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Executive Summary 
 
We live our lives in digital networks. We wake up in the morning, check our e-mail, 
make a quick phone call, commute to work, buy lunch. Many of these transactions 
leave digital breadcrumbs – tiny records of our daily experiences, as illustrated in 
Figure 1. Reality mining, which pulls together these crumbs using statistical 
analysis and machine learning methods, offers an increasingly comprehensive 
picture of our lives, both individually and collectively, with the potential of 
transforming our understanding of ourselves, our organizations, and our society in a 
fashion that was barely conceivable just a few years ago. It is for this reason that 
reality mining was recently identified by Technology Review as one of “10 
emerging technologies that could change the world” (Technology Review, April 
2008). 
 

 
 
Figure 1: Patterns in human activity: automobiles, airplanes, telephone calls, ships. 
See http://www.bbc.co.uk/britainfromabove/stories/visualisations/index.shtml for 
amazing videos of the time evolution of these activity patterns. 
 
Many everyday devices provide the raw database upon which reality mining builds; 
sensors in mobile phones, cars, security cameras, RFID (‘smart card’) readers, and 
others, all allow for the measurement of human physical and social activity. 
Computational models based on such data could dramatically transform the arenas 
of both individual and community health. Reality mining can provide new 
opportunities with respect to diagnosis, patient and treatment monitoring, health 
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services use, surveillance of disease and risk factors, and public health investigation 
and disease control. The goal of this paper is to survey the potential of reality 
mining to improve public health and medicine, and to make recommendations for 
action. 
 
Currently, the single most important source of reality mining data is the ubiquitous 
mobile phone. Every time a person uses a mobile phone, a few bits of information 
are left behind. The phone pings the nearest mobile-phone towers, revealing its 
location. The mobile phone service provider records the duration of the call and the 
number dialed.  
 
In the near future, mobile phones and other technologies will collect even more 
information about their users, recording everything from their physical activity to 
their conversational cadences. While such data pose a potential threat to individual 
privacy, they also offer great potential value both to individuals and communities. 
With the aid of data-mining algorithms, these data could shed light on individual 
patterns of behavior and even on the well-being of communities, creating new ways 
of improving public health and medicine. 
 
To illustrate, consider two examples of how reality mining may benefit individual 
health care. By taking advantage of special sensors in mobile phones, such as the 
microphone or the accelerometers built into newer devices like Apple’s iPhone, 
important diagnostic data can be captured. Clinical pilot data demonstrate that it 
may be possible to diagnose depression from the way a person talks --  depressed 
people tend to speak more slowly, a change that speech analysis software on a 
phone might recognize more readily than friends or family do. Similarly, 
monitoring a phone’s motion sensors can also reveal small changes in gait, which 
could be an early indicator of ailments such as Parkinson’s disease. 

 
Within the next few years reality mining will become more common, thanks in part 
to the proliferation and increasing sophistication of mobile phones. Many handheld 
devices now have the processing power of low-end desktop computers, and they 
can also collect more varied data, due to components such as GPS chips that track 
location. The Chief Technology Officer of EMC, a large digital storage company, 
estimates that this sort of personal sensor data will balloon from 10% of all stored 
information to 90% within the next decade.   

 
While the promise of reality mining is great, the idea of collecting so much 
personal information naturally raises many questions about privacy. It is crucial 
that behavior-logging technology not be forced on anyone. But legal statutes are 
lagging behind data collection capabilities, making it particularly important to 

 2



begin discussing how the technology will and should be used. Therefore, an 
additional focus of this paper will be on developing a legal and ethical framework 
for using reality mining techniques in research, medical care, other health service 
delivery, and public health surveillance and disease control. 
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1. CAPABILITIES OF REALITY MINING 
 
To date, the vast majority of research on the human condition has relied on single-
shot, self-report data: a yearly census, public polls, focus groups, and the like. 
Reality mining offers a remarkable, second-by-second picture of both individual 
and group interactions over extended periods of time, providing dynamic, structural 
information and rich content. Mobile phone location and movement data, call logs, 
voice analysis during calls, and email records allow a detailed picture of face-to-
face, voice, and digital communication patterns. These patterns can, in turn, afford 
us a new level of insight into problems of interest to public health and medicine. 
 
1.1 Assessment of Individual Health 
 
The basic functionality of mobile phones consists of the digital signal processing 
and transmission of the human voice. Advanced mobile phones also have 
accelerometers, so that they can measure the body movement of their users, and 
geolocation hardware (both GPS and other methods), so that they can report their 
users’ locations. As a consequence, when users carry around and use their mobile 
phones they produce a rich characterization of their behavior. 
 
Reality mining of these behavior signals may be correlated to the function of some 
major brain systems. This statistical behavior analysis therefore provides 
capabilities that can be thought of as a sort of low-resolution brain scanning 
technology. Figure 2 illustrates the relationship between brain state and observable 
behaviors for four types of behavior:   
 

• Arousal of the autonomic nervous system produces changes in activity 
levels. These changes can be measured by audio or motion sensors, and 
have been successfully used to screen for depression (Stoltzman, 2006; 
Sung, Marci, and Pentland 2005; France et al., 2000).    

