M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 159
Appeared: SPIE Intelligent Robots and Computer Vision IX, Boston, Nov. 1990, pp 524-535.

Miscibility Matrices Explain the Behavior of Grayscale
Textures Generated by Gibbs Random Fields

I. M. Elfadel*

R. W. Picard!

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

This paper describes an original approach to the
analysis and prediction of graylevel textures gen-
erated as equilibrium states of Gibbs/Markov
random fields. This approach is physically mo-
tivated by the analogy that exists between the
graylevel textures and the miscibility patterns of
multiphase flows. The physics of the situation
is captured using miscibility matrices that are
related to the co-occurrence matrices classically
used for texture discrimination. Simulations are
provided to motivate and illustrate our approach.

1 Introduction

This paper describes an original approach to the analysis
and prediction of graylevel textures generated as equilib-
rium states of Gibbs/Markov (MRF) random fields. This
approach is physically motivated by the analogy that ex-
ists between the graylevel textures and the miscibility pat-
terns of multiphase flows. The physics of the situation is
captured using miscibility matrices that are related to the
co-occurrence matrices classically used for texture discrim-
ination. The approach described in this paper provides a
direct link between the MRF methods for texture synthesis
and the statistical methods such as co-occurrence matrices.
The miscibility matrices also reveal large scale structure
that is not revealed by the MRF bonding parameters.

The paper is organized as follows. In Section 2 we briefly
review the fundamentals of texture synthesis using MRF
models. In Section 3 the new concepts of aura, aura mea-
sures, and miscibility matrices are introduced. These are
then applied in Section 4 to give a miscibility formulation
to the MRF texture synthesis method. Simulations sup-
porting the miscibility approach to MRF texture synthesis
are given in Section 5.

2 The MRF Approach to Texture
Synthesis

2.1 Background

One-dimensional and causal Markov models have a long
history of usefulness for many image processing applica-
tions. Since the establishment of the equivalence between
Gibbs and Markov random fields, there has been renewed
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emphasis on 2-D noncausal MRF’s. In particular, these
MRF’s have been explored for the representation of nat-
ural texture patterns [1, 2, 3, 4]. The assumption that
the MRF can model image textures has also been used
to justify MRF models in image restoration, compression,
segmentation, and classification [5, 6, 7, 8].

We model the image as a finite rectangular lattice &
with a neighborhood structure N = {N.,s € S}, where
N C S is the set of neighbors of the site s € S. Every site
s € § will be assigned an integer z. € A = {0,1,...,n—1}
representing the graylevel value of the pixel at site s. We
denote by x the vector (z¢,1 < s < |8|) of site graylevel
values and by €2 the set A1 of all values taken by x. The
graylevel sets of the lattice are defined as follows:

Syg={s€Slz.=g}, Vg€ A (1)

It is clear that the graylevel sets constitute a partition of
the lattice into mutually disjoint subsets.

The neighborhood structure will be assumed symmetric,
ie.,

Vs, r €8, s € N; if and only if r € N. (2)

This assumption is required for application to a homoge-
neous Gibbs random field. The MRF model is usually de-
scribed by its order, which defines its neighborhood con-
figuration. In Figure 1 (a) neighborhoods of orders 1-4
are shown. These are the only orders used in this paper,
though extension to higher orders is straightforward.

Throughout this paper we assume toroidal boundary
conditions, where the top pixels are identical to those of
the bottom and the right pixels to the left ones. This as-
sumption simplifies the neighborhood notation because on
the toroidal lattice the neighborhoods at each site N, are
the translates of a basic neighborhood A/. In this case,
the number of elements, ||, of each neighborhood is con-
stant and equal to |A]. If boundary conditions other than
toroidal are made, then care should be taken in defining
the neighborhoods of the sites that lie on the lattice bound-
aries. In particular, the size of the neighborhood will vary
along the boundaries and will be different from the size of
the inner site neighborhoods.

