where
Ns � S is the set of neighbors of the site s � S� Every site
s � S will be assigned an integer xs � � � f�� �� � � � � n��g
representing the graylevel value of the pixel at site s� We
denote by x the vector �xs� � � s � jSj� of site graylevel
values and by � the set �jSj of all values taken by x� The
graylevel sets of the lattice are de�ned as follows�

Sg � fs � Sjxs � gg� �g � �� ���

It is clear that the graylevel sets constitute a partition of
the lattice into mutually disjoint subsets�
The neighborhood structure will be assumed symmetric


i�e�


�s� r � S� s � Nr if and only if r � Ns� ���

This assumption is required for application to a homoge�
neous Gibbs random �eld� The MRF model is usually de�
scribed by its order
 which de�nes its neighborhood con�
�guration� In Figure � �a� neighborhoods of orders ���
are shown� These are the only orders used in this paper

though extension to higher orders is straightforward�
Throughout this paper we assume toroidal boundary

conditions
 where the top pixels are identical to those of
the bottom and the right pixels to the left ones� This as�
sumption simpli�es the neighborhood notation because on
the toroidal lattice the neighborhoods at each site Ns
 are
the translates of a basic neighborhood N � In this case

the number of elements
 jNsj
 of each neighborhood is con�
stant and equal to jN j� If boundary conditions other than
toroidal are made
 then care should be taken in de�ning
the neighborhoods of the sites that lie on the lattice bound�
aries� In particular
 the size of the neighborhood will vary
along the boundaries and will be di�erent from the size of
the inner site neighborhoods�
The basic methodology for MRF texture synthesis is the

following� For the �nite toroidal lattice S
 with the sym�
metric neighborhood structure fNs� s � Sg
 we de�ne the
Gibbs energy

E�x� �
X
s�S

Vs�xs� �
X
s�S

X
r�Ns

Vsr�xs� xr�� �	�

where the Vs
s are the single site potentials and the Vsr 
s
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Figure �� �a� Neighbors of the point s for model orders ����
The neighborhood of order p contains all points with labels
� p� �b� The autobinomial parameter for each neighbor�

are the two�site potentials� 
 where Vsr � Vrs� In the
physics literature
 the single�site potentials are called the
external �eld while the two�site potentials de�ne the inter�
action of the so�called internal �eld� To the Gibbs energy

thus de�ned
 we can assign a random �eld whose probabil�
ity distribution is given by

P �x� �
�

Z
exp��

�

T
E�x��� ���

where T is the �temperature� of the �eld and Z is a positive
normalizing constant
 also known in the physics literature
as a partition function� It is not di�cult to prove that
the above joint probability distribution de�nes a Markov
random �eld with respect to the neighborhood structure
fNs� s � Sg ���� Samples of this MRF correspond to dif�
ferent texture patterns� In this paper we are particularly
interested in characterizing the minimum energy patterns

i�e�
 �nding the texture pattern x that maximizes P �x� in
���� The actual energy minimization procedure is based on
a Monte�Carlo algorithm with simulated annealing ���
 in
which the temperature is gradually lowered according to a
schedule slow enough to keep the lattice sites in thermal
equilibrium�

��� The Autobinomial Model

Di�erent conditional probability distributions can be ob�
tained by specifying the actual expressions of the external
and internal potentials� When these conditional proba�
bilities have a binomial distribution
 the MRF model is
called autobinomial ����� Besag
s autobinomial model was
�rst used as a model for texture synthesis by Cross and
Jain ���
 who used the uniform histogram assumption and
the Metropolis exchange algorithm to generate texture pat�
terns� The potential functions of the autobinomial model
are given by

�The reader familiar with MRF theory might notice
that the double summation in �	� is over all sites and all
their neighbors and not over the two�site cliques of the
neighborhood structure� We have Vsr � Vrs � half the
two�site clique potential�

Vs�xs� � ��sxs � T ln

�
n � �
xs

�
�

Vsr�xs� xr� � ��srxsxr�

where �s� �sr are real numbers and

�
n � �
xs

�
is the bi�

nomial coe�cient �n� � choose xs��
The corresponding Markov conditional probability dis�

tributions �local characteristics� are binomial and given by

P �xsjxr� r � Ns� �

�
n � �
xs

�
�xss ��� �s�

n�xs���

where

�s � e�s��� � e�s��

�s �
�

T

�
�s �

X
r�Ns

�srxr

�
�

In the homogeneous case �s � � �site�independent�
 and
�sr � �r �site�independent but possibly dependent on the
direction of the neighbor�� In Figure � �b� the autobino�
mial �bonding parameter� which multiplies each neighbor
is shown� The autobinomial parameters are isotropicwhen
�r � �� � r � N � When the model is �rst order isotropic
and n � �
 we get a binary nearest�neighbor model from
which the famous Ising model ���� can be derived by mak�
ing the transformation xs � �xs � ��

��� The Metropolis Exchange Algorithm

In this paper
 we follow ��� in using the Metropolis ex�
change algorithm as our Monte�Carlo algorithm� The ex�
change algorithm enforces a uniform histogram constraint
that prevents trivial solutions for the minimum energy con�
�guration�
In the exchange algorithm
 two di�erent lattice sites are

picked up randomly and their pixel values
 if di�erent
 are
exchanged� The energy change due to the exchange is com�
puted and used in a Metropolis decision rule � ��� for lat�
tice state update� The ingenuity of this rule is that it
completely eliminates the need for computing the parti�
tion function Z � a usually burdensome task� When the
external �eld in �	� is homogeneous
 i�e�
 the Vs
s are inde�
pendent of the site location s
 it has no in�uence on the site
update� This is because it cancels out from the expression
of the energy change� Thus
 we omit the homogeneous ex�
ternal �eld terms from the Gibbs energy� It follows that the
problem of texture synthesis using a Markov random �eld
model in conjunction with a uniform histogram constraint
can be formulated as the following constrained integer non�
linear programming problem�

min
x��

X
s�S

X
r�Ns

Vsr�xs� xr�� ���

subject to jSgj � �� �g � ��

�Sites are updated
with probability min��� exp�� E�T ��
 where  E is the
energy change�

�



It is important to stress that the constraints of this problem
are implicitly satis�ed when an exchange algorithm is used�
Thus
 in all the texture synthesis examples of this paper
where we start with an initial histogram satisfying jSgj �
���g � �
 these constraints will also be satis�ed by the
�nal pattern� When a non�exchange method is used
 these
constraints can be easily incorporated into the objective
function via a penalty function�
When the autobinomial model is synthesized using the

Metropolis exchange algorithm
 it has the property of sym�
metry with respect to the graylevel values� That is
 if we
have graylevels g � � � f�� �� � � � � n��g
 then if we replace
all the graylevels according to g � n���g
 the parameters
of the synthesized pattern do not change� We will �nd this
useful in simulations when we analyze the patterns formed�
It is important to note that the texture patterns pro�

duced in studies such as Cross and Jain
s ��� are at non�
equilibrium� Equilibrium is de�ned as the minimum energy
state
 that is
 the state which maximizes the exponent in
the Gibbs joint probability� Monte� Carlo texture synthesis
methods produce many non�equilibrium states on the way
to equilibrium� Many of these non�equilibrium states look
like natural textures� One of the shortcomings of the MRF
approach to date is that it has been di�cult to predict the
evolution of the texture patterns during the equilibrating
process�

� Auras� Aura Measures� Miscibility
Matrices

��� Auras

We now introduce a novel set�theoretic concept that
gives a precise mathematical meaning to the notion of how
one set B is present in the neighborhood of some other set
A�

De
nition � Let A�B be two subsets � S� Then the aura
of A with respect to B for the neighborhood structure N �
fNs� s � Sg is a subset of S de�ned by�

s�A

�Ns �B�� ���

The aura of a set A with respect to a set B will be denoted
by

OB�A�N�� ���

The aura of a set with respect to itself will be called the
self�aura�

This de�nition remains valid even if the neighborhood
structure is not symmetric� Note that the sets A and B
are not necessarily graylevel sets� They in fact could be
any sets of labels whose interaction we would like to study�
However
 in the context of grayscale texture generation
 we
will deal essentially with the auras of graylevel sets�
It is very important to note that the aura depends on

the neighborhood structure chosen for the lattice� All the
results derived in this paper are valid for any choice of the
Ns
s
 including non�nearest neighbors� In all the deriva�
tions
 the structure N is assumed to be given once and
for all� Thus
 we choose to omit the notational depen�
dency on N from ��� and use for the aura the simpli�ed

notation OB�A�� Note that in general
 OB�A� �� OA�B�

and that A �� OA�A�
 unless every site belongs to its own
neighborhood� �
The aura has a number of other properties that can be

derived using its de�nition and elementary set operations�
The reader is referred to ���� for a list of the most important
of these properties� In particular
 it can be shown ���� that
the aura can be computed using morphological operations
��	��
The choice of the word �aura� was motivated by the

situation that arises when we look at OAc �A�
 that is
 the
neighbors of the sites of A that are in the complementary
set of A� When the neighborhood of A is noncausal and
has nearest neighbors
 as in the case of MRF
s
 the aura
set forms a ring around A�

��� Aura Measures

In addition to the idea of the presence of one set B in the
neighborhood of another set A
 we need a measure of how
much of B is present in A� The easiest way for measuring
the size of the aura of a set A with respect to a set B is by
counting the number of elements
 jOB�A�j� Note that we
have
 from the de�nition and from the known properties of
sets

jOB�A�j �
X
s�A

jNs �Bj� ���

In problems involving image synthesis or processing
 it is
the right side that appears more frequently� In particular

we will see in Section 	�	 and Section ��� that the right
side relates closely to image co�occurrence statistics �����
It also turns out that the right side is a better measure
of how �broken� the boundary of the set A is� For these
reasons
 the following de�nition of the measure of an aura
is adopted�

De
nition � Let A�B be two subsets � S� Then the aura
measure� denoted by m�A�B�� is de�ned by

m�A�B� �
X
s�A

jNs � Bj� ���

When A and B are two graylevel sets Sg and Sg� 
 the
aura measure will be denoted m�g� g��� Since the neighbor�
hood structure is assumed symmetric we have m�A�B� �
m�B�A� and for graylevel sets m�g� g�� � m�g�� g� �����
The aura measure has an intuitive interpretation as the
amount of mixing between the sets A and B� A large aura
measure means the two sets try to mix with each other! a
small aura measure means they try to separate� The aura
measure of A with respect to its complementary set Ac can
be understood as a measure of the boundary length of A�
This measure is compatible with the scale at which we look
at the image� This scale is expressed by the neighborhood
shape and size� Also
 from a graph�theoretical point of
view
 the aura measure is a generalization of the concept
of an edge boundary for a subgraph �����
When there is an exchange operation between A and

B
 as in the Metropolis exchange algorithm
 the self�aura
measure of A	B remains constant
 which puts a constraint

�This situation is not allowed in the context of MRF
image models�

	



on the self�aura and aura measures of A and B before and
after the exchange�
Other details on the properties of the aura measure are

provided in �����

��� Miscibility Matrices

Before applying the above concepts to texture synthe�
sis using MRF
s
 we introduce a useful tool
 based on the
intuitive understanding of the aura measure as a misci�
bility�immiscibility measure
 the miscibility matrix� Even
though the following de�nition is valid for any partition of
the lattice
 it is only given for the grayscale partition�

De
nition � Let Sg � S� �g � �� be the graylevel sets of
the image� Then the miscibility matrix� M� is the n 
 n
integer matrix de�ned by M � �m�g� g�����g� g� � ��

The following proposition whose proof appears in ����
contains some of the properties of the miscibility matrix�

Proposition 	 �Miscibility Matrix Properties� Let M be
a miscibility matrix� Then�

�a� Each row sum satis�es�

n��X
g�	


m�g� g�� � jSgjjN j� �g � �!

�b� Each column sum satis�es�

n��X
g	


m�g� g�� � jSg� jjN j� �g� � �!