 
• Tight time-coupling between people’s speech or movement (called 

‘influence’) is an indication of attention, since such tight coupling cannot be 
achieved without attending to and modeling the other person. This 
‘influence’ measure has been successfully used for more than 30 years as a 
screen for language development problems in pre-verbal infants (Jaffee et 
al., 2001).    

 
• Unconscious mimicry between people (e.g., reciprocated head nods, posture 

changes, etc.) is mediated by cortical mirror neurons and is very highly 
correlated with feelings of empathy and trust. Measurements of mimicry are 
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thus considered to be reliable predictors of trust and empathy (Chartrand 
and Baugh, 1999), and mimicry has been manipulated to dramatically 
improve compliance (Bailenson and Yee, 2005).    

 
• Consistency or fluidity of movement or speech production is a well-known 

measure of cognitive load: novel physical activities or those ‘loaded’ by 
other mental activity have greater entropy (randomness) than activities that 
are highly practiced and performed with a singular focus. This relationship 
has long been used for diagnosis in both psychiatry (Teicher, 1995) and 
neurology (e.g., Klapper, 2003). 

 
    

cerebellar motor autonomic thalamic attention  mirror neurons 

ACTIVITY INFLUENCE MIMICRY CONSISTENCY 
CHANGE ON TIMING OF MOVEMENT  

Figure 2: Reality mining has shown that statistical analysis of behavior can be 
related to the function of some major brain systems, providing capabilities that can 
be thought of as a sort of low-resolution brain scanning technology. 
 
These qualitative measurements of brain function have been shown to be powerful, 
predictive measures of human behavior (Pentland, 2008). They play an important 
role in human social interactions, serving as ‘honest signals’  that provide social 
cues to dominance, empathy, attention, and trust, and may offer new methods of 
diagnosis, treatment monitoring, and population health assessments.  

 

Self-report data can also be collected to complement the unobtrusive, 
automatically-generated and -collected reality mining data streams. The widespread 
use of portable digital devices such as cell phones and personal digital assistants 
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(PDAs) enable this marriage of subjective and objective data types. For over a 
decade, these devices have been used to gather reported data from individuals 
during the course of their daily lives on such phenomena as symptoms, substan
use, and mood.  

 

ce 

he technologies for collecting self-reported data in this way are rapidly evolving, 
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elf-reported data offer direct assessment of individuals’ cognitive and emotional 
 

 

 

.2 Mapping Social Networks 

ne of the most important applications of reality mining may be the automatic 

T
but even existing approaches are flexible, automated, and deployable on a large 
scale. Scheduling of self-reports can be fixed (e.g., on a daily or some more or le
frequent timetable), event-based (in response to an event experienced by the 
respondent or a pattern in one of the data streams objectively recorded by the
digital device), or randomly determined. Depending on the device, questions o
prompts can be delivered aurally or visually, and responses can be given by voic
or touch (e.g., keypad presses or interaction with a display).   
 
S
states, perceptions of events, and information on their behaviors and the contexts in
which they are involved that cannot be captured through other reality mining data 
streams. In many cases, the outcomes of interest in medicine and public health, 
such as some kinds of symptoms, can be measured only through self-report.  By
gathering self-reported data in tandem with other reality mining data streams, 
memory errors are reduced and dynamic aspects of health phenomena are more
fully revealed.  
 
1
 
O
mapping of social networks (Eagle and Pentland, 2006). In Figure 3 (a), you see a 
smart phone that is programmed to sense and continuously report on its user’s 
location, who else is nearby, the user’s call and SMS patterns, and (with phones 
that have accelerometers) how the user is moving. One hundred of these phones 
were deployed to students at MIT during the 2004-2005 academic year. Figure 3 
(b) shows the pattern of proximity among the participants during one day; even 
casual examination shows that the students were part of two separate groups: the 
Sloan School and the Media Lab.  
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a         b    
 

 

c 

Figure 3: Mapping social networks from mobile phone location / proximity data. 
3(a) shows a `smart phone’ programmed to sense other people using Bluetooth,  
3(b) shows the pattern of proximity between people during one day, and 3(c) shows 
that different social relationships are associated with different patterns of 
proximity. 
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Careful analysis of these data shows different patterns of behavior depending upon 
the social relationship between people. Figure 3(c) shows the pattern of proximity 
during one week, and it can be seen that self-reported reciprocal friends (both 
persons report the other as a friend), non-reciprocal friends (only one of a pair 
reports the other as a friend), and reciprocal non-friends (neither of a pair reports 
the other as a friend) exhibit very different patterns (Eagle, Lazer and Pentland, 
2007). By using more sophisticated statistical analysis we can map each 
participant’s social network of friends and co-workers with an average accuracy of 
96% (Dong and Pentland, 2007).  
 

Reality mining’s capability for automatic social network mapping is now being 
used in a variety of research applications. As an example, a current research project 
underway at MIT is aimed at understanding health-related behaviors and infectious 
disease propagation. At this time, we have above 80% participation of students in a 
MIT dormitory that includes freshmen and upperclassmen, and are beginning to 
compare the behavior and health changes that freshmen normally experience with 
the changes in their various social networks. This experiment should help to 
disentangle causal pathways about how social networks influence obesity and other 
health-related behaviors, as well as provide unprecedented detail for modeling the 
spread of infectious disease (see http://hd.media.mit.edu/socially_aware.html). 