The basic methodology for MRF texture synthesis is the
following. For the finite toroidal lattice S, with the sym-
metric neighborhood structure {N:, s € 8}, we define the
Gibbs energy

Ex) =Y Vi) + Y 3> Valeoz), ()
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where the V.’s are the single site potentials and the Vi,’s
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Figure 1: (a) Neighbors of the point s for model orders 1-4.
The neighborhood of order p contains all points with labels
< p. (b) The autobinomial parameter for each neighbor.

are the two-site potentialsl, where V., = V,.. In the
physics literature, the single-site potentials are called the
external field while the two-site potentials define the inter-
action of the so-called internal field. To the Gibbs energy,
thus defined, we can assign a random field whose probabil-
ity distribution is given by

1 1

P(x) = & exp(— - £(x)). (1)
where T'is the “temperature” of the field and 7 is a positive
normalizing constant, also known in the physics literature
as a partition function. It is not difficult to prove that
the above joint probability distribution defines a Markov
random field with respect to the neighborhood structure
{Ns, s € 8} [9]. Samples of this MRF correspond to dif-
ferent texture patterns. In this paper we are particularly
interested in characterizing the minimum energy patterns,
i.e., finding the texture pattern x that maximizes P(x) in
(4). The actual energy minimization procedure is based on
a Monte-Carlo algorithm with simulated annealing [5], in
which the temperature is gradually lowered according to a
schedule slow enough to keep the lattice sites in thermal
equilibrium.

2.2 The Autobinomial Model

Different conditional probability distributions can be ob-
tained by specifying the actual expressions of the external
and internal potentials. When these conditional proba-
bilities have a binomial distribution, the MRF model is
called autobinomial [10]. Besag’s autobinomial model was
first used as a model for texture synthesis by Cross and
Jain [2], who used the uniform histogram assumption and
the Metropolis exchange algorithm to generate texture pat-
terns. The potential functions of the autobinomial model
are given by

!The reader familiar with MRF theory might notice
that the double summation in (3) is over all sites and all
their neighbors and not over the two-site cliques of the
neighborhood structure. We have V., = V.. = half the
two-site clique potential.

‘/s(xs) =

—asxS—Tln< n—1 ),
Ts

_657"555557",

‘/sr(ms,xr) =

where ag, fsr are real numbers and
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The corresponding Markov conditional probability dis-
tributions (local characteristics) are binomial and given by

Pz,

s
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where

9. = e /(1+e7),

T = % as—l—Zﬁsrm

reN;

In the homogeneous case a. = « (site-independent), and
Ssr = fr (site-independent but possibly dependent on the
direction of the neighbor). In Figure 1 (b) the autobino-
mial “bonding parameter” which multiplies each neighbor
is shown. The autobinomial parameters are ¢sotropic when
Br =B, Vr € N. When the model is first order isotropic
and n = 2, we get a binary nearest-neighbor model from
which the famous Ising model [11] can be derived by mak-
ing the transformation z. — 2z, — 1.

2.3 The Metropolis Exchange Algorithm

In this paper, we follow [2] in using the Metropolis ex-
change algorithm as our Monte-Carlo algorithm. The ex-
change algorithm enforces a uniform histogram constraint
that prevents trivial solutions for the minimum energy con-
figuration.

In the exchange algorithm, two different lattice sites are
picked up randomly and their pixel values, if different, are
exchanged. The energy change due to the exchange is com-
puted and used in a Metropolis decision rule % [5] for lat-
tice state update. The ingenuity of this rule is that it
completely eliminates the need for computing the parti-
tion function Z — a usually burdensome task. When the
external field in (3) is homogeneous, i.e., the V.’s are inde-
pendent of the site location s, it has no influence on the site
update. This is because it cancels out from the expression
of the energy change. Thus, we omit the homogeneous ex-
ternal field terms from the Gibbs energy. It follows that the
problem of texture synthesis using a Markov random field
model in conjunction with a uniform histogram constraint
can be formulated as the following constrained integer non-
linear programming problem:

)1(1161?22 Z Ver(zs, 3r), (5)
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subject to |Sy| =7, Vg € A.

2Sites are updated
with probability min(1, exp(—AE/T)), where AFE is the

energy change.



It is important to stress that the constraints of this problem
are implicitly satisfied when an exchange algorithm is used.
Thus, in all the texture synthesis examples of this paper
where we start with an initial histogram satisfying |S,| =
v,Vg € A, these constraints will also be satisfied by the
final pattern. When a non-exchange method is used, these
constraints can be easily incorporated into the objective
function via a penalty function.

When the autobinomial model is synthesized using the
Metropolis exchange algorithm, it has the property of sym-
metry with respect to the graylevel values. That is, if we
have graylevels ¢ € A = {0,1,...,n—1}, then if we replace
all the graylevels according to ¢ — n—1—g, the parameters
of the synthesized pattern do not change. We will find this
useful in simulations when we analyze the patterns formed.