�c� If N is symmetric� then M is symmetric� and

n��X
g	


m�k� g� �

n��X
g	


m�g� k� � jSkjjN j��k � ��

When the neighborhood contains only one element the
miscibility matrix becomes identical to a pairwise co�
occurrence matrix ����� If the neighborhood contains a
pair of symmetric neighbors
 the miscibility matrix is a
symmetric co�occurrence matrix� The general relationship
between miscibility and co�occurrence matrices will be seen
in Section ����
Under a uniform histogram constraint the miscibility

matrix can be normalized by �jN j to become a doubly
stochastic matrix that can be interpreted as a statistical
estimate of a probability co�occurrence matrix� Relating
the miscibility matrix to the parameters of the MRF model
from which the texture was obtained can be done for the
binary
 homogeneous
 isotropic case �the Ising model� �����

� Reformulation of MRF Using
Miscibility

In this section
 we rewrite the energy function of the
Gibbs distribution in terms of aura measures� The aura
formulation re�interprets the energy function as an inter�
action between miscibilities� With this intuitive interpre�
tation
 one can ask questions such as �are colors A and

B maximally separated yet"� The answers to these ques�
tions characterize the pattern
s progress toward equilib�
rium� Thus
 the aura measure is a tool for predicting the
appearance and arrival of equilibrium states� Some exam�
ples of this type of usage will be shown in Section ��

��� Isotropic Field Case

The problem of texture synthesis using an autobino�
mial Markov random �eld model in conjunction with the
Metropolis exchange algorithm can be formulated
 using
���
 as the following constrained integer nonlinear program�
ming problem�

max
x��

X
s�S

X
r�Ns

�srxsxr� ����

subject to jSgj � �� �g � ��

where the �sr
s represent the bonds between a graylevel
value xs and its neighbors xr� r � Ns� The image �eld is
assumed homogeneous and isotropic so that �sr � �� Then
the above optimization problem becomes

max
x��

�
�
X
s�S

X
r�Ns

xsxr

�
� ����

subject to jSgj � �� �g � ��

The constraints of ���� are not independent because the
sum of jSgj
s
 n�
 must equal jSj� Using the fact that
fSg� g � �g is a partition of S and that when s � Sg � xs �
g
 the above cost function becomes

�
X
g��

g
X
s�Sg

X
r�Ns

xr� ����

Furthermore


Ns �
�
g���

�Ns � Sg���

and xr � g�
 when r � Sg� � It follows that ���� can be
written as

�
X
g��

g
X
s�Sg

X
g���

X
r�Ns�Sg�

g� ��	�

or
�
X
g�g���

gg�
X
s�Sg

jNs � Sg� j� ����

Using the de�nition of the measure of an aura
 we get

�
X

g�g���

gg�m�g� g��� ����

Thus the problem of MRF texture generation in the
grayscale domain has been transformed to an optimiza�
tion problem with a linear cost function in the �miscibility
domain�� Note that the above derivation can be repeated
for any homogeneous
 isotropic
 internal interaction �eld
Vsr � V between graylevels� For this general case we get
the following constrained minimization problem

min
x��

�X
g��

V �g� g�m�g� g� � �
X
g�g�

V �g� g��m�g� g��

�
�

subject to jSgj � �� �g � ��

�



A special case worth noting is the homogeneous isotropic
Potts model ����
 for which

V �g� g�� � �	gg� � ��

where 	gg� is the Kronecker 	 symbol� The Ising model is
also a special case of the Potts model�
For the autobinomial case
 the resulting patterns de�

pend strongly on both the sign of � and the number of
graylevels� The simulations of Section � show that the mis�
cibility framework is very appropriate for the explanation
and prediction of these patterns�

��� Constraints on Miscibilities

From an optimization point of view
 the most interest�
ing fact about expressing the cost function in terms of the
aura measures is that it becomes linear as a function of
these variables� We can go one step further along the way
of transforming the nonlinear integer programming prob�
lem into a linear problem by introducing linear constraints
on the aura measures� These linear constraints are of two
kinds� equality constraints due to the uniform histogram
assumption and inequality constraints imposed by the lat�
tice geometry and the boundary conditions� The �rst kind
of constraints can be readily obtained from Proposition ��
Note that because of the symmetric neighborhood assump�
tion
 equation �c� of Proposition � is satis�ed� Therefore
the aura measures satisfy n � j�j equality constraints given
by X

g���

m�g� g�� � jSgjjN j��g � �� ����

The inequality constraints are more di�cult to obtain

because they strongly depend on the particular texture
synthesis problem we are dealing with� To give the reader
a �avor of these constraints
 let us consider the binary
ferromagnetic Ising model � with uniform histogram and
toroidal boundary conditions� De�ning the graylevel sets
S
 �black pixels� and S� �white pixels� the cost function to
be minimized is reduced to �m��� �� under the constraints

m��� �� �m��� �� � �jSj�

m��� �� �m��� �� � �jSj�

Minimizing the cost function means maximizing the
clumpiness of the white pixels
 which also means
 be�
cause of the uniform histogram constraint
 maximizing
the clumpiness of the black pixels� It follows from the
above linear constraint that the boundary between the two
graylevel sets as expressed by the aura measure m��� ��
is minimized� It is clear that the simultaneous presence
of both black and white pixels imposes a lower bound on
m��� ��� This lower bound depends on the geometry of the
lattice� For a square toroidal lattice
 jSj � N�
 the lower
bound is �N and is reached by a con�guration in which the
black and white pixels form two stripes adjacent to each
other� When the lattice is rectangular these two stripes will
be parallel to the smaller of the rectangle dimensions� The
reader is referred to Section � for examples of equilibrium
patterns on non�square lattices�

�In this example the binary state is taken to be � or ��

If we now de�ne the vectors

m � �m��� ���m��� ��� � � � � m��� n� ���

m��� ��� � � � �m�n� �� n� ���T �

V � �V ��� ��� V ��� ��� � � � � V ��� n� ���

V ��� ��� � � � � V �n� �� n� ���T �

where V �g� g�� � gg�
 then the constrained nonlinear in�
teger program can be reformulated as the following con�
strained linear integer program

min
m��

V
T
m

subject to Bm � b�Dm � d�

In principle
 it is possible to solve this problem directly
in the miscibility domain� In many cases the inequality
constraints can be derived from a simple analysis of the
lattice geometry and histogram constraints �����

��� Boundary Optimization Principle

	���� Ising Model

As mentioned
 the Ising model is a special case of both
the autobinomial and Potts models� Let S� be the set of
sites with spin up
 and S�� be the set of sites with spin
down� The optimization problem
 as a special case of the
Potts model optimization
 becomes

min
x��

�����m�S��� S��� �m�S�� S��� �m�S�� S�����

Note that we have omitted the histogram constraint for this
example� When � 
 �
 the expression between brackets is
maximized� The maximum occurs when either every site is
� or every site is �� so that m�S��� S�� � � �spontaneous
magnetization�� This means that the boundary between
the two regions is minimized! actually
 its length is zero
here� When � � �
 the expression is minimized� This cor�
responds to the antiferromagnetic phase� In general the
energy optimization problem can be recast as a boundary
optimization problem� Similar conclusions hold under the
uniform histogram constraint� For the Ising model on a lat�
tice of known size
 if we know the total number of up spins
jS�j and the total number of pairs of up spins m�S�� S��

the model is completely characterized� This characteriza�
tion in terms of boundary length
 well known in the physics
literature ����
 is a special case of Proposition ��

	���� The General Case

The above conclusions about the boundary optimiza�
tion principle in the binary case can be easily generalized to
an arbitrary number of graylevels and an arbitrary neigh�
borhood order� For instance
 without any histogram con�
straint
 the patterns generated by the isotropic autobino�
mial model with positive � will become all white� This can
be interpreted as a trivial boundary minimization
 where
the boundary lengths are all zero� When a uniform his�
togram is imposed on the patterns
 the situation is slightly
more complicated
 but can still be understood in terms of
mixing �boundary maximization� and separation �bound�
ary minimization�� Simulations are provided in Section �
that show boundary optimization properties of the autobi�
nomial model in the graylevel case�

�



��� Anisotropic Field Case

The objective of this section is to extend the de�nition of
the aura and of the miscibility matrix to accommodate the
important cases where anisotropic �eld phenomena need to
be taken into account� This is typically the case with tex�
tures synthesized through anisotropic Gibbs random �elds�
In order to capture the in�uence due to directionality
 we
will assume that the neighborhood of each site can be parti�
tioned into K subneighborhoods
 so that in each subneigh�
borhood the �eld behaves isotropically� More formally
 we
will write

Ns �

K�
k	�

N k
s � �s � S� ����

where N k
s �N

l
s � �
 unless l � k� Then we can de�ne the

aura of the subset A with respect to the subset B for the
k�th subneighborhood structure by

Ok
B�A� �

�
s�A

�B �N k
s �� ����

It can be readily seen using the above de�nition that

OB�A� �

K�
k	�

Ok
B�A�� ����

If each subneighborhood has size �
 then the measures of
Ok
B�A� are co�occurrences� Let m

k�A�B� be the measure
of Ok

B�A�� We have

m�A�B� �

KX
k	�

mk�A�B�� ����

so that the aura measures are a linear combination of co�
occurrences�
Speci�cally
 for the autobinomial model
 if the �k
s are

anisotropic
 the equilibrium solution will be achieved by
solving

max
x��

� X
g�g���

gg�
KX
k	�

�km
k�g� g��

�
�

subject to jSgj � ���g � �� ����

The simulations given in the next section support the in�
tuition that can be derived from the anisotropic miscibility
analysis of the above linear programming problem�

� Simulations

��� Mixing and Separation

As mentioned
 the patterns produced by the MRF tex�
ture model in the extensive study by Cross and Jain ���
were non�equilibrium patterns� In this paper
 we apply
the aura measures to the analysis of MRF patterns near
equilibrium� The simulations here assume toroidal bound�
ary conditions and the autobinomial MRF energy function
described in Section ��
The samples have been synthesized by the Metropolis

exchange method
 with log annealing according to

T �
c

log�p� ��
�

�a� �b�

�c� �d�

Figure �� Examples of near�equilibrium patterns for �rst�
order MRF
s with negative isotropic parameters� Images
�a���d� correspond to ��� graylevels respectively� Each im�
age is ��
 ���

where p � bk���c and k � �� �� � � � is the iteration num�
ber� The scale factor in the numerator is typically cho�
sen in the range c � ��� ���� In our simulations
 c � ��
Though its choice is ad hoc
 its behavior is understood
as a rate constant that is proportional to how slow the
annealing progresses� One iteration is counted as N� at�
tempted exchanges� An exchange is attempted whenever
two randomly picked sites have di�erent locations and
graylevels� The total number of iterations for the patterns
was �����
 with the temperature lowered according to the
above schedule every �� iterations� The initial state for
all these simulations was a random noise image with uni�
form histogram� Because of the exchange operation
 the
histogram is preserved throughout the texture synthesis

and the �assumed constant� external �eld can be ignored�

For isotropic parameters
 the behavior of the autobino�
mial MRF is well described by its graylevel miscibilities� In
Figure � are shown four texture samples corresponding to
�rst�order negative isotropic parameters� All of these have
identical parameters! the only di�erence is that the number
of graylevels in �a���d� changes from ���� These patterns
are close enough to equilibrium that the minimum energy
characteristics are easily seen� In �a� we see the checker�
board being made in an e�ort to minimize m��� �� �white
self�miscibility�� The terms m��� �� and m��� �� are multi�
plied by zero and can be ignored� Optimization is achieved
by moving blacks between all the whites
 so that the misci�
bility of the whites goes to zero� In �b� the sum of m��� ��


�



�m��� ��
 and �m��� �� is minimized� The last two terms
have the greatest weight
 and can be interpreted as color �
�white� trying to form a checkerboard
 but not with color
� �gray�� This leaves the con�guration of a checkerboard
between colors � �black� and �
 with color � forming a
blob o� by itself� To minimize the term m��� ��
 it would
be necessary to have a fourth color to mix with it� This
happens in �c�� The image in �d� and images made with
higher numbers of graylevels have similar explanations
 all
deriving from intuition about mixing�

For positive isotropic parameters
 the behavior is de�
scribed by immiscibility
 the separation of the di�erent col�
ors� Figure 	 is identical to that of Figure � with the excep�
tion of the sign of �� In �a� we see separation of black and
white as m��� �� is maximized� As white mixes only with
white
 black is forced to mix only with black� If the synthe�
sis of this energy function were done using a non�exchange
method such as the Gibbs Sampler
 the optimal pattern
would be solid white� The black remains only because of
the exchange method
 which preserves the histogram of the
lattice� In �b� the sum of m��� ��
 �m��� ��
 and �m��� ��
is maximized� Graylevel � forms a blob while maximizing
the presence of graylevel � along its boundary� Graylevel �
has no other choice but to form a blob� The image in �c�
and images made with higher numbers of graylevels have
similar explanations which derive from intuition about sep�
aration�

As mentioned before
 for autobinomial �elds synthesized
with the Metropolis exchange
 the result should be the
same if all the graylevels of value g are replaced with those
of value n � g � �� This graylevel symmetry shows up in
the miscibility behavior� For example
 both black ��� and
white �n � �� have the same mixing behavior in all the
samples shown in this section�

��� Boundary Maximization and
Minimization

The mixing and separation described in the previous
section has another interpretation in terms of the princi�
ple of graylevel boundary length� The behavior that was
described for the Ising model in Section ��	�� is an ex�
ample of the boundary length optimization for the binary
case� The examples in Figure � are also examples of max�
imizing graylevel boundary length for a general number of
graylevels� Similarly
 Figure 	 gives examples of minimiz�
ing graylevel boundary length�

When the lattice geometry is not square
 the boundary
minimization manifests itself in a slightly di�erent way� As
mentioned in Section ���
 there is a geometry�dependent
lower bound for the cross�miscibility measures� Of all the
con�gurations that separate white and black
 the one they
will choose will be the one with minimum total boundary
length� On a 	�
 �� lattice
 this is a left�right separation

with boundary length proportional to � 
 	�� �There are
two boundaries since the lattice is toroidal�� An example
of this selection is illustrated in Figure � for graylevels �
and 	� The parameters used to synthesize these patterns
are identical to those used in Figure 	 �a� and �b�
 but the
model order has been increased to fourth� The higher order
neighborhood is responsible for the less noisy appearance
of these patterns�

��� Miscibility Matrices and Isotropic
Texture Samples

The notions of boundary length and miscibility are nu�
merically stated by the miscibility matrices� These matri�
ces for the texture samples of Figure � �a���d� are shown in
Figure �� Note that the auras were all formed with �rst or�
der neighborhoods �jN j � ��
 as the texture samples are all
�rst order MRF
s� The properties of Proposition � are eas�
ily checked for the jSj � ��
�� lattices used here� We note
that all of the aura matrices are becoming anti�tridiagonal�
For the positive bonding parameters
 they become tridiag�
onal� These are shown in Figure �� The diagonal domi�
nance of co�occurrence matrices has long been understood
to relate to texture clumpiness ����� Here we have a precise
formulation of clumpiness as the aura self�measures�
We have begun investigating the ability of the aura to

measure the distance away from equilibrium of a texture
pattern� For positive isotropic textures
 we know that the
miscibility matrix will become tridiagonal� The lattice ge�
ometry constrains the sup�diagonal terms
 which when cou�
pled with Proposition �
 leaves us with a known optimal
value for the trace of the matrix� Thus
 a measure of the
trace of the miscibility matrix gives an estimate of texture
pattern convergence� The traces of the normalized aura
matrices for seven near�equilibrium patterns such as those
shown in Figure 	 were plotted� The result is a straight
line
 indicating that the trace grows linearly with the num�
ber of graylevels for positive isotropic patterns� For higher
order neighborhoods
 the matrices tend toward diagonal
even faster
 resulting in a steeper slope of the trace vs�
graylevel line� Similar opposite behavior occurs for nega�
tive parameters and anti�traces�

��� Anisotropic Fields

The samples shown thus far are all synthesized with
isotropic parameters� As the relative weights of the pa�
rameters are changed
 the relative weights of the miscibil�
ities change as given in ����� In Figure �
 the parameters
are �� � � �horizontal�
 �� � � �vertical� on the left
 and
�� � �
 �� � � on the right� The stronger vertical clus�
tering is apparent on the right� Similarly
 Figure � has
parameters �� � ��
 �� � �� on the left
 and �� � ��

�� � �� on the right� Here
 the vertical tug is evident from
the vertical crystal defects� These result because the repul�
sion between vertical pairs is stronger than the repulsion
between horizontal pairs�

� Summary

In this paper
 a systematic approach for analyzing and
predicting the equilibrium patterns of textures generated
by MRF models has been introduced� The approach is
based on a set�theoretic concept
 the aura of one set with
respect to another
 and on a physically motivated frame�
work
 boundary length and miscibility in multiphase �uids�
Based on the aura�miscibility framework and the simula�
tions
 we can make the following conclusions�

� A new set�theoretic concept
 the �aura�
 has been in�
troduced and shown to provide a coherent new expla�
nation of the behavior of MRF texture patterns�

� The new aura framework allows the rewriting of the
nonlinear MRF energy function as a linear combina�

�



tion of aura measures�

� The aura measure has a miscibility interpretation
which allows the texture patterns to be both mathe�
matically and intuitively characterized by the amount
of mixing and separation between graylevels�

� The miscibility matrix
 formed from the aura mea�
sures
 is shown to be related to the classical co�
occurrence matrix� The miscibility matrix thus links
the popular co�occurrence analysis tool to MRF
s�

� The miscibility optimization
 which holds for any
number of graylevels
 generalizes the boundary length
optimization property of the binary Ising model�

� During the synthesis of texture the lattice geome�
try and Metropolis exchange algorithm enforce con�
straints on the miscibility matrix� These constraints
allow the miscibility matrix to be a useful tool for
measuring distance from equilibrium�

� The miscibility matrix also contains information
about global interactions between graylevel sets�
These global interactions result in a large scale struc�
ture that cannot be inferred from the MRF bonding
parameters alone�

Even though we are still in the process of exploring the
aura�miscibility framework for texture analysis and pre�
diction
 we feel that the work presented in this paper has
already con�rmed Besag
s observation that we quote from
his seminal paper �����

Incidentally� the fact that a scheme is formally
described as �locally interactive	 does not imply
that the patterns it produces are local in nature
�cf� the extreme case of long�range order in the
Ising model��
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�a� �b�

�c� �d�

Figure 	� Examples of near�equilibrium patterns for �rst�
order MRF
s with positive isotropic parameters� Images
�a���d� correspond to ��� graylevels respectively� Each im�
age is �� 
 ���

�a�

�b�

Figure �� Lattice geometry a�ects the equilibrium pat�
tern by constraining the miscibilities between di�erent
graylevels� In �a�
 the separation will always make a ver�
tical boundary
 since that dimension is the shortest in this
	� 
 �� lattice� Note this pattern is only two exchanges
from being at its minimum energy state� Similarly
 in �b�

the two gray regions try to separate with vertical bound�
aries�
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�a� �b�

�c�

�d�

Figure �� Miscibility matrices corresponding to textures in
Figure � �a� � �d��
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�a� �b�

�c�

�d�

Figure �� Miscibility matrices corresponding to textures in
Figure 	 �a� � �d��

�a� �b�

Figure �� Comparison of isotropic �a� and anisotropic �b�
positive parameters� The vertical parameter in �b� has
twice the value of the horizontal parameter� Both images
have � graylevels and are ��
 ���

�a� �b�

Figure �� Comparison of isotropic �a� and anisotropic �b�
negative parameters� The vertical parameter in �b� has
twice the value of the horizontal parameter so its defects
favor vertical repulsion� Both images have � graylevels and
are ��
 ���
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