 
1.3 Beyond Demographics to Behavior Patterns 
 
Most government health services rely on demographic data to guide service 
delivery. Demographic characteristics, however, are a relatively poor predictor of 
individual behavior, and it is behavior – not wealth, age, or place of residence – 
that is the major determinant of health outcomes. Reality mining provides a way to 
characterize behavior, and thus provides a classification framework that is more 
directly relevant to health outcomes (Pentland, 2008). 
 
The pattern of movement between the places a person lives, eats, works, and hangs 
out are known as a behavior pattern. Reality mining research has shown that most 
people have only a small repertoire of these behavior patterns, and that this small 
set of behavior patterns accounts for the vast majority of an individual’s activity 
(Pentland, 2007).      
 
The fact that all mobile phones constantly measure their position (either through 
GPS or by finding the nearest cell tower) means that we can use reality mining of 
mobile phone location data to directly characterize an individual’s set of behavior 
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patterns. We can also cluster together people with similar behavior patterns in order 
to discover the independent subgroups within a city.   
 
Figure 4(a) shows movement patterns with popular ‘hang outs’ color coded by the 
different subpopulations that populate these destinations, where the subpopulations 
are defined by both their demographics and, more importantly, by their behaviors. 
Figure 4(b) shows that the mixing between these different behavior subpopulations 
is surprisingly small.  
 
Understanding the behavior patterns of different subpopulations and the mixing 
between them is critical to the delivery of public health services, because different 
subpopulations have different risk profiles and different attitudes about health-
related choices. The use of reality mining to discover these behavior patterns can 
potentially provide great improvements in health education efforts and behavioral 
interventions.   
 

a        b  
 
Figure 4: Analysis of travel patterns allows discovery of largely independent 
subpopulations within a city. Movement patterns (a), measured from GPS mobile 
phones, allow (b) segmentation of the population into subpopulations with differing 
behavior patterns, and measurement of the ‘mixing’ between those groups (Sense 
Networks 2008). 
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1.4 Assessment of Population Health 
 
Once we have discovered the subpopulations within a community, measured their 
behavior patterns, and characterized their mixing with other subpopulations, we can 
then use reality mining techniques to assess their health as a population. Figure 5 
shows a plot of regional communication diversity (e.g., the amount of mixing with 
other subpopulations) and the corresponding index of deprivation. This index is a 
socioeconomic status measurement that is a combination of metrics such as average 
income levels, access to healthcare, and education.  
 
This graph shows some of the raw power offered by reality mining: it represents a 
data set consisting of 250 million hashed (anonymized) phone numbers and 12 
billion phone calls. Of particular interest is that the regions with a greater diversity 
of communication tend to be the least deprived. Diversity of communication 
behavior has a significant correlation of r=-.75, p<0.001 with the regional index of 
deprivation (Eagle, 2008).   
 
These data, drawn from town councils across the UK, show that it is possible to use 
patterns of communication to identify ‘information ghettos’ that may have serious 
social problems. This capability may allow government and public health services 
to be far more responsive to citizen needs than is possible by using census or 
survey data.   

 
 
Figure 5. A plot of regional communication diversity and the corresponding index 
of deprivation. 
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Other recent technological developments are also emerging to help us better 
understand population health. For example, Google has developed a method – 
Google Flu Trends – to detect influenza outbreaks indirectly by tracking the 
frequency of World Wide Web searches for terms related to influenza-like illnesses 
(Ginsberg et al., in press). For geographic areas as small as states in the U.S., 
Google researchers have demonstrated that such search frequencies correlate 
strongly with estimated influenza incidence based on conventional surveillance of 
cases detected in a Centers for Disease Control and Prevention (CDC) network of 
sentinel laboratories and physicians. While the CDC estimates have a reporting lag 
of 1-2 weeks, the reporting lag for Google Flu Trends estimates is only a day or 
less. Google Flu Trends may be particularly useful in those areas where good 
surveillance systems are lacking.   
 
Despite these valuable features, Google Flu Trends does not offer some 
information provided through traditional surveillance, such as the demographic 
characteristics of the ill. Google Flu Trends estimates require large populations of 
Web users, thus estimates for smaller geographic units (e.g., small-to medium-sized 
cities, towns, and areas) might not be possible. Similarly, Google Trends outbreak 
detection strategies have not yet succeeded for less common conditions (e.g., 
enteric infectious diseases). In principle, approaches like Google Flu Trends may 
be susceptible to bias from search activity unrelated to local disease incidence 
(such as that stimulated by media coverage of outbreaks in other communities).   
 
Traditional sentinel surveillance efforts can also be improved with current 
technologies. For instance, the Automated Epidemiologic Geotemporal Integrated 
Surveillance System (AEGIS), developed by Children’s Hospital Boston, involves 
Internet-based data collection, management, and analysis systems to produce more 
timely (weekly) estimates of incidence than the CDC effort, and for much smaller 
geographic areas (sub-county level across Massachusetts). In another example, 
almost 30,000 residents of three European countries (Belgium, the Netherlands, and 
Portugal) voluntarily report on their influenza symptoms on a weekly basis at the 
Gripenet web sites (van Noort et al., 2007).  The patterns of estimated incidences of 
influenza-like illnesses over time from Gripenet correspond closely to those from 
traditional sentinel surveillance.  
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2. THE FUTURE POTENTIAL OF REALITY MINING  
 
In the previous section we discussed how reality mining has the potential to assess 
individual health, to automatically map social networks, to discover subpopulations 
with different behavior patterns, and to assess the health of those subpopulations. 
In this section we will explore how these capabilities may facilitate research and 
public health delivery in areas ranging from encouraging healthy behaviors to 
monitoring of medical treatments. 
 