It is important to note that the texture patterns pro-
duced in studies such as Cross and Jain’s [2] are at non-
equilibrium. Equilibrium is defined as the minimum energy
state, that is, the state which maximizes the exponent in
the Gibbs joint probability. Monte- Carlo texture synthesis
methods produce many non-equilibrium states on the way
to equilibrium. Many of these non-equilibrium states look
like natural textures. One of the shortcomings of the MRF
approach to date is that it has been difficult to predict the
evolution of the texture patterns during the equilibrating
process.

3 Auras, Aura Measures, Miscibility
Matrices

3.1 Auras

We now introduce a mnovel set-theoretic concept that
gives a precise mathematical meaning to the notion of how
one set B is present in the neighborhood of some other set

A.

Definition 1 Let A, B be two subsets CS. Then the aura
of A with respect to B for the neighborhood structure N =
{N:, s € S} is a subset of 8 defined by

Jw.nn). (6)
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The aura of a set A with respect to a set B will be denoted
by

Op(A,N). (M)
The aura of a set with respect to itself will be called the
self-aura.

This definition remains valid even if the neighborhood
structure is not symmetric. Note that the sets A and B
are not necessarily graylevel sets. They in fact could be
any sets of labels whose interaction we would like to study.
However, in the context of grayscale texture generation, we
will deal essentially with the auras of graylevel sets.

It is very important to note that the aura depends on
the neighborhood structure chosen for the lattice. All the
results derived in this paper are valid for any choice of the
N.’s, including non-nearest neighbors. In all the deriva-
tions, the structure N is assumed to be given once and
for all. Thus, we choose to omit the notational depen-
dency on N from (7) and use for the aura the simplified

notation Og(A). Note that in general, Og(A) # Oa(B),
and that A € Oa(A), unless every site belongs to its own
neighborhood®.

The aura has a number of other properties that can be
derived using its definition and elementary set operations.
The reader is referred to [12] for a list of the most important
of these properties. In particular, it can be shown [12] that
the aura can be computed using morphological operations
[13].

The choice of the word “aura” was motivated by the
situation that arises when we look at Oa<(A), that is, the
neighbors of the sites of A that are in the complementary
set of A. When the neighborhood of A is noncausal and
has nearest neighbors, as in the case of MRF’s, the aura
set forms a ring around A.

3.2 Awura Measures

In addition to the idea of the presence of one set B in the
neighborhood of another set A, we need a measure of how
much of B is present in A. The easiest way for measuring
the size of the aura of a set A with respect to a set B is by
counting the number of elements, |O5(A)|. Note that we
have, from the definition and from the known properties of
sets

0s(4)] <> IV B. (8)
SEA

In problems involving image synthesis or processing, it is
the right side that appears more frequently. In particular,
we will see in Section 3.3 and Section 4.4 that the right
side relates closely to image co-occurrence statistics [14].
It also turns out that the right side is a better measure
of how “broken” the boundary of the set A is. For these
reasons, the following definition of the measure of an aura
is adopted:

Definition 2 Let A, B be two subsets CS. Then the aura
measure, denoted by m(A, B), is defined by

m(A, B)=>_|N.n B. (9)

SEA

When A and B are two graylevel sets S, and Sy, the
aura measure will be denoted m(g, g'). Since the neighbor-
hood structure is assumed symmetric we have m(A, B) =
m(B,A) and for graylevel sets m(g,¢') = m(g',g) [12].
The aura measure has an intuitive interpretation as the
amount of mixing between the sets A and B. A large aura
measure means the two sets try to mix with each other; a
small aura measure means they try to separate. The aura
measure of A with respect to its complementary set A€ can
be understood as a measure of the boundary length of A.
This measure is compatible with the scale at which we look
at the image. This scale is expressed by the neighborhood
shape and size. Also, from a graph-theoretical point of
view, the aura measure is a generalization of the concept
of an edge boundary for a subgraph [15].

When there is an exchange operation between A and
B, as in the Metropolis exchange algorithm, the self-aura
measure of AU B remains constant, which puts a constraint

~ ®This situation is not allowed in the context of MRF
image models.



on the self-aura and aura measures of A and B before and
after the exchange.

Other details on the properties of the aura measure are
provided in [12].

3.3 Miscibility Matrices

Before applying the above concepts to texture synthe-
sis using MRF’s, we introduce a useful tool, based on the
intuitive understanding of the aura measure as a misci-
bility /immiscibility measure, the miscibility matriz. Even
though the following definition is valid for any partition of
the lattice, it is only given for the grayscale partition.

Definition 3 Let Sq C 8, Vg € A, be the graylevel sets of
the image. Then the miscibility matriz, M, is the n x n
integer matriz defined by M = [m(g,9')],Vg, 9" € A.

The following proposition whose proof appears in [12]
contains some of the properties of the miscibility matrix.

Proposition 4 (Miscibility Matriz Properties) Let M be
a mescibility matrix. Then,

(a) Each row sum satisfies:

n—1

D mlg,g') = 1S6lIN], ¥g € A;

g'=0
(b) Each column sum satisfies:

n—1

S mle.g) = 1Sy, V' € A;

g=0

(c) If N is symmetric, then M is symmetric, and

n—1 n—1
> mik,g) =Y mlg, k) = |Skl[V],VE € A.
g=0 g=0

When the neighborhood contains only one element the
miscibility matrix becomes identical to a pairwise co-
occurrence matrix [14]. If the neighborhood contains a
pair of symmetric neighbors, the miscibility matrix is a
symmetric co-occurrence matrix. The general relationship
between miscibility and co-occurrence matrices will be seen
in Section 4.4.

Under a uniform histogram constraint the miscibility
matrix can be normalized by v|A/| to become a doubly
stochastic matrix that can be interpreted as a statistical
estimate of a probability co-occurrence matrix. Relating
the miscibility matrix to the parameters of the MRF model
from which the texture was obtained can be done for the
binary, homogeneous, isotropic case (the Ising model) [16].

4 Reformulation of MRF Using
Miscibility

In this section, we rewrite the energy function of the
Gibbs distribution in terms of aura measures. The aura
formulation re-interprets the energy function as an inter-
action between miscibilities. With this intuitive interpre-
tation, one can ask questions such as “are colors A and

B maximally separated yet?” The answers to these ques-
tions characterize the pattern’s progress toward equilib-
rium. Thus, the aura measure is a tool for predicting the
appearance and arrival of equilibrium states. Some exam-
ples of this type of usage will be shown in Section 5.

4.1 Isotropic Field Case

The problem of texture synthesis using an autobino-
mial Markov random field model in conjunction with the
Metropolis exchange algorithm can be formulated, using
(5), as the following constrained integer nonlinear program-

ming problem:
max Ber®sxr, 10
maxd D, (10)

SES rEN;
Sg| =7 Vg S Aa

subject to

where the f..’s represent the bonds between a graylevel
value z. and its neighbors z,,r € N.. The image field is
assumed homogeneous and isotropic so that 3. = 3. Then
the above optimization problem becomes

)I(neaé 6Zszxr ) (11)

SESTEN;

subject to |Sy| =7, Vg € A.

The constraints of (11) are not independent because the
sum of |S4|’s, nvy, must equal |S|. Using the fact that
{84,9 € A} is a partition of § and that when s € Sg,z. =
¢, the above cost function becomes

BY 9> > a (12)

gEA SESGTEN

Furthermore,
NS = U (NS ﬁSg/),
g'€A
and z, = ¢', when r € Sy. It follows that (12) can be

written as
YT Y (13

gEA sESg g’ EATENS nsg,

By gg' Y INen Syl (14)

9,9’ €A €Sy

Using the definition of the measure of an aura, we get

8" gd'mlg.q). (15)
9,9’ EA

Thus the problem of MRF texture generation in the
grayscale domain has been transformed to an optimiza-
tion problem with a linear cost function in the “miscibility
domain.” Note that the above derivation can be repeated
for any homogeneous, isotropic, internal interaction field
Ver = V between graylevels. For this general case we get
the following constrained minimization problem

min (> V(g,9)m(g,9) +2 > _ V(g,g')mlg,g") |,

xef2
€ geEA g<g’

subject to |Sy| =7, Vg € A.



A special case worth noting is the homogeneous isotropic
Potts model [17], for which

Vig,g') = 2644

where 6,/ is the Kronecker § symbol. The Ising model is
also a special case of the Potts model.