2.1 Health Behaviors  
 
Despite compelling evidence, most efforts to encourage healthy behavior and 
medical compliance continue to be organized around conscious decision making 
only, neglecting the social dimension almost entirely. By understanding how to 
leverage social networks, we may achieve more in terms of behavioral change.  
 
For example, research suggests that some chronic health-related 
conditions/behaviors are “contagious,” in the sense that individual-level outcomes 
are linked to other individuals with whom one shares social connections. Both 
smoking behavior (Christakis and Fowler, 2007) and obesity (Christakis and 
Fowler, 2008) have been shown to spread within social networks. Smoking and 
obesity likely serve as good models for other health related behaviors, such as diet, 
exercise, general hygiene, and so on. 
 
These findings, however, beg for an examination of the causal mechanism – an   
essential step if interventions are to be designed to improve public health. For 
example, is the diffusion of these behaviors and conditions driven by the 
emergence of norms within the network – e.g., smoking is cool; one should 
exercise frequently, etc.? Alternatively, is the diffusion driven directly by the social 
component of the relevant behaviors – e.g., smoking, eating, or exercising with 
one’s friends?  The type of data needed to understand the causal mechanism is 
exactly the fine granularity data that reality mining is poised to provide. 

 

Further, once the causal mechanisms are better understood, reality mining might 
yield specific points of leverage for effective interventions. For example, if certain 
behaviors are indeed contagious, this would suggest that targeting individuals in 
key parts of the network could prove useful (although privacy issues are relevant 
here; see privacy discussion). Taking this a step further, one could imagine using 
reality mining to evaluate particular public health interventions. Ideally, program 
evaluations should test not only whether an intervention was effective, but also the 
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theory underlying the intervention. Consider, for example, an intervention based on 
targeting particular individuals and changing their behaviors. In an attempt to create 
an avalanche of change, it would be good to know if a given intervention failed 
because the targeting failed, or because the avalanche failed to materialize despite 
successful targeting. 

 

2.2 Infectious Disease 

 
With GPS and related technologies, it is increasingly easy to track the movements 
of people. Mobile phones, in particular, allow the tracing of people’s movements 
and physical proximities over time more precisely than can be done by current 
approaches (often an individual’s recall of their movements) (Gonzalez, Hidalgo, & 
Barabasi, 2008; Eagle & Pentland, 2006). How might a pathogen, such as the bird 
flu, driven by physical proximity, spread through a population?  
 
As the world becomes increasingly interconnected through the movement of people 
and goods, the potential for global pandemics of infectious disease rises as well. In 
recent years, outbreaks of SARS and other serious infectious diseases in widely 
separated but socially linked communities highlight the need for fundamental 
research on disease transmission and effective prevention and control strategies. In 
developed countries, public health officials typically investigate cases of serious 
infectious disease (e.g., tuberculosis, SARS, anthrax, measles, Legionnaires’ 
disease, etc.) to identify the source of infections and other cases of disease, and 
prevent further transmission.  Such infections could be transmitted from a point 
source or person-to-person (directly or indirectly through contaminated airspace, 
surfaces, or objects).  
 
In any of these scenarios, investigations are difficult and time consuming, while 
transmission often continues. Logs of location tracking data from cases’ cell 
phones could be examined to identify places where cases might have acquired or 
transmitted infection, thereby facilitating the investigation. People often forget all 
the locations they have visited, even for recent periods, and similarly might not 
know many of the people to whom they were exposed or might have exposed 
themselves, all of which underlines the potential value of systematically analyzing 
such records for disease control.  
 
Many ordinary infections already exact a high cost on society. Acute viral 
respiratory and gastroenteric infections such as the “common cold,” influenza, and 
“stomach flu” produce large negative economic impacts – more than any class of 
disease – in the United States and elsewhere. It may be possible to determine the 
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relationship between participants’ exposures – to symptomatic others and locations 
visited by symptomatic others – and participants’ subsequent respiratory and 
gastroenteric symptoms. Utilizing reality mining to map social networks may also 
help to determine whether persons in central social network positions and those 
with high spatial mobility are more or less vulnerable to infection.   
  
Reality mining tools might also assist in the detection of outbreaks of temporarily 
disabling disease. For instance, acute illnesses that cause sufferers to reduce their 
physical activity and mobility (even confining them to bed) or communication 
behavior, such as influenza, should be noticeable in several types of reality 
monitoring data streams. At the population level, fluctuations in digital traces of 
these behaviors may indicate outbreaks of temporarily disabling infectious diseases.  
To discern outbreaks in this way, long-term data of these sorts would be required to 
estimate normal background variation. Community-specific unique events (e.g., 
labor strikes, civil strife, power outages, etc.) would also have to be eliminated as 
alternate explanations before positing the presence of an outbreak.   
 