For the autobinomial case, the resulting patterns de-
pend strongly on both the sign of # and the number of
graylevels. The simulations of Section 5 show that the mis-
cibility framework is very appropriate for the explanation
and prediction of these patterns.

4.2 Constraints on Miscibilities

From an optimization point of view, the most interest-
ing fact about expressing the cost function in terms of the
aura measures is that it becomes linear as a function of
these variables. We can go one step further along the way
of transforming the nonlinear integer programming prob-
lem into a linear problem by introducing linear constraints
on the aura measures. These linear constraints are of two
kinds: equality constraints due to the uniform histogram
assumption and inequality constraints imposed by the lat-
tice geometry and the boundary conditions. The first kind
of constraints can be readily obtained from Proposition 4.
Note that because of the symmetric neighborhood assump-
tion, equation (c) of Proposition 4 is satisfied. Therefore
the aura measures satisfy n = |A| equality constraints given

by

ISgl|N],Yg € A. (16)

Y mlgg) =

g'EA

The inequality constraints are more difficult to obtain,
because they strongly depend on the particular texture
synthesis problem we are dealing with. To give the reader
a flavor of these constraints, let us consider the binary
ferromagnetic Ising model * with uniform histogram and
toroidal boundary conditions. Defining the graylevel sets
So (black pixels) and S; (white pixels) the cost function to
be minimized is reduced to —m(1,1) under the constraints

m(0,0) +m(0,1) = 28|,
m(0,1) +m(1,1) = 28|

Minimizing the cost function means maximizing the
clumpiness of the white pixels, which also means, be-
cause of the uniform histogram constraint, maximizing
the clumpiness of the black pixels. It follows from the
above linear constraint that the boundary between the two
graylevel sets as expressed by the aura measure m(0,1)
is minimized. It is clear that the simultaneous presence
of both black and white pixels imposes a lower bound on
m(0,1). This lower bound depends on the geometry of the
lattice. For a square toroidal lattice, |S| = N?, the lower
bound is 2N and is reached by a configuration in which the
black and white pixels form two stripes adjacent to each
other. When the lattice is rectangular these two stripes will
be parallel to the smaller of the rectangle dimensions. The
reader is referred to Section 5 for examples of equilibrium
patterns on non-square lattices.

*In this example the binary state is taken to be 0 or 1.

If we now define the vectors

m = (m(0,0),m(0,1),...,m(0,n—1),
m(1,0),...,m(n—1,n — 1))
VvV = (V(0,0),V(0,1),...,V(0,n — 1),

V(1,0),. ,V(n—l n—l))

where V(g,¢') = gg', then the constrained nonlinear in-
teger program can be reformulated as the following con-
strained linear integer program

. T
min V' m
m>0

subject to Bm =b,Dm > d.

In principle, it is possible to solve this problem directly
in the miscibility domain. In many cases the inequality
constraints can be derived from a simple analysis of the
lattice geometry and histogram constraints [12].

4.3 Boundary Optimization Principle
4.3.1 Ising Model

As mentioned, the Ising model is a special case of both
the autobinomial and Potts models. Let S; be the set of
sites with spin up, and S_; be the set of sites with spin
down. The optimization problem, as a special case of the
Potts model optimization, becomes

min (—6)[m(5_1, 5_1) —|— m(S1, 51) — 2m(S1 s 5_1)].
xe$2

Note that we have omitted the histogram constraint for this
example. When § > 0, the expression between brackets is
maximized. The maximum occurs when either every site is
1 or every site is —1 so that m(S_1,.51) = 0 (spontaneous
magnetization). This means that the boundary between
the two regions is minimized; actually, its length is zero
here. When g < 0, the expression is minimized. This cor-
responds to the antiferromagnetic phase. In general the
energy optimization problem can be recast as a boundary
optimization problem. Similar conclusions hold under the
uniform histogram constraint. For the Ising model on a lat-
tice of known size, if we know the total number of up spins
|S1| and the total number of pairs of up spins m(5Si, S1),
the model is completely characterized. This characteriza-
tion in terms of boundary length, well known in the physics
literature [11], is a special case of Proposition 4.