2.3 Environmental health 
 
Epidemiologic investigations of the links between individuals’ exposures to 
airborne pollutants, such as particulate matter, carbon monoxide, and nitric oxide, 
and various health conditions have relied on a variety of exposure measurement 
methods. To date, most studies of this type have been based on comparisons of 
aggregates of persons (e.g., residents of a particular neighborhoods or cities, or 
students at specific schools), with exposure measurements applying to all 
individuals in a given group. Recently, researchers have begun using more 
individualized measures of exposures. Some such studies employ static measures of 
exposure (e.g., estimated pollution levels for a particular residence based on 
pollution levels recorded from the nearest fixed site sensors in the community 
and/or inferred from proximity to roadways with known traffic frequencies 
summarized over time). Measures used in other recent studies provide snapshots of 
exposure, such as those derived from portable instruments worn by research 
subjects or biomarkers (e.g., traces of pollutants found in blood, urine, or breath).  
These latter approaches, while valuable, are labor-intensive and costly, and can be 
effectively deployed only in small samples for brief observation periods or short 
series of assessments, thus limiting their widespread use and hampering more 
detailed understanding of environmental health.   
 
Air pollution levels can vary dramatically over short distances and time scales in 
urban and other environments, and environmental health experts have called for 
more precise and dynamic measures of time-activity patterns in relation to 
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exposures. Location tracking data generated by cell phones, when coupled with 
measurements of ambient air pollution at numerous places in a community 
(gathered from existing air quality monitoring stations and/or inferred from vehicle 
traffic patterns and locations of industrial facilities), may offer just the kind of 
exposure measurement needed. This inexpensive approach would yield dynamic 
and temporally and spatially more precise measures of exposure suitable for 
studying large samples of individuals. The location tracking data might even permit 
differentiating time spent indoors vs. outdoors, through momentary observations in 
which an individual’s (cell phone’s) location can be detected from cell tower data 
but not through GPS data. (GPS readings require a line of sight to satellites 
overhead and are thus generally not available when indoors.)    
 
2.4 Mental Health 
 
Even though they are quite treatable, mental diseases rank among the top health 
problems worldwide in terms of cost to society. Major depression, for instance, is 
the leading cause of disability in established market economies (RAND 
Corporation,  2004).  Reality mining technology might assist in the early detection 
of psychiatric disorders such as depression, attention deficit hyperactive disorder 
(ADHD), bipolar disorder, and agoraphobia.  
 
Diagnoses of psychiatric disorders often are based on both subjective states and 
observable behaviors. In clinical settings, measurement of these states and 
behaviors for diagnostic purposes is based overwhelmingly on patient self-report, 
proxy/informant report (e.g., by a teacher or family member), laboratory 
performance tasks, and/or clinician assessment of patient behavior in clinical 
settings. Each of these approaches provides useful information, but the agreement 
between these methods tends to be moderate, which may produce somewhat 
unreliable diagnoses. Electroencephalograph (EEG) assessments are quite useful in 
detecting the possible presence of some disorders (e.g., ADHD), although currently 
they cannot always differentiate diagnoses reliably (i.e., similar EEG patterns can 
reflect different disorders).   
 
Many signs and symptoms of these kinds of psychiatric disorders explicitly or 
implicitly relate to an individual’s physical movement and activity patterns and 
communicative behavior, usually with reference to particular temporal periods or 
cycles. Data streams from reality mining approaches allow direct, continuous, and 
long term assessment of these patterns and behaviors. Accelerometers in mobile 
phones, if carried in a pocket, for instance, might reveal fidgeting, pacing, abrupt or 
frenetic motions, and other small physical movements. Location tracking functions 
reveal individuals’ spatial and geographic ranges, variation in locations visited and 
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routes taken, and overall extent of physical mobility. The frequency and pattern of 
individuals’ communications with others and the content and manner of speech 
might also reflect key signs of several psychiatric disorders.   
 
The value of these data streams would be multiplied when combined with data 
reported in real-time by individuals about their psychological states and the 
contexts in which they are involved.  Such reports could be through a variety of 
response modes on a cell phone and might be triggered by patterns in the location, 
movement, or communication data or collected on a fixed (hourly, daily, weekly, 
etc.) or random schedule.   
 
Reality mining methods for diagnosis of medical and psychiatric disorders might be 
particularly valuable with children and adolescents, who may report their past 
emotional, mental, and physical states less reliably and articulately than adults.  
Linguistic and cultural differences between patients, their families, and clinicians 
also can make diagnosis more difficult, and reality mining approaches might yield 
diagnostic data that circumvent these challenges to a large degree.   
 
 

a       b  
 
 
Figure 6: (a) Voice analysis to extract activity, influence, mimicry, and consistency 
measures. (b) As estimates of depression level, there is a correlation of r = 0.79 
between these telephone-based measures and the Hamilton Depression Index. 
 
 
For a more specific example of the potential power of reality mining technology in 
aiding diagnosis, consider the data presented in Figure 6. Researchers have long 
known that speech activity can be affected in pathological states such as depression 
or mania. Thus, they have used audio features such as fundamental frequency, 
amplitude modulation, formant structure, and power distribution to distinguish 
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between the speech of normal, depressed, and schizophrenic subjects (France et al., 
2000; Stoltzman, 2006). Similarly, movement velocity, range, and frequency have 
been shown to correlate with depressed mood (Teicher, 1995) (These results can be 
understood in terms of the qualitative brain system assessment illustrated in Figure 
2). 

In the past, performing such measurements outside the laboratory was difficult 
given the required equipment’s size and ambient noise. Today, however, even 
common cell phones have the computational power needed to monitor these 
correlates of mental state, as illustrated in Figure 6a. We also can use the same 
methodology for more sophisticated inferences, such as the quantitative 
characterization of social interactions. The ability to use inexpensive, pervasive 
computational platforms such as cell phones to monitor these sensitive indicators of 
psychological state offers the dramatic possibility of early detection of mental 
problems. 

 
2.5 Treatment Monitoring 
 
Once a course of treatment (whether behavioral, pharmaceutical, or otherwise) has 
been chosen, it is important for a clinician to monitor the patient’s response to 
treatment. The same types of reality mining data used for diagnosis would also be 
relevant for monitoring patient response to treatment, especially when such data on 
the patient are available for a period before diagnosis and can serve as a baseline 
for comparison. Even when these data streams are not relevant for diagnosis, they 
might be useful in assessing side effects of treatment, such as reduced mobility, 
activity, and communicative behavior. Because these data are collected in real-time, 
a clinician would be able to adjust treatment according to the patient’s response, 
perhaps leading to more effective treatment and preventing more costly office visits.   
 
Continuous monitoring of motor activity, metabolism, and so on can be extremely 
effective in tailoring medications to the individual. Currently, doctors prescribe 
medications based on population averages rather than individual characteristics, 
and they assess patients for the appropriateness of the medication levels only 
occasionally – and expensively. With such a data-poor system, it is not surprising 
that medication doses are frequently over- or underestimated and that unforeseen 
drug interactions occur. Going further, correlating a continuous, rich source of 
behavioral data to prescription medication use for millions of people could make 
drug therapies more effective and help medical professionals detect new drug 
interactions more quickly.  
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As a more specific example of how reality mining capabilities can be used to 
monitor treatments, consider the medication needs of Parkinson’s patients. To 
function at their best, Parkinson’s patients’ medications must be optimally adjusted 
to the diurnal variation of symptoms. For this to occur, the managing clinician must 
have an accurate picture of how each patient’s combined lack of normal movement 
(hypokinesia) and disruptive movements (dyskinesia) fluctuates throughout a 
typical day’s activities.  

 

To achieve this, we combined movement data from wearable accelerometers with 
standard statistical algorithms to classify the movement states of Parkinson’s 
patients and provide a timeline of how those movements fluctuate throughout the 
day. Two pilot studies were performed, consisting of seven patients, with the goal 
of assessing the ability to classify hypokinesia, dyskinesia, and bradykinesia (slow 
movement) based on accelerometer data, clinical observation, and videotaping. 
Using the patient’s diary as the gold standard, the result was highly accurate 
identification of bradykinesia and hypokinesia. In addition, the studies classified 
the two most important clinical problems— predicting when the patient “feels off” 
or is about to experience troublesome dyskinesia—perfectly (Klapper, 2003). This 
type of fine-grained information, key to monitoring patients’ treatment, is a strong 
endorsement of the value of reality mining techniques.  
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3. OTHER HEALTH APPLICATIONS THAT LEVERAGE REALITY 
MINING  
 
The ability of reality mining to automatically map social networks has many 
potentially important applications in public health. In this section we will explore 
three key examples:  
 

1) Reinforcing connections to an individual’s social support system, since this 
may be the most effective way to encourage adoption of healthy behavior 
patterns (Franks et al., 1992).   

2) Emphasizing network interactions and leveraging group dynamics as part of 
a social network approach to health education (Pentland, 2005). 

3) Detecting breakdowns in the social support system, so that the support 
system is more efficient. 

 
3.1 Improving Connection to the Social Support System 
 
The ability to map social networks, and to differentiate between friendship 
networks, work networks, and family networks, provides the ability to 
automatically provide better connections to the appropriate social support network. 
This step is important because appropriate reinforcement of social connections 
may be the most effective way to encourage adoption of healthy behavior patterns 
(Franks et al., 1992). As an example, consider how elders could be better connected 
to their social support network through such an approach. 
 
One can imagine a system that strengthens the social ties between an elder patient 
and their friends by leaving occasional voice mail reminders to call and talk. Such a 
system could also watch for a marked change in behavior—such as decreased 
movement, socializing, or voice patterns—and then use its knowledge of the 
persons’ personal networks to reach out and connect them by voice mail reminders. 
The system need not tell people something is specifically wrong or describe why it 
left a particular message. Nor would it call the doctor except in extreme 
circumstances, because doing so could violate elders’ privacy and might actually 
interfere with proper medical support. Instead, this type of monitoring would work 
to strengthen the social support network when the need is likely to be most 
significant. 
 

3.2 Leveraging Social Groupings 
A second example of leveraging the ability to automatically map social networks is 
taking a social network approach to health education. Rather than a primary focus 
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on teaching facts, we can instead emphasize network interactions and seek to 
leverage group dynamics so that participants take the initiative to actively learn 
about health related behaviors by (Pentland, 2005). 