4.3.2 The General Case

The above conclusions about the boundary optimiza-
tion principle in the binary case can be easily generalized to
an arbitrary number of graylevels and an arbitrary neigh-
borhood order. For instance, without any histogram con-
straint, the patterns generated by the isotropic autobino-
mial model with positive £ will become all white. This can
be interpreted as a trivial boundary minimization, where
the boundary lengths are all zero. When a uniform his-
togram is imposed on the patterns, the situation is slightly
more complicated, but can still be understood in terms of
mixing (boundary maximization) and separation (bound-
ary minimization). Simulations are provided in Section 5
that show boundary optimization properties of the autobi-
nomial model in the graylevel case.



4.4 Anisotropic Field Case

The objective of this section is to extend the definition of
the aura and of the miscibility matrix to accommodate the
important cases where anisotropic field phenomena need to
be taken into account. This is typically the case with tex-
tures synthesized through anisotropic Gibbs random fields.
In order to capture the influence due to directionality, we
will assume that the neighborhood of each site can be parti-
tioned into K subneighborhoods, so that in each subneigh-
borhood the field behaves isotropically. More formally, we

will write
K

No=| M vses, (17)
k=1
where N M A? =0, unless I = k. Then we can define the

aura of the subset A with respect to the subset B for the
k-th subneighborhood structure by

O5(4) = [ JBnAY). (18)

SEA

It can be readily seen using the above definition that

0x(4) = | 05(4). (19)

If each subneighborhood has size 1, then the measures of
O%(A) are co-occurrences. Let m*(A, B) be the measure

of O%(A). We have

m(A, B) =Y m"(4,B), (20)

so that the aura measures are a linear combination of co-
occurrences.

Specifically, for the autobinomial model, if the 3;’s are
anisotropic, the equilibrium solution will be achieved by
solving

K
max [ Y g’ > pem*(9,9") |,
k=1

xef2
€ 9,9’ €A

subject to |Sy| = v, Vg € A. (21)

The simulations given in the next section support the in-
tuition that can be derived from the anisotropic miscibility
analysis of the above linear programming problem.

5 Simulations

5.1 Mixing and Separation

As mentioned, the patterns produced by the MRF tex-
ture model in the extensive study by Cross and Jain [2]
were non-equilibrium patterns. In this paper, we apply
the aura measures to the analysis of MRF patterns near
equilibrium. The simulations here assume toroidal bound-
ary conditions and the autobinomial MRF energy function
described in Section 2.

The samples have been synthesized by the Metropolis
exchange method, with log annealing according to

C

T=—°
log(p +1)

() (d)

Figure 2: Examples of near-equilibrium patterns for first-
order MRF’s with negative isotropic parameters. Images
(a)-(d) correspond to 2-5 graylevels respectively. Each im-
age is 64 x 64.

where p = |k/10| and k = 0, 1, ... is the iteration num-
ber. The scale factor in the numerator is typically cho-
sen in the range ¢ € (0,10]. In our simulations, ¢ = 1.
Though its choice is ad hoc, its behavior is understood
as a rate constant that is proportional to how slow the
annealing progresses. One iteration is counted as N? at-
tempted exchanges. An exchange is attempted whenever
two randomly picked sites have different locations and
graylevels. The total number of iterations for the patterns
was 10000, with the temperature lowered according to the
above schedule every 10 iterations. The initial state for
all these simulations was a random noise image with uni-
form histogram. Because of the exchange operation, the
histogram is preserved throughout the texture synthesis,
and the (assumed constant) external field can be ignored.

For isotropic parameters, the behavior of the autobino-
mial MRF is well described by its graylevel miscibilities. In
Figure 2 are shown four texture samples corresponding to
first-order negative isotropic parameters. All of these have
identical parameters; the only difference is that the number
of graylevels in (a)-(d) changes from 2-5. These patterns
are close enough to equilibrium that the minimum energy
characteristics are easily seen. In (a) we see the checker-
board being made in an effort to minimize m(1,1) (white
self-miscibility). The terms m(0,0) and m(0,1) are multi-
plied by zero and can be ignored. Optimization is achieved
by moving blacks between all the whites, so that the misci-
bility of the whites goes to zero. In (b) the sum of m(1,1),



4m(2,2), and 4m(1,2) is minimized. The last two terms
have the greatest weight, and can be interpreted as color 2
(white) trying to form a checkerboard, but not with color
1 (gray). This leaves the configuration of a checkerboard
between colors 0 (black) and 2, with color 1 forming a
blob off by itself. To minimize the term m(1,1), it would
be necessary to have a fourth color to mix with it. This
happens in (c). The image in (d) and images made with
higher numbers of graylevels have similar explanations, all
deriving from intuition about mixing.