Children are particularly well-suited to this social network approach for 
encouraging self-actuated learning, because they tend to be extremely sensitive to 
social context. To test this social network concept in reinforcing active learning, we 
created DiaBetNet, a computer game for young diabetics that leverages smart 
phone functionality (Kumar and Pentland, 2002). DiaBetNet capitalizes on 
children’s passion for social games to encourage young diabetics to keep track of 
their food intake, activity, and blood sugar level. 

A typical day in the life of a diabetic child using DiaBetNet would unfold as 
follows. In the morning, the child clips his DiaBetNet case—containing a smart 
phone and glucose meter—onto his belt and goes off to school. Throughout the 
day, the smart phone records his activity from the accelerometer, data from the 
glucose meter about glucose and insulin levels, and user-entered information about 
food consumption. At any time, the user can see a graph that summarizes the day’s 
activity, carbohydrate consumption, and glucose data. From time to time, a wireless 
Internet connection sends these data to a secure central server. 

DiaBetNet is a group gaming environment that requires guessing blood-sugar 
levels based on information that wearable sensors collect: the more accurate the 
answers, the higher the score. For example, imagine that a user named Tom begins 
to play DiaBetNet with others on the wireless network. Transformed into his 
cherished alias, Dr. T, Tom finds that his fellow players were all within 30 
milligrams per deciliter of guessing their blood sugar levels correctly, but his guess 
was closer than anyone else’s. 

Tom challenges a DiaBetNet player called Wizard and looks through Wizard’s 
data. Although Wizard was euglycemic in the morning, he ate a late lunch. 
Therefore, Tom decides that Wizard’s glucose level would be high and guesses 150 
mg per dl. Wizard guesses his glucose to be 180 mg per dl. Tom wins again and 
grabs five more points. He shoots a brief conciliatory message to his vanquished 
foe and signs off. 

In clinical trials, 93 percent of DiaBetNet participants successfully used the system. 
The Game Group transmitted significantly more glucose values than the Control 
Group. The Game Group also had significantly less hyperglycemia—glucose 250 
mg per dl or greater—than the Control Group. Youth in the Game Group displayed 
a significant increase in diabetes knowledge over the four-week trial. Finally, more 
youth in the Game Group monitored their hemoglobin levels.  
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3.3  Detecting Breakdowns in Supportive Social Networks 
 
As a final example, consider how the automatic detection of breakdowns in the 
pattern of social support may help make the support system more efficient. Figure 7 
presents a schematic drawing of a post-operative ward at a major hospital. We used 
reality mining methods to monitor this ward for one month, mapping out the 
networks of communication and interaction among the 70 nurses and doctors.  
 
We then compared these patterns of supportive network interactions to subjective 
judgments from both nurses and doctors about the availability of required treatment 
information, and to their judgments about personal stress levels. In both cases we 
found correlations of approximately r = 0.70 between these subjective factors and 
deviations from the normal pattern of communication within the supportive 
network. In light of this tight correlation between subjective perception of difficulty 
and variations from normal patterns of support network communication, it is not 
surprising that approximately 80% of the major delays in patient recovery time, and 
60% of the failures in patient scheduling, could be detected by monitoring for 
breakdowns in the patterns of communication and interaction (Olguin, Gloor and 
Pentland, 2009). 
 
 
 

                                           
Figure 7: Detecting breakdowns in supportive social networks. This is a real-time 
schematic of a post-operative ward in a major hospital showing the automatic 
mapping of behaviors from nurses and doctors using wearable sensors. 
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4. REALITY MINING AND THE NEW DEAL ON DATA 
 

Reality mining of behavior data is just beginning. In the near future it may be 
common for smart phones to continuously monitor a person’s motor activity, social 
interactions, sleep patterns, and other health indicators. The system’s software can 
use these data to build a personalized profile of an individual’s physical 
performance and nervous system activation throughout the entire day. If these rich 
data streams were combined with personal health records, including medical tests 
taken and the medicines prescribed, there is the possibility of dramatic 
improvements in health care.  

 

Creating such an information architecture, however, requires safeguards to 
maintain individual privacy. One approach to this problem is to place control and 
ownership of as much personal information as possible in the hands of the 
individual user, a proposal that is central to most proposals for creating personal 
medical records.    

 

We suggest that a similar approach, a ‘new deal’ around questions of privacy and 
data ownership, be taken for data collected using reality mining: individuals own 
their own data. The simplest approach to defining what it means to ‘own your own 
data’ is to go back to Old English Common Law for the three basic tenets of 
ownership: the rights of possession, use, and disposal. 

 

1. You have a right to possess your data. Companies should adopt the role 
of a Swiss bank account for your data, where you can check your data 
out whenever you’d like. 

2. You, the data owner, must have full control over the use of your data. If 
you’re not happy with the way your data is being used, you can remove 
it.  

3. You have a right to dispose or distribute your data. If you want to 
destroy it or remove it and redeploy it elsewhere, it’s your call. 

 

Social network mapping and the resulting subpopulation information inherently 
involves other people. As a consequence, some of the thorniest challenges posed by 
reality mining’s ability to sense the pulse of humanity revolve around data access 
and sharing. There are enormous risks to both individuals and corporations in the 
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sharing of data about individuals. Robust models of collaboration and data sharing, 
between government, industry and the academy need to be developed; guarding 
both the privacy of consumers as well as corporations’ legitimate competitive 
interests are vital here. The use of anonymous data should be enforced and analysis 
at the group level should be preferred over that at the individual level.  

 

Thus, we need to adopt policies that encourage the combination of massive 
amounts of anonymous data. Aggregate and anonymous location data can produce 
enormous benefits for society. Patterns of how people move around can be used for 
early identification of infectious disease outbreaks, protection of the environment, 
and public safety. It can also help us measure the effectiveness of various 
government programs, and improve the transparency and accountability of 
government and non-profit organizations. Thus, advances in analysis of network 
data must be approached in tandem with understanding how to create value for the 
producers and owners of the data, while at the same time protecting the public 
good. Clearly, our notions of privacy and ownership of data need to evolve in order 
to adapt to these new challenges. 

 

This raises another important question: how do we design institutions to manage 
the new types of privacy issues that will emerge? It seems likely that new types of 
institutions are required to deal with this information, but what form should they 
take? Private companies will also have a key role in this new deal for privacy and 
ownership. Perhaps market mechanisms can be put in place that allow people to 
give up their data for monetary or service rewards. 
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5. RECOMMENDATIONS 
 
In summary, a computational medical and public health science based on reality 
mining is emerging, a science that leverages the capacity to collect and analyze 
data with a breadth and depth that was previously inconceivable. The capacity to 
collect and analyze massive amounts of data has unambiguously transformed such 
fields as biology and physics. The emergence of such a data driven “computational 
public health’’ science (CPH science) has been much slower, largely driven by a 
few intrepid computer scientists, physicists, and social scientists. If one were to 
look at the leading disciplinary journals in health science and related disciplines, 
there would be minimal evidence of an emerging CPH science engaged in reality 
mining of these new kinds of digital traces. What then are the obstacles that stand 
in the way of a computational public health science? 
 
First of all, there are significant infrastructural barriers to the forward movement of 
computational health science. The leap from today’s static, snap-shot based public 
health science to a proactive, dynamic, and CPH science is considerably larger than, 
for example, from biology to a computational biology, in large part due to the scale 
and complex ownership of the infrastructure that makes reality mining possible. 
The resources available to exploratory research in public health are significantly 
smaller, the computational abilities of public health scientists likely generally lag 
behind those in the other sciences, and even the physical (and administrative) 
distance between medicine and public health departments and engineering or 
computer science departments tends to be greater than for the other sciences.  
 
On the tool side, the availability of easy-to-use tools would greatly magnify the 
presence of a CPH science. Just as mass-market computer assisted design software 
revolutionized the engineering world decades ago, common CPH analysis tools and 
the sharing of data will lead to significant advances. The development of these 
tools can, in part, piggyback on tools developed in biology, physics, but also 
requires substantial investments in applications customized to public health needs. 
 
In addition, many important challenges exist on the data side, primarily around 
access and privacy. Properly managing the issues around privacy is essential. As 
the recent NRC report on GIS data highlights, it is often possible to pull individual 
profiles out of even carefully anonymized data. A single dramatic incident 
involving such a breach of privacy could produce a set of statutes, rules, and 
prohibitions that could strangle this nascent field in its crib.  
 
What is necessary – now – is to produce a self-regulatory regime of procedures, 
technologies, and rules that reduces this risk but preserves most of the research 
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potential. As part of this, it is necessary for IRBs to vastly increase their technical 
knowledge to understand the potential for intrusions and harm to individuals, 
because the possibilities do not fit their current paradigms for harm. In the longer 
run, it may be necessary to rethink how IRBs are organized, possibly involving, for 
example, audits of the safeguards researchers have instituted. These safeguards, in 
turn, may prove a useful model for industry in enabling their internal research. 
 
To be avoided, however, is either the retreat of an emerging computational public 
health science into the exclusive domain of private companies, or the development 
of a “Dead Sea Scrolls” model, with academic researchers sitting on private data 
from which they produce papers that cannot be critiqued or replicated. Neither 
scenario will serve the long-term public interest in the agglomeration of knowledge. 
 
Finally, the academic community needs to figure out how to train computational 
social scientists. A key requirement for CPH analysis to be successful is the 
development of complementary and synergistic explanations spanning different 
fields (e.g., epidemiology and network science) and scales (from individuals to 
small groups and organizations to entire nations). Certainly, in the short run, CPH 
science needs to be the work of teams of public health and computer scientists. In 
the longer run, the question will be: should academia be building computational 
public health scientists, or teams of computationally literate public health scientists 
and public health literate computer scientists?   
 
The emergence of “cognitive science” in the 1960s and 1970s offers a powerful 
model for the development of a computational health science. Cognitive science 
emerged out of the power of the computational metaphor of the human mind. It has 
involved fields ranging from neurobiology to philosophy to computer science. It 
attracted the investment of substantial resources to create a common field, and it 
has created enormous progress for the good in the last generation.  We would argue 
that a computational public health science has a similar potential, and is worthy of 
similar investments. 
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