For positive isotropic parameters, the behavior is de-
scribed by immiscibility, the separation of the different col-
ors. Figure 3 1sidentical to that of Figure 2 with the excep-
tion of the sign of . In (a) we see separation of black and
white as m(1,1) is maximized. As white mixes only with
white, black is forced to mix only with black. If the synthe-
sis of this energy function were done using a non-exchange
method such as the Gibbs Sampler, the optimal pattern
would be solid white. The black remains only because of
the exchange method, which preserves the histogram of the
lattice. In (b) the sum of m(1,1), 4m(2,2), and 4m(1,2)
is maximized. Graylevel 2 forms a blob while maximizing
the presence of graylevel 1 along its boundary. Graylevel 0
has no other choice but to form a blob. The image in (c)
and images made with higher numbers of graylevels have
similar explanations which derive from intuition about sep-
aration.

As mentioned before, for autobinomial fields synthesized
with the Metropolis exchange, the result should be the
same if all the graylevels of value g are replaced with those
of value n — g — 1. This graylevel symmetry shows up in
the miscibility behavior. For example, both black (0) and
white (n — 1) have the same mixing behavior in all the
samples shown in this section.

5.2 Boundary Maximization and
Minimization

The mixing and separation described in the previous
section has another interpretation in terms of the princi-
ple of graylevel boundary length. The behavior that was
described for the Ising model in Section 4.3.1 is an ex-
ample of the boundary length optimization for the binary
case. The examples in Figure 2 are also examples of max-
imizing graylevel boundary length for a general number of
graylevels. Similarly, Figure 3 gives examples of minimiz-
ing graylevel boundary length.

When the lattice geometry is not square, the boundary
minimization manifests itself in a slightly different way. As
mentioned in Section 4.2, there is a geometry-dependent
lower bound for the cross-miscibility measures. Of all the
configurations that separate white and black, the one they
will choose will be the one with minimum total boundary
length. On a 32 x 64 lattice, this is a left-right separation,
with boundary length proportional to 2 x 32. (There are
two boundaries since the lattice is toroidal). An example
of this selection is illustrated in Figure 4 for graylevels 2
and 3. The parameters used to synthesize these patterns
are identical to those used in Figure 3 (a) and (b), but the
model order has been increased to fourth. The higher order
neighborhood is responsible for the less noisy appearance
of these patterns.

5.3 Miscibility Matrices and Isotropic
Texture Samples

The notions of boundary length and miscibility are nu-
merically stated by the miscibility matrices. These matri-
ces for the texture samples of Figure 2 (a)-(d) are shown in
Figure 5. Note that the auras were all formed with first or-
der neighborhoods (|| = 4), as the texture samples are all
first order MRF’s. The properties of Proposition 4 are eas-
ily checked for the | S| = 64 x 64 lattices used here. We note
that all of the aura matrices are becoming anti-tridiagonal.
For the positive bonding parameters, they become tridiag-
onal. These are shown in Figure 6. The diagonal domi-
nance of co-occurrence matrices has long been understood
to relate to texture clumpiness [18]. Here we have a precise
formulation of clumpiness as the aura self-measures.

We have begun investigating the ability of the aura to
measure the distance away from equilibrium of a texture
pattern. For positive isotropic textures, we know that the
miscibility matrix will become tridiagonal. The lattice ge-
ometry constrains the sup-diagonal terms, which when cou-
pled with Proposition 4, leaves us with a known optimal
value for the trace of the matrix. Thus, a measure of the
trace of the miscibility matrix gives an estimate of texture
pattern convergence. The traces of the normalized aura
matrices for seven near-equilibrium patterns such as those
shown in Figure 3 were plotted. The result is a straight
line, indicating that the trace grows linearly with the num-
ber of graylevels for positive isotropic patterns. For higher
order neighborhoods, the matrices tend toward diagonal
even faster, resulting in a steeper slope of the trace vs.
graylevel line. Similar opposite behavior occurs for nega-
tive parameters and anti-traces.

5.4 Anisotropic Fields

The samples shown thus far are all synthesized with
isotropic parameters. As the relative weights of the pa-
rameters are changed, the relative weights of the miscibil-
ities change as given in (21). In Figure 7, the parameters
are 3 = 1 (horizontal), 2 = 1 (vertical) on the left, and
B1 =1, B2 = 2 on the right. The stronger vertical clus-
tering is apparent on the right. Similarly, Figure 8 has
parameters 31 = —1, #2 = —1 on the left, and /1 = —1,
32 = —2 on the right. Here, the vertical tug is evident from
the vertical crystal defects. These result because the repul-
sion between vertical pairs is stronger than the repulsion
between horizontal pairs.

6 Summary

In this paper, a systematic approach for analyzing and
predicting the equilibrium patterns of textures generated
by MRF models has been introduced. The approach is
based on a set-theoretic concept, the aura of one set with
respect to another, and on a physically motivated frame-
work, boundary length and miscibility in multiphase fluids.
Based on the aura/miscibility framework and the simula-
tions, we can make the following conclusions:

. A new set-theoretic concept, the “aura”, has been in-
troduced and shown to provide a coherent new expla-
nation of the behavior of MRF texture patterns.

. The new aura framework allows the rewriting of the
nonlinear MRF energy function as a linear combina-



tion of aura measures.

. The aura measure has a miscibility interpretation
which allows the texture patterns to be both mathe-
matically and intuitively characterized by the amount
of mixing and separation between graylevels.

. The miscibility matrix, formed from the aura mea-
sures, is shown to be related to the classical co-
occurrence matrix. The miscibility matrix thus links
the popular co-occurrence analysis tool to MRF’s.

. The miscibility optimization, which holds for any
number of graylevels, generalizes the boundary length
optimization property of the binary Ising model.

. During the synthesis of texture the lattice geome-
try and Metropolis exchange algorithm enforce con-
straints on the miscibility matrix. These constraints
allow the miscibility matrix to be a useful tool for
measuring distance from equilibrium.

. The miscibility matrix also contains information
about global interactions between graylevel sets.
These global interactions result in a large scale struc-
ture that cannot be inferred from the MRF bonding
parameters alone.

Even though we are still in the process of exploring the
aura/miscibility framework for texture analysis and pre-
diction, we feel that the work presented in this paper has
already confirmed Besag’s observation that we quote from
his seminal paper [10]:

Incidentally, the fact that a scheme is formally
described as “locally interactive” does not imply
that the patterns it produces are local in nature
(cf. the extreme case of long-range order in the
Ising model).
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(a)
(b)

Figure 4: Lattice geometry affects the equilibrium pat-
tern by constraining the miscibilities between different
graylevels. In (a), the separation will always make a ver-
tical boundary, since that dimension is the shortest in this

b 32 x 64 lattice. Note this pattern is only two exchanges
from being at its minimum energy state. Similarly, in (b),
the two gray regions try to separate with vertical bound-
aries.

138 8054 0 170 5290

(d)

M = [ 8054 138] M=[ 170 5116 174

()

5290 174 0
Figure 3: Examples of near-equilibrium patterns for first- (a) (b)
order MRF’s with positive isotropic parameters. Images
(a)-(d) correspond to 2-5 graylevels respectively. Each im- 0 0 159 3937
age is 64 x 64. M = 0 34 3903 159
159 3903 34 0
3937 159 0 0
(c)
0 0 0 140 3136
0 0 100 3032 144
M= 0 100 3072 104 0
140 3032 104 0 0
3136 144 0 0 0
(d)

Figure 5: Miscibility matrices corresponding to textures in

Figure 2 (a) — (d).



5174 286 0
M = [ 7878 314 ] M = [ 286 4904 270 ]

314 7878 0 270 5194
(a) (b)
3850 246 0 0
Mo | 246 3598 252 0
= 0 252 3594 250
0 0 250 3846
(c)
3072 204 0 0 0
204 2828 244 0 0
M = 0 244 2794 238 0
0 0 238 2836 202
0 0 0 202 3078
(d)

Figure 6: Miscibility matrices corresponding to textures in

Figure 3 (a) — (d).

(a) (b)

Figure 7: Comparison of isotropic (a) and anisotropic (b)
positive parameters. The vertical parameter in (b) has
twice the value of the horizontal parameter. Both images
have 7 graylevels and are 64 x 64.
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(a) (b)

Figure 8: Comparison of isotropic (a) and anisotropic (b)
negative parameters. The vertical parameter in (b) has
twice the value of the horizontal parameter so its defects
favor vertical repulsion. Both images have 2 graylevels and
are 64 x 64.



